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Abstract 

Accurate crop yield prediction is critical for ensuring food security and efficient agricultural management, particu- larly 
in the face of climate change and rising global populations. Current predictive models often fall short in generalizing 
across diverse agricultural contexts due to their inability to capture complex interactions between various climatic and 
soil variables effectively. This study addresses these gaps by proposing a com- prehensive machine-learning framework 
that integrates ensemble methods to enhance crop yield prediction accuracy. Using a dataset enriched with climatic and 
agricultural features, we evaluated multiple models, including Linear Regression, Decision Tree, Random Forest, 
Gradient Boosting, XGBoost, Bagging Regressor, and K-nearest neighbors. The Random Forest model emerged as the 
top performer, achieving an accuracy of 0.985 and a Mean Squared Error (MSE) of 1.08e+08. At the same time, the 
Bagging Regressor closely followed with an accuracy of 0.984 and comparable MSE. Gradient Boosting and XGBoost 
models also demonstrated robust performance, with accuracies ranging from 0.865 to 0.974 and MSE values between 
9.60e+08 and 1.89e+08. Our approach includes extensive hyperparameter tuning and k-fold cross-validation to ensure 
model generalizability and robustness across agricultural scenarios. These findings highlight the effectiveness of 
ensemble methods in capturing complex data relationships and their superiority over traditional models in predicting 
crop yields. Our work sets the stage for future research into integrating real-time data and advanced hybrid models, 
aiming to refine predictive accuracy further and support sustainable agricultural practices.  
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1. Introduction

The accurate prediction of crop yields is a crucial aspect of agricultural planning and management, directly influencing 
food security, economic stability, and sustainable resource utilization. As global populations continue to rise and climate 
change exacerbates agricultural challenges, the demand for reliable crop yield forecasting has never been more critical. 
Traditional methods, which often rely on historical data and simplistic statistical models, fail to account for the com- 
plex interactions between numerous variables such as soil characteristics, weather patterns, and farming practices. This 
complexity necessitates more sophisticated approaches to in- tegrate and analyze diverse datasets to provide accurate 
and timely predictions, ultimately aiding farmers, policymakers, and stakeholders in making informed decisions. 

In recent years, machine learning (ML) advancements have opened new avenues for enhancing crop yield predictions. 
Current research predominantly focuses on leveraging various ML algorithms, including regression models, decision 
trees, 

ensemble methods, and neural networks, to improve the ac- curacy of predictions. Studies have shown that models such 
as Random Forest, Gradient Boosting, and Support Vector Machines (SVM) can effectively handle agricultural datasets’ 
non-linear relationships and high-dimensionality characteris- tics. Despite these advancements, many models still 

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://ijsra.net/
https://doi.org/10.30574/ijsra.2025.14.1.0189
https://crossmark.crossref.org/dialog/?doi=10.30574/ijsra.2025.14.1.0189&domain=pdf


International Journal of Science and Research Archive, 2025, 14(01), 1456-1467 

 

1457 

 

struggle with generalizability across different regions and crop types, and there is a significant need for models that can 
maintain high predictive accuracy in diverse agricultural contexts. 

The primary challenge identified in existing research is the inadequacy of many ML models for handling the complex, 
non-linear relationships inherent in agricultural data. Tradi- tional models often fail to capture the nuanced interactions 
between climatic conditions, soil properties, and crop yields, leading to suboptimal performance. To address these chal- 
lenges, our research proposes applying ensemble methods, specifically random forest and bagging regression, which 
have shown promise in previous studies for their robustness and ability to generalize across various datasets. These 
models are designed to integrate multiple weak learners to form a strong predictor, enhancing accuracy and reducing 
the risk of overfitting. Our proposed solution involves a comprehensive evaluation of these models alongside other ML 
techniques, utilizing a dataset rich in climatic and agricultural variables to identify the most effective approach for crop 
yield prediction. The primary contributions of our research are as follows: 

• We conduct an extensive comparative analysis of multi- ple ML models, highlighting each model’s strengths and 
weaknesses in predicting crop yields based on a diverse set of agricultural and climatic features. 

• Our research demonstrates the superior performance of ensemble methods, specifically hyperparameter-
tuned Random Forest and Bagging Regressor, which consis- tently outperform other models in accuracy and 
robust- ness. 

• We emphasize the critical role of k-fold cross-validation in ensuring the generalizability and reliability of pre- 
dictive models in agricultural applications. By system- atically evaluating model performance across multiple 
folds, we assess each model’s ability to generalize to new data more rigorously. 

• Our study integrates various agricultural and climatic features, providing a comprehensive approach to crop 
 
yield prediction. This integration enables the models to account for the multifaceted influences on crop yields, thereby 
enhancing the accuracy and applicability of the predictions in real-world conditions. 

The remainder of this paper is structured as follows: Sec- tion 2 reviews related work and the state-of-the-art in 
crop yield prediction using ML. Section 3 describes the dataset, detailing the features and preprocessing steps involved 
and our methodology, including the models evaluated and the criteria for their selection. Section 4 discusses the 
experimental results, highlighting the performance of each model. Finally, Section 5 concludes with our findings, their 
implications for agricultural planning, and potential directions for future research. 

2. Related Works 

Recent advancements in ML have significantly enhanced the accuracy of crop yield prediction models, leveraging 
diverse techniques and datasets. Jovanovic et al. [6] employed metaheuristic-tuned weight-agnostic neural networks to 
predict crop yields, demonstrating how metaheuristic approaches can optimize neural network architectures to 
improve prediction performance. Similarly, Kolipaka and Namburu [7] proposed a two-stage classifier framework 
incorporating meta-heuristics to refine crop yield predictions, illustrating the effectiveness of combining multiple 
classification stages with optimization techniques for higher accuracy. Zare et al. [8] explored within- season crop yield 
prediction using a multi-model ensemble approach, integrating data assimilation to enhance model ro- bustness and 
predictive capability across different growing conditions. Their work highlights the advantages of ensemble methods 
to capture diverse patterns and trends within agricul- tural data. 

Gopi and Karthikeyan [10] introduced an innovative crop rec- ommendation and yield prediction model using an 
ensemble of recurrent neural networks optimized by Red Fox optimiza- tion. Their approach underscores the potential 
of combining evolutionary algorithms with neural network ensembles for superior performance in agricultural 
applications. Chaudhary and Pathak [11] developed a crop yield prediction model using a bi-directional LSTM under 
the PySpark framework, showcasing how advanced deep learning (DL) techniques and big data platforms can facilitate 
the processing of large-scale agricultural datasets for accurate yield forecasts. Additionally, Bhadra et al. [13] utilized 
a 3D CNN for plot-scale soy- bean yield prediction, integrating multitemporal UAV-based RGB images to capture 
temporal changes in crop growth, demonstrating the efficacy of convolutional neural networks in processing and 
analyzing remote sensing data for precise yield estimates. Wang et al. [15] combined CNN and GRU in a DL framework 
to improve wheat yield estimates using time-series remotely sensed multi-variables, highlighting the potential of hybrid 
models in capturing both spatial and temporal dynamics for crop yield prediction. learning network that advances plant 
and leaf classification, emphasizing the utility of multitask learning in improving model performance across related 
tasks. Vardhan and Sharma 
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[12] further explored the application of hierarchical convolu- tional neural networks for plant pathology, demonstrating 
sig- nificant improvements in disease identification accuracy. Saini et al. [14] combined CNN and Bi-LSTM in their DL 
approach for sugarcane yield prediction, illustrating how integrating con- volutional layers with extended short-term 
memory networks can effectively model both spatial and sequential data for yield forecasting. These studies underscore 
the benefits of using DL and ensemble methods to capture complex relationships within agricultural datasets, leading to 
more accurate and reliable crop yield predictions. 

Despite the advancements in crop yield prediction models, sev- eral gaps remain in the current research. Many existing 
models, including those developed by Wang et al. [15] and Bhadra et al. [13], are limited by their specific focus on 
single crop types or lack of generalizability across different agricultural contexts. Furthermore, the complexity of 
integrating diverse climatic and soil variables into predictive models is often un- derexplored. Our research addresses 
these gaps by proposing a comprehensive approach that integrates multiple ensemble methods, such as Random Forest 
and Bagging Regressor, which have demonstrated superior performance in various settings. Additionally, using a 
diverse dataset encompassing a wide range of agricultural and climatic features ensures the models’ applicability across 
different crop types and growing conditions, enhancing their generalizability and robustness. Future work could build 
on our findings by exploring more advanced DL techniques and real-time data integration to refine crop yield 
predictions further and support sustainable agricultural practices. 

3. Method 

3.1. Dataset 

In this study, we have utilized the Crop Yield Prediction Dataset from FAO (Food and Agriculture Organization) [16] and 
World Data Bank [17], which offers a comprehensive set of agricultural data essential for analyzing and predicting crop 
yields across different regions. This dataset includes five dis- tinct files, each providing crucial information: the Yield 
Data file consists of 56,717 entries covering crop yields for various crops across different countries and years, capturing 
key details such as area, crop type, year, and yield in hectograms per hectare. The Temperature Data file contains 71,311 
entries, providing average temperature data for 137 countries over 271 years, with some missing values in the 
temperature column. The Rainfall Data file includes 6,727 entries detailing average annual rainfall across 217 areas 
over 31 years, with some entries missing rainfall data. The Pesticide Usage Data file has 4,349 entries covering pesticide 
usage for various crops across 168 regions over 27 years. Finally, the Comprehensive Crop Yield Data file integrates all 
the information above, containing 28,242 entries with no missing values. This file provides a holistic view of crop yield 
data, encompassing details such as average temperature, rainfall, pesticide usage, and yield metrics across 101 areas 
and 10 different crop types over 23 years. The dataset’s richness and variety make it a valuable resource for in-depth 
analysis and robust prediction of crop yields by integrating various environmental and agricultural factors. 

3.2. Proposed Work 

This study proposes a comprehensive approach to predict crop yields by leveraging advanced ML techniques. Our 
methodology involves a detailed data preprocessing phase, the application of various ML models, and subsequent 
hyperpa- rameter tuning to optimize the performance of the models. The goal is to identify the most effective model for 
accurately pre- dicting crop yields based on various agricultural and climatic factors. 

Algorithm 1 focuses on developing a robust model for pre- dicting crop yields using diverse features. The primary steps 
include data loading, preprocessing, EDA, data preparation, and model training. 

We start by importing the necessary libraries, such as numpy and pandas, and then load the dataset D from vari- ous 
files (yield.csv, temp.csv, rainfall.csv, pesticides.csv, and yield df.csv). The dataset comprises features like temperature, 
rainfall, pesticides, and other agricultural parameters essential for predicting crop yields. We handle any missing values 
and duplicates to ensure data integrity. 

Basic EDA is performed to understand feature distributions and relationships. This includes visualizing distributions 
and correlations among the features to uncover potential patterns and insights. 

The dataset is split into features X and the target variable y, where X contains all columns except for the crop yield 
(hg/ha yield), and y represents the crop yield. We convert categorical variables into dummy variables using: 

X ← pd.get dummies(X)……….. (1) 
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to facilitate numerical analysis. The data is then split into training and testing sets using a train-test split with 20% of 
the data reserved for testing: 

Xtrain, Xtest, ytrain, ytest ← train test split (X, y, 0.2, 1)…….(2) 

where 0.2 denotes the proportion of the dataset to include in the test split, and 1 sets the random seed for 
reproducibility. 

We define a list of ML models including Linear Regression (LR), Decision Tree (DT), Random Forest (RF), Gradient 
Boosting (GB), XGBoost (XGB), Bagging Regressor (BR), and K-Nearest Neighbors (KNN), where each model is ini- 
tialized with specific parameters. 

We train each model on the training data Xtrain and ytrain and evaluate their performance on the testing data Xtest and 
ytest. The model training process involves fitting the model: 

model.fit(Xtrain, ytrain)…… (3)  

and making predictions: 

yˆtest ← model.predict(Xtest)………….(4) 

The predictions yˆtest are compared against the actual test labels ytest using various evaluation metrics 

Algorithm 1 Crop Yield Prediction Model 

Require: Dataset D with features: temperature, rainfall, pes- ticides, etc. 

Ensure: Preprocessed dataset for crop yield prediction.  

• Import Libraries: numpy, pandas, sklearn, xgboost  
• Data Loading and Preprocessing: 
• Load D from: yield.csv, temp.csv, rainfall.csv, pesticides.csv, yield df.csv 
•  Clean data: handle missing values, duplicates  
• EDA: Perform basic exploratory data analysis  
• Data Preparation: 
• Split D: X, y ← D.drop(′hg/hayield′, axis = 1), D[′hg/hayield′] 
• Convert categorical to dummy variables: X ← pd.get dummies(X) 
• Split into train/test: Xtrain, Xtest, ytrain, ytest ←train test split(X, y, 0.2, 1) 
• Model Training: 
• Define models: 

o models ← {(′LR′, LinearRegression()), 
o (′DT′, DecisionTreeRegressor(1)), 
o (′RF′, RandomForestRegressor(1)), 
o (′GB′, GradientBoostingRegressor(100, 0.1, 3, 1)), (′XGB′, XGBRegressor(1)), 
o (′BR′, BaggingRegressor(100, 1)), ( ′KNN ′, KNeighborsRegressor(10))} 

• Train and evaluate models on Xtrain, ytrain: 
o for (m name, model) in models: model.fit(Xtrain, ytrain) yˆtest ← model.predict(Xtest) ϵ ← 

Evaluate(yˆtest, ytest) results.append((m name, ϵ)) 
• Model Evaluation: 
• Evaluate models using MAE, MSE, and R2 

• Return Best model and metrics 
Algorithm 2 focuses on optimizing the hyperparameters of the top-performing models from the first algorithm to 
enhance their predictive performance. The models considered for hy- perparameter tuning are Random Forest, Bagging 
Regressor, and XGBoost. 
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Random Forest Tuning: For the Random Forest model, we explore a grid of hyperparameters, including the number of 
es- timators (n estimators), maximum tree depth (max depth), minimum samples for splitting a node (min samples
split), 

Algorithm 2 Hyperparameter Tuning for Crop Yield Prediction Models Require: Training dataset Xtrain, ytrain. 

Ensure: Optimized models with tuned hyperparameters. 

• Random Forest Tuning: 
• Define parameter grid: 

o param grid rf ← {′n estimators′ : [100, 200, 300], 
o ′max depth′ : [10, 20, 30], 
o ′min samples split′ : [2, 5, 10], 
o ′min samples leaf′ : [1, 2, 4]} 

• Use GridSearchCV: rf best ← 
o GridSearchCV(RandomForestRegressor(1), param grid rf) 

• Fit rf best: rf best.fit(Xtrain, ytrain) 
• Bagging Regressor Tuning: 
• Define parameter grid: 

o param grid br ← {′n estimators′ : [50, 100, 150], 
o ′max samples′ : [0.5, 0.7, 1.0], 
o ′max features′ : [0.5, 0.7, 1.0]} 

• Use GridSearchCV: br best ← 
o GridSearchCV(BaggingRegressor(1), param grid br) 

• Fit br best: br best.fit(Xtrain, ytrain) 
• XGBoost Tuning: 
• Define parameter grid: 

o param grid xgb ← {′n estimators′ : [100, 200, 300], 
o ′learning rate′ : [0.01, 0.1, 0.2], 
o ′max depth′ : [3, 6, 9], 
o ′subsample′ : [0.8, 1.0]} 

• Use GridSearchCV: xgb best ← 
o GridSearchCV(XGBRegressor(1), param grid xgb) 

• Fit xgb best: xgb best.fit(Xtrain, ytrain) 
• Model Comparison: 
• Compare models using MAE, MSE, and R2 score. 
• Return Best tuned model and evaluation metrics.  

And minimum samples at a leaf node (min samples leaf ). The grid is defined as follows: 

param grid rf ← {′n estimators′ : [100, 200, 300], 

′max depth′ : [10, 20, 30], 

′min samples split′ : [2, 5, 10], 

′min samples leaf′ : [1, 2, 4]} 

We employ GridSearchCV for exhaustive search over the parameter grid to find optimal parameters: 

rf best ← GridSearchCV(RFRegressor(1), param grid rf)..(5) 

The best parameters are identified by fitting the model to the training data: 

rf best.fit(Xtrain, ytrain)…… (6) 
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Bagging Regressor Tuning: Similarly, for the Bagging Re- gressor, we define a grid of hyperparameters, including the 
number of estimators (n estimators), maximum samples per base estimator (max samples), and maximum features 
per base estimator (max features). The parameter grid is: 

param grid br ← {′n estimators′ : [50, 100, 150], 

′max samples′ : [0.5, 0.7, 1.0], 

′max features′ : [0.5, 0.7, 1.0]} 

GridSearchCV is utilized to find the best parameters: 

br best ← GridSearchCV(BR(1), param grid br) (7) The model is fitted as follows: 

br best.fit(Xtrain, ytrain)……….(8) 

XGBoost Tuning: For XGBoost, the hyperparameters tuned include the number of estimators (n estimators), learning 
rate (learning rate), maximum tree depth (max depth), and subsample ratio (subsample). The parameter grid is 
defined as: 

param grid xgb ← {′n estimators′ : [100, 200, 300], 

′learning rate′ : [0.01, 0.1, 0.2], 

′max depth′ : [3, 6, 9], 

′subsample′ : [0.8, 1.0]} 

GridSearchCV is employed to find the optimal parameters: 

xgb best ← GridSearchCV(XGBRegressor(1), param grid xgb)……….(9) 

The model is fitted as: 

xgb best.fit(Xtrain, ytrain)…….(10) 

We have implemented a comprehensive approach for pre- dicting crop yields using advanced ML techniques. The first 
part of our methodology involves preprocessing a diverse crop yield dataset and training multiple ML models, including 
Linear Regression, Decision Tree, Random Forest, Gradient Boosting, XGBoost, Bagging Regressor, and K-nearest neigh- 
bors. We performed data cleaning, conversion of categorical variables, and a train-test split to ensure robust training 
and evaluation. Each model was evaluated using key performance metrics to identify the best-performing model. In the 
sec- ond part, we focused on hyperparameter tuning for the top- performing models—Random Forest, Bagging 
Regressor, and XGBoost—using GridSearchCV to optimize their parameters and enhance their predictive accuracy. We 
selected these three models for tuning due to their initial solid performance and ability to handle complex interactions 
within the data. This approach ensures that our model is accurate and generaliz- able across different agricultural 
conditions. We chose this comprehensive strategy to leverage the strengths of various algorithms, ensuring that the 
final model can effectively predict crop yields by integrating key agricultural and climatic factors. 

3.2.1. Model Evaluation 

The performance of each model is evaluated using three key metrics: Accuracy, Mean Squared Error (MSE), and the 
coefficient of determination (R2). These metrics provide a comprehensive assessment of the model’s predictive perfor- 
mance and accuracy. 

Accuracy: In regression tasks, accuracy can be interpreted as how close the predicted values are to the actual values. 
Although more commonly used in classification, for regression purposes, accuracy is generally assessed through 
proximity measures like MSE and R2. High accuracy indicates that the model’s predictions are very close to the actual 
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values, reflecting the model’s reliability in making precise predictions. Mean Squared Error (MSE): MSE measures the 
average of the squared differences between predicted values (yˆi) and 

actual values (yi). It is given by: 

𝑓(𝑧) =
1

𝑛
∑ (𝑦̂ − 𝑦𝑖)

2𝑛
𝑖=1        (11) 

where n is the number of observations. MSE emphasizes larger errors more than smaller ones, providing a sensitive 
metric to significant deviations in predictions. Lower MSE values indicate better model performance as the model errors 
are minimal. 

Coefficient of Determination (R2): The R2 score measures the proportion of variance in the dependent variable that is 
predictable from the independent variables. It is computed as:    

 𝑅2 = 1 −
∑ (𝑦̂−𝑦𝑖)

2𝑛
𝑖=1

(𝑦𝑖−𝑦̅)
2         (12) 

that its predictions are closely aligned with the actual values, reflecting minimal deviation. Similarly, the Bagging 
Regressor demonstrates comparable performance with an accuracy of 0.984792 and an MSE of 1.08e+08. These results 
underscore the effectiveness of ensemble methods in handling complex interactions within the dataset. The Decision 
Tree model also 

Table 1 Model Performance Metrics 

Model Accuracy MSE R2 Score 

Linear Regression 0.751364 1.77e+09 0.751364 

Decision Tree 0.978228 1.55e+08 0.978228 

Random Forest 0.984811 1.08e+08 0.984811 

Gradient Boost 0.865138 9.60e+08 0.865138 

XGBoost 0.973514 1.89e+08 0.973514 

Bagging Regressor 0.984792 1.08e+08 0.984792 

KNN 0.332706 4.75e+09 0.332706 

performs remarkably well, with an accuracy of 0.978228 and an MSE of 1.55e+08, showcasing its robustness in making 
precise predictions despite its simplicity. Gradient Boosting and XGBoost models show strong performance with accura- 
cies of 0.865138 and 0.973514, respectively, highlighting their capability to capture non-linear relationships within the 
data. However, the KNN model exhibits significantly lower accuracy at 0.332706 and a high MSE of 4.75e+09, indicating 
that it is not well-suited for this task. 

Figures 1 visually compare each model’s actual versus predicted values. The scatter plots illustrate the correlation 
between actual and predicted crop yields, with the red trend- ine indicating the line of perfect prediction. These plots 
help visually assess each model’s performance and understand the accuracy achieved in predictions. Each subplot in 
Figure 1 where y¯ is the mean of the actual values. An R2 value close to 1 indicates that the model explains a large portion 
of the variance in the dependent variable, while a value near 0 suggests poor explanatory power. High R2 values reflect 
the model’s ability to capture the variability in the data effectively. By assessing the models using these metrics, we 
identify the best-performing model that achieves high accuracy, low MSE, and a high R2 score, ensuring robust and 
reliable predictions of crop yield. 
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4. Results and Discussion 

We present and discuss the results of the ML models applied to predict crop yields. Each model’s performance is 
assessed using Accuracy, MSE, and the coefficient of determination (R2). The comprehensive evaluation of these models 
high- lights their strengths and limitations in predicting crop yields based on various agricultural and climatic features. 

The evaluation metrics for each model are summarized in Table I. The table provides a comparative overview of the 
mod- els’ predictive performance, which is critical for understanding their reliability and effectiveness. From Table I, 
we observe that the Random Forest model achieved the highest accuracy of 0.984811, indicating its superior ability to 
predict crop yields accurately. The model’s Mean Squared Error (MSE) is also the lowest among all models at 1.08e+08, 
which shows 

shows the actual crop yields plotted against the predicted yields for the corresponding model. The closer the data points 
align with the trendline, the better the model’s predictive performance—models like Random Forest and Bagging Re- 
gressor display data points closely following the trendline, sig- nifying high accuracy. On the contrary, the KNN model 
shows significant dispersion, indicating poorer predictive capability. 

4.1. Discussion of K-Fold Validation Results 

Figure 2 presents the accuracy scores for each model across 10 folds. The plots provide insight into the stability and 
consistency of each model’s performance. 

In Figure 2(a), the Linear Regression model shows relatively stable accuracy scores with minor fluctuations between 
0.735 and 0.770 across the folds, indicating consistent performance. Figure 2(b) illustrates the Decision Tree model, 
which achieves high accuracy scores ranging from 0.980 to 0.986. The variability observed in the accuracy scores across 
folds highlights the model’s sensitivity to the training data varia- tions. 

   
a Linear Regression b Decision Tree c Random Forest 

   
d Gradient Boost e XGBoost f Bagging Regressor 
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g KNN 

Figure 1 Actual vs Predicted Values for Different Models 

In Figure 2(d), the Gradient Boost model exhibits fluctu- ations in accuracy between 0.862 and 0.880. This variability 
suggests the model’s moderate sensitivity to the folds, which could be attributed to its iterative learning process that 
may overfit on certain subsets of the data. 

The XGBoost model, depicted in Figure 2(e), maintains high accuracy scores ranging from 0.973 to 0.979. The slight 
variations across folds indicate a strong generalization capa- bility with minimal overfitting. 

Figure 2(f) shows the Bagging Regressor model, which maintains consistently high accuracy scores between 0.988 
and 0.991. The stable performance across folds demonstrates the model’s ability to aggregate multiple predictions 
effectively, leading to robust results. 

Lastly, Figure 2(g) displays the KNN model, which shows significant variation in accuracy scores ranging from 0.310 to 
0.360. This variability reflects the model’s high sensitivity to the different folds, suggesting it may not generalize well 
across varying subsets of the data. 

   

A Linear Regression B Decision Tree C Random Forest 

   
D Gradient Boost E XGBoost F Bagging Regressor 
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(g) KNN 

Figure 2 K-Fold Validation Accuracy for Different Models. Each plot represents the accuracy scores across 10 
folds for the respective model: (a) Linear Regression, (b) Decision Tree, (c) Random Forest, (d) Gradient Boost, 

(e) XGBoost, (f) Bagging Regressor, and (g) KNN 

Evaluating various ML models for crop yield prediction reveals significant differences in their performance and ro- 
bustness. The Random Forest model demonstrated superior performance with an accuracy consistently around 0.985 
and an MSE of approximately 1.08e+08, making it the most reliable model across multiple metrics. The Bagging 
Regressor closely followed, with an accuracy of 0.984 and a similar MSE. The Decision Tree model also performed well, 
achieving an accuracy of 0.978 and an MSE of 1.55e+08, highlighting its simplicity yet effective predictive capability. 
Ensemble methods like Gradient Boost and XGBoost exhibited robust performance with accuracies of 0.865 and 0.974, 
respectively, and MSE values around 9.60e+08 and 1.89e+08, indicating their strong generalization capabilities. In 
contrast, the KNN model showed lower accuracy at 0.333 and a high MSE of 4.75e+09, reflecting its inadequacy for this 
task. The Linear Regression model, while straightforward, managed an accuracy of 0.751 and an MSE of 1.77e+09, 
demonstrating moderate effectiveness. K-fold validation further confirmed these findings, showing consistent 
performance across folds for Random Forest and Bagging Regressor, with accuracy ranges of 0.988 to 0.991 and 
minimal fluctuation. Conversely, models like KNN and Gradient Boost displayed more signif- icant variability in accuracy 
across folds, ranging from 0.310 to 0.360 and 0.862 to 0.880, respectively, indicating their sensitivity to the data splits. 
In conclusion, ensemble methods, particularly Random Forest and Bagging Regressor, proved the most effective and 
reliable for crop yield prediction, offering high accuracy, low error rates, and consistent performance across different 
data subsets. 

5. Conclusion 

This research thoroughly evaluates ML models for crop yield prediction using a dataset with various agricultural and 
climatic features. Ensemble methods, particularly Random Forest and Bagging Regressor, showed superior 
performance with accuracies around 0.985 and MSE values near 1.08e+08, making them highly reliable for this task. 
The Decision Tree model also performed well with an accuracy of 0.978 and an MSE of 1.55e+08, proving effective 
for more straightfor- ward scenarios. Gradient Boosting and XGBoost demonstrated strong capabilities with accuracies 
of 0.865 and 0.974 and MSE values ranging from 9.60e+08 to 1.89e+08. In contrast, the KNN model showed the lowest 
performance, with an accuracy of 0.333 and a high MSE of 4.75e+09, indicating its unsuitability for this application. 
The k-fold validation confirmed the consistency of Random Forest and Bagging Regressor, highlighting their robustness 
with accuracy scores between 0.988 and 0.991 across folds. This study underscores the effectiveness of ensemble 
methods for accurate and con- sistent crop yield predictions, offering valuable insights for agricultural planning and 
management. Future work could further explore advanced DL techniques, hybrid models, and real-time data integration 
to improve predictive accuracy and adaptability in agricultural contexts. 
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