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Abstract  

Parkinson's disease (PD) is a progressive neurological condition that impairs motor and speech function. Early and 
precise detection is critical for prompt intervention and illness treatment. This work applies machine learning 
approaches to classify Parkinson's disease using speech biomarkers collected from voice recordings. The dataset 
includes a variety of acoustic parameters that capture speech anomalies often seen in people with Parkinson's disease. 
The Chi-Square (Chi2) approach was used to pick the most important predictors, which improved model performance 
and reduced computational complexity. The fine K-Nearest Neighbors (KNN) classifier was implemented, achieving a 
validation accuracy of 74.7%. The model demonstrated a moderate ability to distinguish between Parkinson’s and non-
Parkinson’s cases, as indicated by an area under the curve (AUC) score of 0.7421. However, the confusion matrix 
revealed challenges in misclassification, with false positives leading to potential unnecessary medical evaluations and 
false negatives resulting in missed diagnoses. This study highlights the potential of machine learning in Parkinson’s 
detection while emphasizing the need for further refinement to enhance classification accuracy 
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1. Introduction 

Parkinson's disease (PD) is a progressive neurological disorder that affects millions of people worldwide, with motor 
and non-motor symptoms including tremors, stiffness, bradykinesia, and voice abnormalities [1]. Early and correct 
diagnosis is critical for successful illness management because it slows disease progression and improves patient 
outcomes [2]. Speech-based biomarkers have emerged as a viable technique for Parkinson's disease diagnosis and 
classification due to its noninvasive nature, low cost, and ease of use. PD patients frequently demonstrate specific vocal 
deficits such as decreased voice amplitude, monotonicity, and increased jitter and shimmer, which can be recognized 
utilizing advanced signal processing and machine learning methods [3]. Studies have revealed the ability of speech 
analysis to diagnose and assess the severity of Parkinson's disease [4]. Also, Bradykinesia, stiffness, resting tremor, and 
postural and gait abnormalities are examples of motor manifestations of Parkinson's disease (PD); non-motor aspects 
can include depression, autonomic and olfactory dysfunction, sleep difficulties, mental symptoms, pain, exhaustion, and 
cognitive impairment [12]. Given the growing recognition of the link between speech impairment and 
neurodegeneration, speech assessment is becoming an area of study in Parkinson's disease and other degenerative 
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neurological illnesses. Vocal assessment presents intriguing potential advances because it is inexpensive and non-
invasive, and recordings can be made remotely using commonly available smartphone microphones, allowing clinicians 
to assess speech routinely at the clinic or during patients' daily lives in home and community settings [9,10,11]. Most 
research on the diagnosis of Parkinson’s disease (PD) has relied on sustained phonation of the vowel 'a' as the primary 
speech task, with some studies also incorporating other vowels such as 'e', 'i', 'o', and 'u'. The features derived from 
these sustained phonation tasks can be categorized into two types: conventional features and non-conventional 
features. Conventional features include metrics like jitter, shimmer, harmonics-to-noise ratio, formant bandwidth 
measurements, and mean formant frequencies. Non-conventional features, on the other hand, involve advanced 
techniques such as empirical mode decomposition, correlation dimension, and the Hurst exponent. Some studies have 
utilized a combination of both conventional and non-conventional features to enhance diagnostic accuracy [13,14,15]. 

 Recent advancements in machine learning (ML) have further enhanced the ability to identify subtle speech patterns 
linked to PD. For example, convolutional neural networks (CNNs) and support vector machines (SVMs) have been 
successfully employed to classify speech data with high accuracy [5][6]. These models leverage acoustic features such 
as jitter, shimmer, and harmonic-to-noise ratio (HNR) to distinguish between healthy individuals and PD patients. The 
integration of large-scale datasets and feature engineering has significantly improved prediction performance, as shown 
in various studies [7]. 

However, despite its potential, the adoption of speech-based biomarkers for PD remains challenging due to factors such 
as data variability, background noise, and limited availability of high-quality datasets [8]. Addressing these challenges 
requires robust preprocessing, feature extraction, and algorithm optimization techniques.  

2. Material and methods 

The dataset used in this work is an important resource for studying speech biomarkers related with Parkinson's disease. 
Voice recordings and a variety of extracted acoustic elements that represent vocal abnormalities frequently seen in 
people with the condition make up this collection. These characteristics offer insightful information for creating 
machine learning models intended to detect Parkinson's disease early and track its progression. The dataset is 
organized to include both patient-specific identifiers and clinically significant speech features. The ground truth for 
classification tasks is provided by patient data, which includes unique IDs and diagnostic status. Acoustic characteristics 
include basic frequency measurements, frequency and amplitude changes, and noise-related metrics that reveal vocal 
instability. To further understand how Parkinson's disease affects vocal function, sophisticated nonlinear dynamical 
metrics are also incorporated to record abnormalities in speech patterns. The dataset was loaded using Matlab 2024b 
Software for data analysis process. 

2.1. Data processing 

The data set used for analysis is secondary and processed. The data set contains no missing or null values. As a result, 
no data processing occurs to cope with missing and/or null values. To classify PD from this dataset, we divided the data 
into train and test sets, balanced the dependent value, and chose the features based on the model's specifications. This 
section discusses data preparation in detail. 

To train the Parkinson's dataset, the optimizer settings were tuned with the random search approach. The use of 
random search enabled effective exploration of the hyperparameter space without relying on established grid 
arrangements. With the number of iterations set to 30, the model was trained with several randomly chosen 
hyperparameter combinations, ensuring that the best-performing configuration was determined within the constraints. 
The acquisition function was set to "expected improvement per second plus," but it remained inactive due to the 
selected optimizer. This function might have been useful in a Bayesian optimization scenario, but it was not necessary 
for random search as shown in Figure 1. A training time constraint was not imposed, allowing the optimizer to run all 
iterations without restriction. If enabled, the training time might have been limited to 300 seconds every run. The 
number of grid divisions, which was set at 10, was similarly ineffective in this scenario because grid-based procedures 
were not used. These settings were used to maximize model performance on the dataset, with the goal of improving 
classification accuracy for Parkinson's disease diagnosis while remaining computationally efficient. 
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Figure 1 Optimizer Settings 

3. Results and discussion   

The K-Nearest Neighbors (KNN) classifier was trained on the Parkinson's dataset and achieved a validation accuracy of 
74.7%. This accuracy measures the proportion of correctly categorized instances in the validation set, indicating the 
model's ability to distinguish between Parkinson's and non-Parkinson's cases. The model was configured with fine KNN 
settings, utilizing all 22 possible features to produce predictions. These traits are expected to include biomedical voice 
measurements, which are widely employed in Parkinson's disease identification due to their utility in diagnosing motor 
and speech problems. Fine KNN is a configuration in which the number of neighbors (k) is set to a lower value, which 
can result in more accurate decision boundaries but also increases sensitivity to noise. The decision to use KNN as a 
classification method was based on its simplicity and effectiveness in handling small-to-medium-sized datasets without 
considerable training. However, a validation accuracy of 74.7% indicates that the model's performance could be 
improved further using further optimization strategies. 

 

Figure 2 fine knn results 

The confusion matrix gives information on the fine K-Nearest Neighbors (KNN) classifier's ability to distinguish between 
Parkinson's and non-Parkinson's instances. The program properly recognized 339 non-Parkinson's cases and 470 
Parkinson's patients, suggesting that it can appropriately categorize most cases. However, it misdiagnosed 161 healthy 
people as having Parkinson's and failed to discover 113 true Parkinson's cases. The presence of false positives indicates 
that the model has a tendency to categorize non-Parkinson's cases as Parkinson's, even when the distinction is unclear. 
This could be owing to overlapping feature values between the two groups, prompting the model to be cautious. While 
this may be useful in some screening circumstances where early detection is important, it can also lead to undue 
concern, medical tests, and interventions for those who are healthy. False negatives, though rare, are more significant 
in a medical setting since they reflect missed Parkinson's diagnosis. Undetected cases may cause delays in therapy and 
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disease management, which is especially troublesome for a progressive disorder such as Parkinson's. A smaller number 
of false negatives indicates that the model has an acceptable level of sensitivity, but the fact that some situations are still 
being missed demonstrates places for improvement. Adjustments to the decision threshold, hyperparameter tweaking, 
or the incorporation of additional features that better reflect Parkinson's symptoms may improve the model's capacity 
to distinguish between affected and unaffected individuals. Figure 3 shows the confusion matrix formula and Figure 4 
shows the confusion matrix 

 

Figure 3 Confusion Matrix Formula 

 

 

Figure 4 Confusion Matrix 

 The area under the curve (AUC) is 0.7421, showing that the model has modest capacity to distinguish between the two 
groups. An AUC of 0.5 indicates that the model performs no better than random guessing, but an AUC closer to 1 suggests 
great discrimination. With a rating of 0.7421, the model shows good classification skill, but there is potential for 
improvement. The blue point on the curve denotes the model's operational point, which corresponds to a specific 
threshold at which the trade-off between true and false positives is established. The strong initial climb in the curve 
indicates that the model catches a sizable proportion of genuine positives with few false positives at lower thresholds. 
However, when the false positive rate rises, the true positive rate rises more slowly, indicating diminishing returns. 
Given the AUC and the shape of the curve, the model is effective but could benefit from refinements such as 
hyperparameter tuning, feature selection, or alternative distance metrics. Adjusting the decision threshold could also 
help achieve a better balance between sensitivity and specificity, depending on whether the goal is to minimize missed 
Parkinson’s cases or reduce false alarms. 
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Figure 5 AUC Curve 

The Chi-Square (Chi2) method was used to discover the most essential features for classifying Parkinson's cases. The 
bar chart shows the sorted importance scores of key characteristics, emphasizing their impact on the model's prediction 
performance. The highest-ranking features, such as MDVPPPQ, MDVPAPQ, and MDVPJitter, show the most significant 
influence on classification, demonstrating a substantial association with Parkinson's detection. 

By selecting features with higher importance scores, the model can potentially improve accuracy while reducing 
computational complexity. Removing less significant features helps in eliminating noise and preventing overfitting, 
ensuring that only the most relevant data points contribute to the classification process. This approach aligns with 
optimizing the fine KNN model, as reducing dimensionality can enhance generalization and improve classification 
performance. The Chi2 algorithm evaluates feature importance based on statistical dependence, making it suitable for 
categorical target variables like Parkinson’s diagnosis. The selected features primarily relate to vocal impairments, 
which are key indicators of Parkinson’s disease. These include measures of jitter, shimmer, and fundamental frequency 
variations, reflecting how vocal tremors and instability are captured in the dataset. 

 

Figure 6 Feature Importance 
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4. Conclusion  

This study utilized machine learning techniques, specifically the fine K-Nearest Neighbors (KNN) classifier, to classify 
Parkinson’s disease based on speech biomarkers. The dataset, rich in acoustic features, provided a valuable foundation 
for training and testing predictive models. Feature selection using the Chi-Square (Chi2) algorithm helped identify the 
most relevant vocal attributes associated with Parkinson’s, improving model efficiency and interpretability. The fine 
KNN classifier achieved a validation accuracy of 74.7%, demonstrating its ability to classify Parkinson’s and non-
Parkinson’s cases. However, the confusion matrix highlighted areas for improvement, particularly in reducing false 
positives and false negatives. The presence of false positives suggests that the model tends to classify non-Parkinson’s 
cases as Parkinson’s, which may lead to unnecessary concern. False negatives, while lower in number, are more critical 
in a medical context as they indicate missed diagnoses. The Receiver Operating Characteristic (ROC) curve and the area 
under the curve (AUC) score of 0.7421 further confirmed that while the model performed reasonably well, it had 
limitations in differentiating between the two classes. To enhance classification performance, further optimization 
techniques such as hyperparameter tuning, alternative distance metrics, and additional feature engineering should be 
explored. Incorporating more advanced models like Support Vector Machines (SVM) or Neural Networks could also 
improve predictive accuracy. Additionally, adjusting the decision threshold could help achieve a better balance between 
sensitivity and specificity, depending on whether the priority is to minimize missed Parkinson’s cases or reduce false 
alarms.  
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