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Abstract 

The Malthusian theory suggests that exponential population growth will eventually surpass the linear growth of food 
supply, leading to widespread land scarcity for urbanization. However, Malthus could not have anticipated the 
advancements in scientific knowledge and technology that now have the potential to revolutionize food production. 
With the global population projected to reach 9 billion by 2050 [4], ensuring sustainable food systems while minimizing 
environmental harm has become a critical challenge. Recent research reveals the role of the soil microbiome—complex 
communities of bacteria, fungi, and other microorganisms in enhancing plant growth. Notably, the correlation between 
soil bacteria and the growth of barley provides a method for identifying the most productive land. 

This study tests the machine learning capability to analyze soil microbiome data to predict crop yields based on the role 
of bacteria. A dataset of 627 bacterial strain features from over 1,340 farms was analyzed using Python to build 
regression models, uncovering patterns that optimize smart farming practices and soil conservation [5]. By integrating 
artificial intelligence with microbiology, the research highlights innovative approaches to advancing sustainable 
agriculture by identifying the most suitable areas for crop cultivation. The paper demonstrates the effectiveness of KNN, 
Decision Tree, and MLP Regressor models in accurately predicting crop yields, outperforming random chances or any 
existing lottery-based systems.  
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1. Introduction

Advances in microbiome research have revealed the critical role of bacteria in supporting ecosystems, including crop 
productivity. The 16S ribosomal RNA (rRNA) region, a unique genetic marker found in all bacteria, serves as a "barcode" 
for identifying bacterial species. Through 16S sequencing, researchers can decode the bacterial composition of a sample, 
linking specific bacterial communities to their ecological functions [3]. The soil microbiome, the diverse collection of 
bacteria and other microorganisms within soil ecosystems, correlates directly with agricultural productivity forming a 
symbiotic association using up minimal energy from plant species. Just as the human gut microbiome contributes to 
human health, the soil microbiome supports the vitality of plants [9]. This study leverages the relationship between 
microbial composition and plant growth to explore the potential of machine learning in predicting crop yields based on 
soil bacterial composition. Regression models are used to identify and analyze the connections between soil 
composition and crop yields. These models are well-suited for predicting continuous outcomes and identifying patterns 
in complex datasets. 
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2. Data Set 

For this study, a dataset of 627 distinct bacterial strains was identified within the soil of approximately 1,340 farmland 
sites, alongside the recorded crop yields, allowing for the correlation of soil microbiome data with agricultural 
productivity [5].  

 

Figure 1 Subset of real dataset of 1340 farms’ 627 distinct bacterial composition 

Before initializing the machine learning model, data cleaning removed low-prevalence bacteria-strains appearing in 
fewer than 10 samples, reducing noise and preventing the model from overfitting on rare instances, thereby enhancing 
dataset robustness. Additionally, the data was log normalized to emphasize relative changes over absolute counts, which 
helps mitigate the impact of outliers and provides a more meaningful comparison of bacterial abundance across 
samples. This transformation aims to stabilize variance and bring the data closer to a normal distribution, ultimately 
leading to more accurate and reliable analysis. 

To better understand the dataset and guide model creation, hierarchical clustering, an unsupervised learning technique, 
was applied to group bacterial strains with similar abundance patterns and cluster farms with comparable microbiome 
compositions using Seaborn, a Python data visualization library capable of statistical graphics [8].  

 

Figure 2 Heatmap color-coded visualization of bacterial species in farmlands 

The heatmap visualization shows bacterial species on the x-axis and farmland sites on the y-axis, with color intensity 
representing bacterial abundance. Dendrograms on both axes highlight clusters, revealing patterns in bacterial 
communities across farms [2]. This process is valuable for identifying if features are correlated or if there are certain 
outliers in the dataset, improving the model's performance in the future. 
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These preprocessing steps ensure that the input data is cleaner, more representative, and suitably scaled, enhancing 
the machine learning model's performance in the future and leading to more accurate predictions while also providing 
deeper insights into the data and revealing which bacterial strains are correlated. 

3. Computing environment 

11th Gen Intel(R) Core (TM) i7-11390H @ 3.40GHz 2.92 GHz, 64-bit OS, Windows 11 Home Version 24H2 with access 
to internet. Python code was created on a Google Colab environment with access to 100 GPU compute units. 

4. Architecture 

When determining the most suitable model architecture for this study, three machine learning models were considered: 
Decision Tree, K-Nearest Neighbors (KNN), and Multilayer Perceptron (MLP). Decision Trees works by recursively 
splitting the dataset based on feature values to create a tree-like structure of decisions. Each internal node of the tree 
represents a feature test, each branch represents the outcome of the test, and each leaf node represents a class label or 
decision outcome. The tree is built by selecting the feature that best separates the data at each step, using criteria such 
as Gini impurity [1] and MAE (Mean Absolute Error). It is a prospective model as this method allows for precise and 
interpretable decision-making processes, making it particularly well-suited for problems where model transparency is 
critical. However, they are prone to overfitting, especially with noisy datasets. Training complexity is (𝑚⋅𝑛⋅log⁡(𝑛)), 
where 𝑚 is the number of features, and 𝑛 is the number of training samples. 

 

Figure 3 Tree-based Visualization of Regression Decision Tree ML-model evaluation for crop-yield prediction 

Each "box" is a node, representing a decision or a final prediction (leaf). Lines indicate the flow of data based on 
conditions in the parent node. The first line in each box specifies the splitting condition. For instance, "Feature <= Value" 
directs the data into branches based on the condition's truth. MSE (Mean Squared Error) measures the prediction error 
at that node, "samples" denotes the number of data points, and "value" indicates the predicted outcome for those 
samples. The leaves (bottom row) show the final predictions, MSE, sample count, and predicted values. 

The KNN model classifies data points based on the majority class among the k-nearest neighbors in the feature space. 
This model works by calculating the distance between data points, typically using Euclidean distance, and then assigning 
the class of the nearest neighbors to the new data point [6]. KNN is effective in handling non-linear relationships and 
smaller data sets. However, it is computationally expensive during prediction due to its (𝑛⋅𝑑) complexity per query, 
where 𝑛 is the number of training samples and 𝑑 is the dimensionality of the data. Additionally, KNN is sensitive to 
irrelevant or redundant features, which can degrade its performance in high-dimensional spaces. 
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The MLP model, a type of neural network, consists of multiple layers of nodes, each connected to nodes in the previous 
and subsequent layers. It employs non-linear activation functions to capture complex patterns and relationships in the 
data. MLPs are trained using backpropagation, where the error is propagated backward through the network to update 
the weights, improving the model's predictions [7]. This model is highly flexible as it can handle large datasets with high 
dimensionality and learn intricate data structures, but it is sensitive to hyperparameter tuning.  Training complexity 
depends on the architecture, typically (𝑘⋅𝑚⋅𝑛), where 𝑘 is the number of epochs or times the dataset is passed through 
the model, 𝑚 is the model size, and 𝑛 is the training. 

After assigning the variables 𝑋 and 𝑦 to their respective data frames, the dataset was split into training and testing 
subsets using the train_test_split() function from the sklearn.model_selection package in Python. The training set, which 
contains most of the data, has been used to train the models using the fit method with 𝑋-train and Y-train. After training, 
the model's performance was assessed by predicting the labels of the testing data using the prediction method. These 
predictions were then plotted on a graph to visually evaluate the models' accuracy and effectiveness on unseen data. 

To further experiment the effectiveness of the model, the importance of each feature in predicting crop yield was 
determined by examining the feature importances provided by the model. These importances indicate how much each 
feature contributes to the model's decision-making process. For the decision tree model, the feature importance is as 
follows: Xanthomonas (0.060571), Chryseobacterium (0.055838), Hungatei Clostridiaceae (0.055538), 
Acidobacteriaceae (Subgroup 1) (0.053313), and Salinispora (0.052732).  It is determined by the decrease in impurity 
brought by the feature in splits across all nodes. Features that result in more significant reductions in impurity are 
considered more important. This metric helps identify which features contribute most to the model's predictive 
accuracy and are most influential in predicting the outcome. 

Usually, the Y-axis shows the number of bacterial strains while the X-axis of the graph represents the feature importance 
values of bacterial strains in predicting crop yield. In decision tree models, feature importance quantifies each feature's 
contribution to reducing impurity and making accurate predictions. Higher values on the X-axis indicate that certain 
bacterial strains significantly influence crop yield predictions. This typically ranges from 0 to 1, where a value closer to 
1 indicates higher importance, and a value closer to 0 indicates lower importance. These values help to quantify how 
significantly each bacterial strain contributes to the prediction of crop yields. 

5. Evaluation 

In evaluating the performance of the models, two key metrics were utilized: Coefficient of Determination (R²) and Mean 
Absolute Error (MAE). 

Table 1 Comparison of R² and MAE metrics for evaluating model’s performance 

Aspect R² MAE 

Type of Metric Relative (measures fit relative to variance) Absolute (measures average error directly) 

Range of Values [−1, 1], with 1 indicating perfect fit in this case [0, ∞), with 0 indicating perfect accuracy 

Interpretation Indicates how much of the variance is 
explained by the model 

Indicates the average magnitude of errors 

Sensitivity to Scale Scaled by variance; less interpretable in terms 
of raw errors 

Directly interpretable in the same units as 
the data 

Effect of Outliers Can be influenced by outliers (as variance 
increases) 

Moderately robust to outliers (does not 
square differences) 

Comparison to 
Baseline 

Assesses improvement over predicting the 
mean 

Does not compare to a baseline model 
explicitly 

The Coefficient of Determination denoted as R² measures how well the variability in the predicted values is explained 
by the variability in the actual values. As R represents the correlation between the predicted and actual test values, an 
R² score closer to 1 indicates a model that accurately captures the data trend, akin to a linear relationship. 
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On the other hand, Mean Absolute Error (MAE) is the average absolute difference between the predicted and actual 
values. It is calculated using the mean_absolute_error function from the sklearn.metrics module in Python. A lower MAE 
value signifies that the model's predictions are closer to the actual values, indicating better performance. 

 

Figure 4 Visual Analysis of 3 Machine Leaning Models’ Crop-Prediction against Actual-Crop-Yield  

Graphs were generated using the Matplotlib Python library to visualize the comparison between testing and training 
data. 

The KNN model, evaluated with n_neighbors=3, achieved an R² score of 0.8052 and a Mean Absolute Error (MAE) of 
0.0645. The Decision Tree model, with parameters max_depth=30 and max_leaf_nodes=150, obtained an R² score of 
0.7404 and an MAE of 0.0671. The MLP model, configured with hidden layer sizes (14, 12, 15), resulted in an R² score 
of 0.7517 and an MAE of 0.0741. Among the three models, the K-Nearest Neighbor (KNN) model was the most effective, 
achieving the highest R² score of 0.8052 and the lowest Mean Absolute Error (MAE) of 0.0645. These metrics indicate 
that the KNN model demonstrated superior predictive accuracy and reliability compared to the Decision Tree and 
Multilayer Perceptron (MLP) models for predicting crop yields in this study. 

6. Observation 

 

Figure 5 Comparison of crop-yield for randomly-picked-farmlands VS model-suggested-farmlands 

The model's performance surpasses random chances, making it a valuable tool for government organizations to 
optimize land use. By accurately predicting crop yields based on soil microbiome data, the model identifies high-yield 
farmlands for agricultural purposes. This enables efficient resource allocation and allows less productive land 
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designated for urbanization, balancing sustainable agriculture with urban development.  It also helps in saving valuable 
resources like water, electricity, manpower by allocating it to the right farmlands for the most optimal production of 
crop. 

The bar graph illustrates the results of 100 unique test cases, each simulating the random selection of 10 farmlands to 
evaluate their total crop yield. None of the test cases outperformed the total crop yield achieved using the machine 
learning model (dotted line), which identifies optimal farmland selections. This highlights the model's superiority over 
random selection and some land allocation systems.  

7. Conclusion 

In summary, the code exemplifies a structured approach to building and evaluating a model for crop yield. It 
demonstrates fundamental concepts in machine learning, including data preprocessing, model training, 
hyperparameters tuning, evaluation metrics computation, and visual representation of results, all crucial for developing 
robust predictive models in practice. A dataset of 627 distinct bacterial strains was identified within the soil 
composition of approximately 1,340 farmland sites, correlating soil microbiome data with agricultural productivity of 
Barley as crop. Data cleaning removed low-prevalence bacteria, while log normalization emphasized relative changes, 
enhancing model accuracy. The three considered machine learning models were Decision Tree, K-Nearest Neighbors 
(KNN), and Multilayer Perceptron (MLP). The dataset was split into training and testing subsets from Python packages 
and performance was assessed through Coefficient of Determination (R²) and Mean Absolute Error (MAE), with KNN 
achieving the highest R² score of 0.8052 and the lowest MAE of 0.0645. The model's performance indicates its potential 
as a valuable tool for government organizations to optimize land use by identifying high-yield farmlands for agricultural 
purposes, thus balancing sustainable agriculture with urban development.  
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