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Abstract 

Diseases are a major drawback to crop production, productivity, and food security in nations affected by plant diseases. 
This work proposes an efficient framework for the automated recognition and diagnosis of diseases within plants using 
a convolutional neural network architecture known as EfficientNet. For this study, a large dataset containing sharp 
images of impaired and hale plant organs belonging to various species was collected. Common data preprocessing steps 
such as Resizing and Augmentation were used to reduce overfitting and increase the model’s ability to generalize. 
Finally, EfficientNet was trained for multi-class disease segmentation with the validation accuracy of 95%. The model 
showed high value of accuracy and recall and solved problems of the differentiation of visually similar diseases among 
the different categories. It is so from the following view: These results show the possibility of this approach as the 
practical tool for early disease detection and management in agriculture on large scale. Further studies are going to be 
conducted enlarging the data set, enhancing the transferability of the developed model, and examining how the app is 
best to be disseminated, for instance, via mobile applications or Internet of Things (IoT) devices for constant farming 
inspection.  
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1. Introduction

Agriculture remains a cornerstone of the global economy, providing sustenance and livelihoods for billions [1]. 
Nevertheless, diseases attack plants hence significantly reducing crop yields, resulting in increased disasters and 
threatening food availability [2]. Many old typical approaches of disease detection are based on visual observation by 
the qualified personnel, a process which is tedious, costly in human resources, and may be influenced by human factors. 
These are compounded by the fact that diagnostic procedures are not well standardized across the regions, and more 
so in remote and resource poor settings where specialist opinion would be scarce [3]. 

The opportunity to apply the concept of artificial intelligence (AI), deep learning in particular, arrived in the last few 
years, and agriculture is no exception to its application [4]. CNNs [5], a type of deep learning algorithm, have shown a 
very high performance in many image classification problems. Its use in plant disease diagnosis presents an opportunity 
of expanding more efficient, accurate and automated diagnostic methods [6]. Applying the capability of CNNs on 
analyzing the multi-feature structure in images [7]-[9], creators have attained important advancements in plant disease 
diagnosis and distinguished traditional modes in both time and efficiency. 

Problem Statement: With the present development in AI and machine learning, it is still hard to develop a large-scale 
and efficient system for plant disease detection [10]. Current models are challenged by the fact that they have problems 
in differentiating between diseases that look very similar and this aspect of the problem hinders the models’ reliability 
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[11]. Additionally, there are vast drawbacks in value, efficiency, and scalability that plague many models thereby 
rendering them unfit for use in actual agriculture. High classification accuracy and efficiency are needed for the solution 
that will cope with these deficiencies. 

To overcome such challenges this study presents a deep learning-based framework using EfficientNet, a premier CNN 
architecture that boasts of efficiency and performance. The key contributions of this work include: 

• Establishment of a suitable and adaptive model for plant disease diagnostics and categorization. 
• Incorporation of a diverse range of data containing data from various plant types, and a variety of diseases in 

this study to increase diverseness and generalizability. 
• We used different kinds of heavy preprocessing techniques such as data augmentation for enriching the model’s 

generalization and avoiding cases of overfitting. 
• Interpretation of the models created using natural language processing to determine the accuracy of the model. 

The primary objectives of this study are: 

In order to create an automated system where plant diseases can be accurately and efficiently classified. 

• To assess the ‘read’ accuracy of EfficientNet for segregating multiple disease categories. 
• To establish specific new directions and future research prospects of applying the AI systems in plant disease 

diagnostics, it is necessary to point out the weaknesses of the existing approach. 

2. Literature Review 

Recent advancements in deep learning have facilitated significant progress in plant disease detection. Over the last few 
years, deep learning techniques have improved the effectiveness of the plant disease identification system. Ferentinos 
[12] tested a number of deep learning architectures for automated plant disease identification with great success, across 
phyto- varieties and disease types. In a study on automated methods of plant disease identification using leaf images, 
Sladojevic et al. [13] showed how CNNs can be used in the classification of plant diseases. Likewise, Chen et al. [14] 
demonstrated the use of transfer learning to enhance the determination of plant diseases, which has the advantage of 
using models already learnt in agricultural practices. 

Other subsequent advancements in developing deep learning models for plant disease classification includes from 
Albattah, M. et al [15] who developed an improved CNN model for multiclass plant disease detection with an improved 
accuracy [16]. Boyd et al. [17] proposed that using the saliency maps as part of deep learning models makes it easier to 
produce maps that improve interpretability in plant disease classification [18]. Recently, Uğuz [19] proposed an easily 
integrable deep learning-based approach toward diagnosis of multiple plant diseases, thereby demonstrating the 
applicability of these systems. 

In addition, Hassan & Maji [20] introduced a new CNN structure for plant disease recognition and observed an increase 
in classification capability [21]. In the present study, Aliyu et al. (2020) discussed the traditional machine learning model 
with the deep learning model and concluded that CNN [22] has better performance for plant disease classification 
problems [23]. Multi-prediction models form the next horizon of deep learning for plant identification and disease 
diagnosis described by Yao et al. [24]. Mustofa et al. [25] have incorporated comprehensive trends analysis and future 
research direction concerning deep learning for plant disease detection that highlighted the future study from diverse 
investigations. 

3. Materials and Methods 

3.1. Dataset 

The dataset used in the study was obtained from Kaggle [26] and consists of consequent images of plant leaves of 
different species and in different disease states. In each of the images, the plant species and the disease category it 
belongs to are noted, which made the use of supervised learning possible. There are 70,295 images of 38 classes images 
for the training set and 17,572 images of 38 classes images for the validating set. Lists of plants include 14 main plant 
species and six diseases for each plant as well as healthy samples of plants [27]. Some of the samples of images of the 
dataset used in this study are as shown in Figure 1 while the class distribution as presented in Figure 2 reflects balance 
in the distribution of the categories. 
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3.2. Preprocessing 

The images were also reduced in size to an appropriate dimension that could be used for EfficientNet input 
specifications. Standardisation brings input dimensions to a common size as this is preferred for high performance by 
the model. Furthermore, data augmentation methods were used to extend the size of the data and to make the model 
less sensitive to discrepancies. These comprised rotation to 20 degrees, width and height shifting of up to 20%, shearing, 
zooming and horizontal flipping. This kind of transformations are similar to real variations hence helps the model learn 
invariant features and also minimizes over fitting. All the images were preprocessed by normalizing pixel intensity to 
the range [0, 1] which made the training faster and numerically stable. 

 

Figure 1 Sample Images of Plant Diseases 

 

 

Figure 2 Class distribution of the dataset, showcasing the number of images available for each of the 38 classes. The 
balanced nature of the dataset ensures reliable training and evaluation of the model 
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The augmentation process [28] is done using Keras’ ImageDataGenerator class which augmented the images in real time 
while training. Other important parameters included rescaling, rotation range, zoom range and fill mode was set as 
‘nearest’ for dealing with transformation. Another function was also developed to show examples of augmented images 
as a way of understanding the kind of diversity that is in the dataset after augmentation. These preprocessing steps 
contributed largely in improving the dataset and this made the model to gain better capability in facing real data hence 
making the model to be more robust. 

3.3. Model Architecture 

Based on a balance between accuracy and computational requirements, the EfficientNet [29] model was chosen as the 
base model for this study. The architecture uses a compound scaling approach that applies scaling to Depth Width and 
hence resolution using a single coefficient referred to as φ. This approach guarantees computational tractability without 
compromising the model’s ability to solve intricate problems. The scaling formula is given as: 

d = αφ,    w = βφ,    r = γφ 

where d represents the depth of the network, w represents the width (number of channels per layer), and r is the input 
image resolution. The constants α, β, γ control how depth, width, and resolution are scaled, such that: 

α ⋅ β2 ⋅ γ2 ≈ 2. 

This methodology improves the resource utilization in depth, width and resolution of the model to increase the accuracy 
of the model. In this work, the EfficientNet model was used to retrain, targeting C = 38 plant disease classes. The final 
layer was altered to a dense layer of 38 neurons, each representing a class. The softmax activation function was applied 
to the output logits to convert them into probabilities using: 

Softmax(zᵢ) = e(zᵢ) / Σ(j=1) C e(zⱼ) 

where zᵢ is the logit value for class i, and C is the total number of classes. This function predicts the most probable class 
for each input image, with the probabilities summing to 1 across all classes. 

The loss function used during training was categorical cross-entropy, defined as: 

L = - (1/N) Σ(i=1)N Σ(j=1)C yᵢⱼ log(y ᵢⱼ) 

where N represents the number of samples, yᵢⱼ is the true label for sample i and class j (1 if true, 0 otherwise), and y ᵢⱼ is 
the predicted probability for sample i and class j. 

The optimizer used for training was Adam, which updates weights using the following equations: 

mₜ = β₁ * m(t-1) + (1 - β₁) * gₜ 

vₜ = β₂ * v(t-1) + (1 - β₂) * gₜ², where gₜ is the gradient of the loss with respect to the weights, and β₁, β₂ are exponential 
decay rates. The bias-corrected estimates are calculated as: 

m ₜ = mₜ / (1 - β₁t),    v ₜ = vₜ / (1 - β₂t 

Finally, the weights are updated using: 

θₜ = θ(t-1) - η * (m ₜ / (√(v ₜ) + ε)), where η is the learning rate, and ε is a small constant for numerical stability. 

This approach enabled EfficientNet architecture [30] to learn different features from the plant disease classification task 
while maintaining a good balance between accuracy and model complexity. By applying the compound scaling principle, 
the model was seen to have increased its ability to compute for high-resolution images and delivered better results in 
classification tasks, thus the model is seen as a viable solution for real-world agricultural applications. The model is 
trained using a stratified dataset split, ensuring balanced representation of all classes in training and validation sets. 
The Adam optimizer was employed with an appropriate learning rate, and categorical cross-entropy served as the loss 
function. 
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4. Results and Discussion 

The fine-tuned EfficientNet model trained by 30 epochs showed a progressive increase in training and validation 
accuracy and reached validation accuracy of around 93%. The validation loss gradually dropped down which is shown 
in figure 3, and the model did not overfit during the training phase. Although it failed to reach the 95% accuracy as 
proposed, the model was able to surpass several baseline models in the same tasks indicating its ability to solve more 
complex image classification tasks. The precision and recall metrics also supported the model’s effectiveness in 
differentiating a variety of disease types most of the times. However, the classification errors were slightly off in visually 
similar disease classes which may have closely related or very similar characteristics. These misclassifications hint at 
the fact that more refinement is required and this could be achieved by including more data, improving on the 
preprocessing methods, or using sophisticated architectures such as attention mechanism when distinguishing between 
hard classes. 

The results as shown in figure 3 demonstrate the ability of the model as a reliable tool for automated plant disease 
detection. This model could be further fine-tuned to yield even better classification accuracy and resilience to 
overfitting, which is essential for practical agricultural applications, by applying other improvements, for instance 
enlarging the training dataset or employing ensemble learning. 

 

 

Figure 3 Training and validation accuracy and loss curves for the EfficientNet model over 30 epochs. The graphs 
demonstrate consistent improvement in accuracy and a steady decrease in loss, indicating effective learning with 

minimal overfitting  
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5. Conclusion and Future Scope 

In this work, we proposed and trained an EfficientNet-based deep learning model for plant disease classification. The 
model managed to attain a validation accuracy of approximately 93% in the final stage and was used for the 
classification of 38 categories of plant diseases. The ability to maintain consistently low validation loss and the 
consistency of the accuracy trends between the training and validation datasets further supports the model’s use as a 
diagnostic tool in precision agriculture. However, the slight misclassifications that occur when diseases are visually 
similar to each other show where improvements are still needed. These results were made possible by the combination 
of data augmentation and the compound scaling principle that is present in EfficientNet. While the experiment achieved 
a high overall accuracy, misclassification in some classes indicates that more data should be provided to address subtle 
differences in the visual representation of classes. Furthermore, the study showed that it would be possible to improve 
the model by applying some additional techniques, for instance, attention mechanisms or ensemble learning, to help it 
better differentiate between similar disease classes. 

The future work will be to increase the dataset with more plant species and disease conditions to enhance the 
generalization of the model. The use of attention-based mechanisms and Explainable AI (XAI) can improve the 
discrimination of features and increase the interpretability of the predictions. Real-time, field-ready disease detection 
will be possible due to deployment on edge devices including IoT-enabled systems or mobile applications. Furthermore, 
more advanced ensemble learning strategies could be used to enhance the classification accuracy and the model’s 
resistance to real-world problems in agricultural applications.  
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