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Abstract 

Source code plagiarism detection has become a critical area of research with the increasing prevalence of code reuse in 
academic and professional settings. In order to achieve thorough code comparison, this work introduces a novel tool 
for detecting source code plagiarism that combines lexical similarity, abstract syntax trees (ASTs) and cosine similarity. 
The system incorporates a dynamic front-end that was created using Streamlit, providing an intuitive user interface 
with a code editor that can run code. Through the "Check Similarity" feature, which calculates the plagiarism percentage 
and finds the most similar file, the application offers real-time plagiarism detection. The methods, benefits, and 
difficulties of various approaches are examined in this study, with a focus on how well they identify structural and 
syntactic similarities. The suggested system has a great deal of promise for academic and professional environments, 
offering reliable and efficient plagiarism detection.  

Keywords: Source Code Plagiarism Detection; Cosine Similarity; Abstract Syntax Trees (AST); Lexical Similarity; 
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1. Introduction

The exponential growth of digital content and programming resources has amplified concerns regarding source code 
plagiarism, particularly in academic and professional domains. As open repositories and collaborative coding platforms 
have grown in popularity, it has become more difficult to guarantee the uniqueness and moral application of code. 
Strong detection techniques are required because source code plagiarism compromises academic integrity, intellectual 
property rights and the impartial assessment of coding abilities. 

This project focuses on addressing these challenges by developing an advanced source code plagiarism detection system 
that combines cutting-edge techniques such as cosine similarity, Abstract Syntax Trees (ASTs), and lexical similarity to 
identify structural, syntactic and semantic resemblances between code files. Built with Streamlit, the system provides 
an interactive and user-friendly interface, featuring an integrated code editor capable of executing code and a real-time 
plagiarism detection mechanism. With the click of a "Check Similarity" button, users can analyze code files, view the 
plagiarism percentage and identify the most similar file in the dataset. 

The system's combination of static and dynamic analysis techniques guarantees dependable performance across a range 
of programming languages and coding styles, while its use of machine learning algorithms from the Scikit-learn module 
improves the accuracy and scalability of similarity identification. This project intends to assist organizations, 
developers, and academic institutions in upholding integrity, encouraging creativity, and advancing ethical coding 
methods by offering a solution that is accurate, efficient and user-centric. 
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2. Literature survey 

2.1. Detecting Plagiarism in Source Code Using Machine Learning Approaches 

Source code plagiarism detection is a growing concern in both academic and professional settings, affecting intellectual 
property and academic integrity. Code duplication and similarity have been successfully detected using conventional 
methods such as Cosine Similarity, Abstract Syntax Tree (AST) analysis and Lexical Similarity. Based on the textual 
content, Cosine Similarity helps detect plagiarism by measuring the angle between code vectors. It works well for 
finding precise text-based matches, but it could have trouble with changed code, like variable renaming or reordering. 
Even when minor changes, such as renaming or reordering, are done, plagiarism can be detected because AST analysis 
captures the syntactic structure of code by turning it into a tree. Such changes are less likely to occur with this approach. 
Lexical Similarity compares the token-level structure of the code, identifying exact matches or minor changes. Although 
it is very good at identifying copied code, it could overlook more complex plagiarism strategies. Although there are still 
issues with more intricate types of code modification, each technique has advantages and, when combined, provides a 
complete solution. 

 

Figure 1 Workflow of the Source Code Plagiarism Detection System 

2.2. Evaluating the Efficacy of Code Similarity Detection Tools in Differentiating Between Unique and 
Plagiarized Code 

Fighting plagiarism in programming and upholding academic integrity are severely hampered by the growing use of 
automated code generating tools like GitHub Copilot. The usefulness of code similarity detection methods in 
distinguishing between original and copied or artificial intelligence-generated code is examined in this study. Copilot 
and other AI-assisted technologies were utilized to generate code snippets, and human-written control samples served 
as a point of comparison. The code's similarity was assessed using detection tools like JPlag, MOSS (Measure of Software 
Similarity) and specific AST-based techniques. The results show that tools that relied on syntax-based comparisons, 
such as MOSS, did well in detecting verbatim copies or modest reformatting, but they had trouble spotting logical 
similarities that were hidden by considerable rephrasing or obfuscation tactics. On the other hand, even when 
obfuscation was present, AST-based techniques demonstrated greater accuracy in identifying logical similarities 
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through code structure and flow analysis. Some methods, however, generated false positives when used on human-
written control samples, underscoring the necessity of further context-specific analysis and fine-tuning. This study 
emphasizes how crucial it is to create reliable, multi-layered detection systems in order to handle the growing 
complexity of code plagiarism tactics. 

2.3. Detecting Source Code Similarity Using Abstract Syntax Trees: A Systematic Review 

Improvements in source code plagiarism detection have become necessary due to the increasing usage of automated 
programming techniques. The AST-based methods that are the subject of this systematic review provide a structural 
perspective of the code, which makes them appropriate for detecting syntactic and logical similarities. The effectiveness 
of methods ranging from basic token matching to sophisticated subtree comparison in identifying copied or altered code 
is assessed in this paper. 

 

Figure 2 AST Representation for Code Similarity Analysis 

According to the review, AST-based techniques are particularly good at spotting logical parallels that avoid token-based 
methods when variables are renamed, formatting is altered, or statements are rearranged. A number of techniques use 
Jaccard Similarity to assess the degree of similarity between code snippets by measuring the overlap between subtree 
sets. Even if they work well, AST-based techniques have trouble processing highly obfuscated code and demand a lot of 
processing power when dealing with big datasets. In order to accomplish thorough detection, the review's conclusion 
emphasizes the necessity of hybrid approaches that integrate AST analysis with lexical and semantic methodologies. 

2.4. Code Plagiarism Detection: A Comparative Analysis 

This study's main goal is to assess how well different approaches identify plagiarism in source code, with an emphasis 
on lexical similarity metrics, Abstract Syntax Tree (AST)-based approaches, and Jaccard Similarity for subtree matching. 
Analysis was done on a dataset that included both manually edited and AI-generated plagiarized samples and human-
written code. The results show that even when the code has experienced major changes, including renaming variables, 
altering the sequence of statements, or applying formatting changes, AST-based methods are very good at spotting 
structural similarities. When used to compare subtrees, Jaccard Similarity provides an accurate way to gauge how much 
the logical structures of various programs coincide. Furthermore, lexical similarity techniques identify subtle code 
modifications and direct textual overlaps, which enhance AST-based analysis. This multifaceted approach draws 
attention to each method's advantages and disadvantages. Lexical approaches are quicker but have trouble with highly 
obfuscated or logically changed code, whereas AST-based approaches are excellent at identifying logical plagiarism but 
may need more processing power. According to the study's findings, integrating these approaches offers a strong way 
to deal with plagiarism detection issues, which qualifies them for use in both academic and professional settings. 
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Figure 3 Analysis of Code Representation Approaches 

2.5. Testing Similarity Detection Tools for Source Code: 

Recent advancements in AI-assisted programming tools have heightened concerns about code plagiarism, necessitating 
robust detection methods. The effectiveness of different similarity detection algorithms to detect plagiarism in both 
human-written and AI-generated code is the main topic of this work. Human-written, AI-generated, and obfuscated code 
snippets were used to test tools such as JPlag, MOSS, and bespoke AST-based algorithms. The findings show that while 
syntax-based methods such as MOSS are good at identifying outright copying, they struggle with code that is obfuscated 
or logically identical. On the other hand, even when there is substantial alteration, AST-based techniques offer better 
accuracy in detecting structural similarities. These approaches, however, are computationally demanding and need to 
be updated often to take into account new AI-generated solutions. The study draws attention to the shortcomings of the 
available detection methods and the necessity of hybrid strategies that combine lexical and structural analysis for 
thorough plagiarism detection. 

 

Figure 4 Similarity Comparison Across Different Plagiarism Detection Tools  

2.6. challenges and Limitations: 

Despite advancements in similarity detection techniques, identifying plagiarism in source code remains a significant 
challenge. Logical similarities in significantly altered or obfuscated code are difficult to find using traditional methods 
that rely on syntax-based analysis. Although AST-based techniques analyze structural aspects to provide improved 
performance, they are computationally costly and necessitate knowledge of tree-based procedures. 

Although they are useful for detecting textual overlap, lexical similarity techniques frequently miss more profound 
logical connections. These difficulties are made worse by the increasing complexity of AI-generated code, such as highly 
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obfuscated or context-aware systems. Accuracy and computational efficiency must also be balanced when deploying 
detection systems in practical applications, such academic integrity checks. 

The integration of AST-based methods, Jaccard Similarity, and lexical analysis offers a promising approach. To stay 
effective against changing code-generation methodologies, these systems must be updated and retrained frequently. In 
order to overcome these obstacles, creative and flexible methods that can manage the textual and structural 
components of source code are needed, guaranteeing accurate detection in a variety of situations. 

3. Proposed Methodology  

Since the emergence of source code plagiarism, significant advancements have been made to enhance detection 
techniques. To address issues with plagiarism detection, including structural similarity, syntactic changes, and semantic 
understanding of code, a number of methods and tools have been created. Some of the noteworthy techniques and 
frameworks that have raised the precision and effectiveness of plagiarism detection systems are covered in this part. 
These developments concentrate on getting over restrictions like obfuscation, guaranteeing accuracy across various 
programming styles, and efficiently examining changing trends in source code plagiarism. 

3.1. Abstract Syntax Tree (AST) and Similarity Analysis 

The suggested technique combines Abstract Syntax Trees (AST), Jaccard Similarity, and Lexical Similarity in a 
multifaceted manner to identify plagiarism in source code. By ensuring that both textual and structural similarities are 
thoroughly examined, this hybrid methodology offers reliable and accurate plagiarism detection. AST represents the 
syntactic structure of code as a tree, capturing logical relationships and structural information while ignoring surface-
level variations such as variable names or formatting. Even when the code is altered or obfuscated, the system can 
identify deeper connections because to this structural representation.  

 

3.1.1.  Where 

• W(C1) and W(C2) are the sets of tokens (words) in code snippets C1 and C2. 
• |W(C1) ∩ W(C2)| represents the shared tokens. 
• |W(C1) ∪ W(C2)| is the total unique tokens. 
By combining these methods, the system ensures that both logical and textual similarities are analyzed, detecting 
plagiarism even in heavily modified code. 

3.2. Architecture 

The below flowchart represents the process of detecting plagiarism in source code using a systematic and hybrid 
approach. Through a dynamic user interface created with the Streamlit framework, the user uploads a sample of code 
to start the pipeline. Users can monitor results in real time and interact with the system with ease because to this user-
friendly interface. 

To guarantee consistency and analytical readiness, the submitted code first passes through the Preprocessing stage, 
where it is normalized. Whitespace, comments, and other formatting components are eliminated during this stage. By 
ensuring that the raw input is ready for additional processing, this stage enables the system to concentrate on significant 
syntactic and structural elements. 
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Figure 5 Architecture Flowchart of Source Code Plagiarism Detection 

Once preprocessing is complete, the flowchart proceeds to two parallel analysis pathways. Tokenizing the normalized 
code and determining a lexical similarity score are the main goals of lexical analysis. Its main function is to identify 
syntactic similarities between the submitted code and programs that already exist. In structural analysis, the code's 
structural flow and logic are captured by creating an Abstract Syntax Tree (AST). Beyond surface syntax, this approach 
compares the code's logical and functional architecture. The Cosine Similarity Calculation phase then combines the 
findings from both investigations. In order to establish how closely the uploaded code matches entries in a database of 
pre-existing C programs which acts as the reference for plagiarism detection the system here transforms characteristics 
from both paths into vectors and calculates the cosine similarity. 

After calculating the similarity scores, the system proceeds to the Result Generation phase. Here, the calculated scores 
are used to calculate the plagiarism percentage. The algorithm finds and indicates the most similar file with its similarity 
% if the uploaded code is determined to be plagiarized. If plagiarism is not found, the system verifies that the code is 
unique. 

Finally, the results are presented to the user through the Streamlit interface. With the help of the thorough feedback 
this product offers, customers may comprehend the level of similarity and any plagiarism problems. By combining 
sophisticated similarity computing techniques with lexical and structural analysis, the flowchart shows an organized 
method for detecting plagiarism in source code while guaranteeing accuracy and dependability. 

4. Results and Analysis 

The AST-based Similarity method achieved an impressive performance with a high accuracy of 90%, showcasing its 
superior ability to capture the structural and contextual nuances of code. The AST is the most accurate method for code 
similarity detection in this task because of its tree-based representation and thorough examination of the code's 
structure, which greatly enhanced its high precision and recall performance. With an accuracy of 80%, Cosine Similarity 
demonstrated a strong performance, demonstrating its ability to capture lexical similarities. Cosine Similarity is 
nevertheless computationally efficient and a good option in situations when less complexity is needed, even though it 
performs marginally worse than AST. Lexical Similarity, on the other hand, excelled in speed and simplicity, achieving 
a competitive accuracy of 75%. These evaluations underline the robustness and reliability of these similarity-based 
approaches, ensuring their applicability in real-world code analysis tasks. 
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4.1. Evaluation Metrics 

*  Accuracy = 

 

*  Precision= 

 

*  Recall 

 

*   F1- Score:   

 

* AUC-ROC:  Measures the area under the ROC curve to evaluate classification performance at various thresholds.  

 

Figure 6 Performance Metrics Comparison of Similarity Detection Algorithms  

AST-based Similarity achieved the highest performance in terms of accuracy and overall metrics, making it the most 
suitable approach for code similarity comparison in this scenario. Despite their competitive outcomes, Cosine Similarity 
and Lexical Similarity are better suited for easier jobs or scenarios where less computing complexity is acceptable  

5. Conclusion 

This research focused on designing and evaluating a robust plagiarism detection system for source code, utilizing AST 
(Abstract Syntax Tree) analysis, Jaccard Similarity, and Lexical Similarity. Preprocessing, feature extraction, model 
training, and evaluation were all included in the modular architecture of the suggested system. By examining the 
structural representation of code and identifying minute similarities that can point to plagiarism, AST outperformed the 
other techniques used, obtaining an accuracy of 90%. With accuracies of 80% and 75%, respectively, Jaccard Similarity 
and Lexical Similarity also produced useful results, identifying surface-level and token-based similarities in code. 

Because of the system's scalability and adaptability, it may be integrated into real-world applications including code 
review tools, professional software development, and automatic code plagiarism detection in academic settings. While 
insights from confusion matrices indicated possible areas for development, such as handling code obfuscation and 
contextually unclear or changing code structures, cross-validation and thorough error analysis demonstrated the 
models' dependability and robustness. 
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This study emphasizes the importance of integrating advanced similarity-based methods like AST, Jaccard Similarity, 
and Lexical Similarity into plagiarism detection pipelines, providing a foundation for building more accurate and 
efficient systems. Future research could concentrate on integrating domain-specific embeddings, hybrid ensemble 
approaches, and optimization strategies to improve detection performance even more, especially when it comes to 
spotting plagiarism in sizable and varied codebases. All things considered, this study offers insightful information about 
source code plagiarism detection and shows how well contemporary similarity detection techniques work to address 
challenging real-world problems.  
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