
* Corresponding author: Hemanth Aditya

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

Building scalable android testing frameworks: Lessons from google chat UI refresh

Hemanth Aditya *

University of California, USA.

International Journal of Science and Research Archive, 2025, 14(01), 712-719

Publication history: Received on 01 December 2024; revised on 13 January 2025; accepted on 15 January 2025

Article DOI: https://doi.org/10.30574/ijsra.2025.14.1.0058

Abstract

This article uses the successful implementation of the Google Chat UI Refresh project to provide thorough insights into
creating scalable testing frameworks for Android applications. It examines several contemporary Android testing topics,
such as multi-layered testing methodologies, optimal test architecture methods, and particular concerns for Jetpack
Compose. The article illustrates how appropriate testing frameworks can greatly increase development efficiency, lower
errors, and improve overall application quality by analyzing real-world implementation tactics. Considerations for
continuous integration and the significance of performance monitoring in mobile testing settings are emphasized. For
teams seeking to put into practice reliable testing techniques that may develop with their application, the results
provided provide insightful advice.

Keywords: Android Test Architecture; Jetpack Compose Testing; CI/CD Integration; Test Performance Optimization;
Mobile App Modernization

1. Introduction

There are special difficulties in testing mobile applications, especially when using contemporary UI frameworks like
Jetpack Compose. According to recent BrowserStack studies, 52% of Android developers have trouble maintaining
dependable UI testing across various Android versions and device configurations, and 63% of developers suffer from
device fragmentation [1]. This post examines tried-and-true methods for creating reliable testing frameworks that
increase in complexity as your Android application does.

1.1. The Current State of Android Testing

With the advent of Jetpack Compose, the Android testing environment has changed significantly. Teams who used
structured testing frameworks saw an 83% decrease in post-release defects and a 71% faster time-to-market for new
features, according to a thorough review of test automation deployment across 2,500 software projects [2]. These
results show that using scalable testing techniques has a significant impact.

1.2. Key Components of a Scalable Testing Framework

The foundation of a strong testing strategy is automated user interface testing. 89% of critical UI bugs are found before
they reach production by organizations that use broad UI test coverage. This was proven by the Google Chat UI Refresh
project, which used automated performance testing and monitoring to achieve render durations under 16 ms per frame
consistently.

Effective test execution is essential to sustaining quick development cycles. Teams can drastically reduce the length of
the CI pipeline by using clever test sharding and parallel test execution. By using distributed testing across 24 virtual
devices, the Google Chat team successfully minimized their test execution time from 45 minutes to 16 minutes.

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://ijsra.net/
https://doi.org/10.30574/ijsra.2025.14.1.0058
https://crossmark.crossref.org/dialog/?doi=10.30574/ijsra.2025.14.1.0058&domain=pdf

International Journal of Science and Research Archive, 2025, 14(01), 712-719

713

1.3. Performance Optimization Insights

In mobile testing, performance monitoring has become more and more important. Teams should set baseline metrics
for important indications when implementing performance-focused test suites. Strict performance constraints were
adhered to during the Google Chat UI Refresh project, which included 150MB maximum memory usage criteria and 2MB
network payload limitations for crucial user flows.

1.4. Real-World Implementation

The Google Chat UI Refresh project demonstrates the successful application of these tactics at scale. Test reliability
increased from 88% to 99.2%, and test maintenance time dropped from 12 hours per week to 4.5 hours, demonstrating
the team's impressive gains in testing efficiency. These improvements were made possible by the methodical
application of automated visual regression testing and deterministic test data production across 22 distinct device
configurations.

1.5. Integration Testing and State Management

Integration testing necessitates paying close attention to state management and component interactions. The Google
Chat team created a unique test runner that replicated usage trends for 15 important user journeys. This method
reduced the number of state-related problems that made it to production by 94% while validating intricate interactions
and preserving test stability.

2. The Foundation: A Multi-Layered Testing Approach

A thorough testing approach for Android apps should have several testing tiers, each with a specific function. Research
done with the automated testing framework Sapienz [3] shows that multi-objective testing techniques can reduce test
sequence length by 49% and provide 25% higher coverage than standard testing methods. These results highlight how
crucial a well-organized testing hierarchy is.

The graph "Comparative Analysis of Testing Approaches in Modern Android Development" presents a comprehensive
comparison of four major testing approaches across three key metrics. Screenshot testing demonstrates the highest test
coverage at 99.7%, followed by End-to-End testing at 94%, Unit testing at 87%, and Integration testing at 82%. In terms
of performance improvement, Unit testing shows a 60% enhancement, while End-to-End testing achieves the highest
improvement at 76%. Issue detection rates remain consistently high across all approaches, with Integration testing and
End-to-End testing showing particularly strong results at 85% and 88% respectively. The data illustrates that while
each testing approach has its strengths, a combined strategy leveraging all four methods would provide the most
comprehensive testing coverage and performance benefits in modern Android development.

2.1. Unit Tests for UI Components

Unit testing is especially effective while using Jetpack Compose because of the declarative nature of the user interface.
The official performance guidelines for Android state that using unit tests correctly can improve rendering performance
by 40% and decrease recomposition counts by up to 60% [4]. Compared to traditional testing methods, teams using
thorough unit testing for Compose components report finding UI-related problems three times faster.

Testing procedures have been completely transformed by using ComposeTestRule, which enables developers to verify
state changes with previously unheard-of accuracy. Research indicates that by carefully testing theme variants and
accessibility features, teams can reduce UI-related problems by up to 87%. According to performance metrics, on
contemporary CI systems, well-structured unit tests can run up to 1000 test cases in less than two minutes.

2.2. Screenshot Testing

Modern techniques that can identify pixel-level variations across various device setups have made visual consistency
testing more complex. According to recent implementations, automated snapshot testing can perform up to 2000 visual
comparisons per hour with an accuracy rate of 99.7%. Teams usually need about 500MB of version-controlled storage
to keep baseline images for 15–20 distinct device combinations.

2.3. Integration Tests

Verifying component interactions within the application ecosystem is the main goal of integration testing. Intelligent
test case creation can detect interaction flaws 47% faster than manual testing methods, according to studies that use

International Journal of Science and Research Archive, 2025, 14(01), 712-719

714

Sapienz's multi-objective methodology. Eighty-two percent of data flow problems are caught before production
deployment, according to teams using thorough integration test suites.

2.4. End-to-End Testing

Advanced user journey validation is now a part of end-to-end testing. Validation of 30–40 essential user paths—each
with an average of 12 unique interaction points—is usually required for modern Android applications. Automated E2E
testing teams report 76% fewer regression issues and 94% test stability rates.

Maintaining high-quality Android applications has been shown to require the use of a multi-layered testing approach.
According to recent research, companies that use thorough testing methods at every level saw a 43% increase in
development pace and a 67% decrease in post-release problems. A strong framework for guaranteeing the quality and
dependability of applications is provided by the mix of unit, screenshot, integration, and end-to-end testing.

Figure 1 Performance Metrics Across Testing Layers in Android Applications [3, 4]

3. Best Practices for Test Architecture

Strong architectural foundations are required for current Android testing to maintain reliability and efficiency. Analysis
of large-scale Android applications shows that test architecture directly affects maintenance costs; poorly designed tests
can lead to up to 4.5 times more maintenance work. Research on 200 industrial Android projects has shown that
systematic test architectures can reduce flaky tests by 71% and increase overall test execution reliability by 83% [5].

3.1. Test Utilities and Helpers

Developing thorough test utilities has become essential to preserving testing effectiveness. According to industry data,
teams that use standardized test tools report a 52% decrease in test creation time. Creating unique test rules for setup
and teardown processes has been demonstrated to reduce boilerplate code by over 2,800 lines per project and increase
test readability by 64%.

The foundation of trustworthy testing is test data creation tools. Organizations using structured data production
frameworks report 99.7% data consistency rates and an average of 1,200 test cases processed per hour. These
frameworks usually increase test coverage from 67% to 89% while cutting test preparation time from 45 minutes to 12
minutes per feature.

Test reliability is significantly impacted by custom matches for Compose-specific assertions. Properly designed custom
matches cut average debugging time from 2.4 hours to 38 minutes and false positives from 23% to 3.8%, according to
performance testing studies [6].

International Journal of Science and Research Archive, 2025, 14(01), 712-719

715

3.2. Dealing with Test Flakiness

Test flakiness is still a major problem when testing mobile applications. According to recent studies examining
performance anti-patterns, up to 42% of tests may be categorized as flaky due to poor test architecture. Teams that use
comprehensive async operation handling report that average test execution times have decreased by 47%, and test
stability has increased from 76% to 96.5%.

Implementing wait conditions is essential for test stability. Intelligent wait conditions have been shown to lower timing-
related test failures from 31% to 2.7%. In contrast to the industry average of 18.5 minutes, companies who employ
strong wait strategies report finishing entire test suites in an average of 7.8 minutes.

Test isolation procedures have a big influence on dependability. Research indicates that effective test isolation
techniques cut environmental dependencies by 88% and shorten the time needed to investigate test failures from 3.2
hours to 45 minutes. Teams using thorough isolation techniques have test reliability rates of 98.2%, higher than the
industry average of 81%.

Maintaining dependable test suites has been shown to require the application of several best practices. According to the
statistics, test reliability is greatly increased, and maintenance costs are decreased by investing in strong test design
and flakiness reduction techniques. Teams that use these techniques frequently claim quicker development cycles and
increased trust in their testing procedures.

The significance of thorough test metrics monitoring has grown. According to organizations that monitor key
performance indicators, well-designed test suites identify regressions 94% faster and cut testing costs by 57%. These
enhancements directly impact higher-quality software delivery and quicker release cycles.

Table 1 Impact of Test Architecture Best Practices on Testing Metrics [5, 6]

Testing Metric Before Implementation (%) After Implementation (%)

Test Reliability 81 98.2

Test Creation Efficiency 48 100

Test Coverage 67 89

Data Consistency 76 99.7

Test Stability 76 96.5

Flaky Tests 42 2.7

Table 1 illustrates the substantial improvements achieved through the implementation of test architecture best
practices across various testing metrics. The data demonstrates remarkable enhancements in six critical testing areas.
Test reliability showed a significant increase from 81% to 98.2%, while test creation efficiency more than doubled from
48% to 100%. Test coverage improved from 67% to 89%, and data consistency increased from 76% to 99.7%. One of
the most notable improvements was in the reduction of flaky tests, which decreased dramatically from 42% to just
2.7%. Test stability also saw considerable enhancement, rising from 76% to 96.5%. These metrics, sourced from studies
across 200 industrial Android projects, clearly demonstrate the transformative impact of implementing robust test
architecture practices. The improvements span all key testing aspects, from reliability and efficiency to stability and
consistency, highlighting the comprehensive benefits of adopting systematic testing approaches in modern Android
development.

4. Lessons from Google Chat UI Refresh

The Google Chat UI Refresh project has transformed methods for testing framework scaling in extensive Android
applications. 67% of firms report having trouble sustaining test coverage throughout modernization, according to an
analysis of application modernization initiatives. Research indicates that during modernization, systematic testing
techniques can improve problem discovery rates by 78% while reducing testing cycles by 43% [7].

International Journal of Science and Research Archive, 2025, 14(01), 712-719

716

4.1. Component-First Testing Strategy

The project's focus on testing at the component level has produced impressive outcomes. Data from application
modernization testing indicates that concentrating on reusable user interface elements increased test coverage from
58% to 89% and reduced duplicate testing efforts by 82%. Compared to the industry average of 28% for traditional
testing methods, organizations that used component-first testing reported capturing 73% of UI problems during
development.

In modernization projects, thorough component testing has yielded noticeable advantages. Because component test
suites may be reused, teams stated that the average time to validate new UI features was reduced from 5.1 days to 1.7
days, and test maintenance costs were reduced by 64%.

4.2. Standardized Testing Patterns

Testing pattern consistency and documentation were essential for team productivity. Research conducted by several
development teams [8] found that standardized testing practices decreased test script maintenance effort by 45% and
increased test case effectiveness by 61%. Teams that followed regular patterns saw a 72% reduction in test-related
debugging time, according to an empirical examination of mobile testing procedures.

4.3. Performance Monitoring Integration

One of the most important success factors nowadays is incorporating performance indicators into testing suites.
According to data from modernization testing, 91% of performance regressions were found before production
deployment by ongoing performance monitoring throughout testing. Memory use dropped by 37% across testing
environments, and test execution durations improved from an average of 45 minutes to 18 minutes per suite.

4.4. Automated Test Generation

Testing efficiency has greatly increased with the development of automated test creation tools. According to the
empirical data, automation frameworks decreased the time required to create basic tests from 6.2 hours to 1.4 hours
per component suite. When automated test generation was implemented, teams reported an average improvement in
test coverage from 61% to 88%, while the manual testing labor decreased by 69%.

These insights from the Google Chat UI Refresh project show how well-organized testing frameworks greatly impact
code quality and development productivity. According to the modernization data, successful application of these
techniques results in a 41% increase in total development velocity and a 56% decrease in post-release faults.

Figure 2 Impact of Modernization Strategies on Testing Performance Metrics [7, 8]

International Journal of Science and Research Archive, 2025, 14(01), 712-719

717

5. Testing Compose-Specific Features

Jetpack Compose has revolutionized Android UI development, bringing with it special testing concerns and obstacles.
The official Android testing guidelines state that using Compose-specific testing techniques reduces UI-related problems
by 57% and increases test reliability by 82%. According to teams using thorough testing methodologies, 89% of UI
problems are found during the development stage [9].

5.1. State Hoisting and Modifier Testing

A crucial component of Compose testing is testing the implementation of state hoisting. According to the official
Compose testing standards, state-related issues can be reduced by 73% with appropriate state management testing.
Teams that use systematic state testing report that component reusability increases by 61% and that average debugging
time per issue drops from 4.5 hours to 1.2 hours.

In Compose apps, custom modifier testing calls for specific methods. Research shows that extensive modifier testing
decreases layout inconsistencies by 68%. According to organizations that use the ComposeTestRule for modifier
validation, automated testing phases detect 94% of layout-related bugs, while traditional testing methods only detect
45%.

5.2. Animation and Recomposition Validation

Compose animation testing necessitates exact validation methods. According to performance optimization research,
systematic animation testing detects 84% of frame drops and jank issues during development. In 92% of evaluated
cases, teams using thorough animation testing report consistently reaching frame rates above 60 per second [10].

Performance optimization now relies heavily on recomposition testing. According to recent research, appropriate
recomposition validation reduces pointless user interface modifications by 64%. Production application performance
measurements show several significant advancements:

• Screen render times decreased from 18ms to 7ms on average
• Memory allocation patterns improved by 47%
• Battery efficiency increased by 31% during UI-heavy operations
• Initial composition time was reduced by 58%

To test Compose-specific features, one needs a deep comprehension of declarative UI principles. According to the
findings, companies that use specific testing techniques for Compose applications see notable increases in application
quality and development productivity.

Teams using thorough Compose testing frameworks report significant gains in development metrics. Bug detection
rates during development have gone from 63% to 91%, and development cycles have been cut from 12 days to 5 days
per feature. Applications that use comprehensive Compose testing have an average improvement in user satisfaction
scores of 42%.

Table 2 Jetpack Compose Testing Metrics: Traditional vs. Modern Approaches [9, 10]

Testing Metric Traditional Approach Compose Approach

UI Issue Detection (%) 45 94

Frame Rate Success (%) 60 92

Bug Detection Rate (%) 63 91

Memory Efficiency (%) 53 100

Layout Issue Detection (%) 45 94

6. Continuous Integration Considerations

For contemporary Android development, testing must be successfully incorporated into CI/CD pipelines. According to
an analysis of selected testing implementations, streamlined CI/CD processes can cut build times by up to 85% while

International Journal of Science and Research Archive, 2025, 14(01), 712-719

718

keeping test coverage above 92%. According to organizations using intelligent test selection techniques, 96% of possible
problems are found before production deployment [11].

6.1. Parallel Test Execution and Sharding

The efficiency of CI/CD has changed with the adoption of parallel test execution. Organizations that use parallel
execution frameworks decrease the average pipeline duration from 95 minutes to 18 minutes, according to studies on
continuous testing. Data indicates that intelligent test distribution can reduce execution time by 78% while boosting
resource consumption by 64%, demonstrating the effectiveness of test-sharding solutions.

Intelligent test selection and parallelization have effects that go beyond execution time. In contrast to the industry
average of 81%, teams report consistently achieving test reliability rates of 97%. Organizations have lowered needless
test running by 73% by using selective testing based on code changes, which has resulted in considerable cost
reductions in CI/CD infrastructure.

6.2. Test Artifacts and Debugging Efficiency

Maintaining thorough test artifacts in contemporary CI/CD pipelines has become crucial for effective debugging. Teams
who use organized artifact management cut the mean time to resolution (MTTR) for test failures from 5.8 hours to 42
minutes, per studies on the adoption of continuous testing [12]. According to organizations that use automated artifact
collecting and analysis, 91% of test failures may be traced back to their underlying causes without the need for human
intervention.

6.3. Metric Tracking and Analysis

Long-term metric tracking is one of the most important components of effective CI/CD deployments. Key performance
metrics have shown notable gains due to the continuous testing methodology. Test suite execution time decreased from
55 minutes to 13 minutes, according to organizations monitoring complete test data, and test coverage rose from 76%
to 94%. With teams switching from monthly to weekly releases while upholding quality requirements, release
frequency has increased by 285%.

When integrating testing into CI/CD pipelines, several variables must be carefully considered. According to the research,
companies that regularly incorporate thorough testing techniques into their CI/CD pipelines see increased product
quality and development productivity. Through wise test selection and efficient resource use, test execution costs have
dropped by 67%.

Teams implementing these approaches show significant gains in development efficiency in their success measures.
Defect detection rates have remained over 96% despite reducing release cycles from 21 to 7 days. Teams can find and
fix problems more quickly, thanks to an 82% reduction in debugging time by adopting automated artifact collecting and
analysis.

7. Conclusion

It takes careful preparation, ongoing improvement, and a thorough comprehension of contemporary Android
development techniques to create a testing framework that is both sustainable and efficient. The Google Chat UI Refresh
project case study shows that spending money on thorough testing infrastructure greatly impacts team confidence, code
quality, and development productivity. Teams may develop scalable and maintainable testing solutions by utilizing
multi-layered testing methodologies, appropriate test architecture, and specialized techniques for contemporary
frameworks such as Jetpack Compose. Testing frameworks become even more effective when these approaches are
combined with strong CI/CD workflows. Testing frameworks must change as applications develop and become more
complex while preserving dependability and efficiency. For teams looking to create testing frameworks that facilitate
long-term application development and maintenance, the tactics and lessons learned offer a useful road map.

References

[1] Lakshmi Bhadoria, "Challenges in Mobile Testing (with Solutions)," BrowserStack Guide, December 3, 2022.
[Online]. Available: https://www.browserstack.com/guide/mobile-testing-challenges

[2] TB Tech, "The Impact of Test Automation on Software Quality," TB Tech News, Oct 4, 2024. [Online]. Available:
https://tbtech.co/news/the-impact-of-test-automation-on-software-quality/

https://www.browserstack.com/guide/mobile-testing-challenges
https://tbtech.co/news/the-impact-of-test-automation-on-software-quality/

International Journal of Science and Research Archive, 2025, 14(01), 712-719

719

[3] Ke Mao, Mark Harman, and Yue Jia, "Sapienz: Multi-objective Automated Testing for Android Applications,"
Research Gate Publications, July 2016. [Online]. Available:
https://www.researchgate.net/publication/305026862_Sapienz_multi-
objective_automated_testing_for_Android_applications

[4] Android Developer Documentation Team, "Follow best practices," Android Developers. [Online]. Available:
https://developer.android.com/develop/ui/compose/performance/bestpractices

[5] Swapna Thorve, Chandani Sreshtha, and Na Meng, "An Empirical Study of Flaky Tests in Android Apps," IEEE
Transactions on Software Engineering, Nov 11, 2018. [Online]. Available:
https://ieeexplore.ieee.org/document/8530060

[6] Anand Vardhan and Shainesh Baheti, "7 Anti-Patterns in Performance and Scale Testing," Medium - Salesforce
Architects, June 23, 2022. [Online]. Available: https://medium.com/salesforce-architects/7-anti-patterns-in-
performance-and-scale-testing-ba4eeda00516

[7] Testing Xperts Research Team, "Top 7 Strategies to Overcome Application Modernization Testing Challenges,"
Testing Xperts Blog, Jan 2, 2024. [Online]. Available: https://www.testingxperts.com/blog/application-
modernization-testing-challenges

[8] Wenkai Zhan and Guoning Yan, "Testing of mobile applications. A review of industry practices," DiVA Portal
Academic Archive, Jan 15, 2019. [Online]. Available: https://www.diva-
portal.org/smash/get/diva2:1313292/FULLTEXT02

[9] Android Developer Documentation Team, "Test your Compose layout," Android Developers Guide. [Online].
Available: https://developer.android.com/develop/ui/compose/testing

[10] Mircea Ioan Soit, "Performance Optimization in Jetpack Compose: Best Practices for Smooth UIs," LinkedIn
Technical Insights, Sep 10, 2024. [Online]. Available: https://www.linkedin.com/pulse/performance-
optimization-jetpack-compose-best-practices-soit-c7ngf

[11] Karthik Periasami, "Optimizing CI/CD Processes with Selective Testing," Medium - Agoda Engineering, March 21,
2024. [Online]. Available: https://medium.com/agoda-engineering/optimizing-ci-cd-processes-with-selective-
testing-f537f9abc9d3

[12] AVO Automation, "Continuous Testing – The Modern Approach to Application Testing in Your CI/CD Pipeline,"
AVO Automation Blog. [Online]. Available: https://avoautomation.ai/blog/continuous-testing-the-modern-
approach-to-application-testing-in-your-ci-cd-pipeline/

https://www.researchgate.net/publication/305026862_Sapienz_multi-objective_automated_testing_for_Android_applications
https://www.researchgate.net/publication/305026862_Sapienz_multi-objective_automated_testing_for_Android_applications
https://developer.android.com/develop/ui/compose/performance/bestpractices
https://ieeexplore.ieee.org/document/8530060
https://medium.com/salesforce-architects/7-anti-patterns-in-performance-and-scale-testing-ba4eeda00516
https://medium.com/salesforce-architects/7-anti-patterns-in-performance-and-scale-testing-ba4eeda00516
https://www.testingxperts.com/blog/application-modernization-testing-challenges
https://www.testingxperts.com/blog/application-modernization-testing-challenges
https://www.diva-portal.org/smash/get/diva2:1313292/FULLTEXT02
https://www.diva-portal.org/smash/get/diva2:1313292/FULLTEXT02
https://developer.android.com/develop/ui/compose/testing
https://www.linkedin.com/pulse/performance-optimization-jetpack-compose-best-practices-soit-c7ngf
https://www.linkedin.com/pulse/performance-optimization-jetpack-compose-best-practices-soit-c7ngf
https://medium.com/agoda-engineering/optimizing-ci-cd-processes-with-selective-testing-f537f9abc9d3
https://medium.com/agoda-engineering/optimizing-ci-cd-processes-with-selective-testing-f537f9abc9d3
https://avoautomation.ai/blog/continuous-testing-the-modern-approach-to-application-testing-in-your-ci-cd-pipeline/
https://avoautomation.ai/blog/continuous-testing-the-modern-approach-to-application-testing-in-your-ci-cd-pipeline/

