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Abstract 

This study discusses the development and optimization of an object detection system using the YOLOv8 (You Only Look 
Once version 8) algorithm integrated with the Flask framework in a web-based environment. The system supports two 
main modes of operation, namely image upload and direct detection using the camera. The main goal of the system is to 
provide accurate, efficient, and accessible solutions without the need for local installation. The test was conducted using 
50 test images with different variations in background, lighting conditions, and the number of human objects, resulting 
in an average inference time of 0.43 seconds per image, precision of 95.1%, recall of 91.7%, and mAP@0.5 of 93.4%. In 
real-time testing, the system was able to run stably with a video processing speed of 18-22 frames per second. These 
results show that the developed system has high performance and is feasible to apply for online visual monitoring needs. 
Potential system development includes the addition of object tracking features, automatic log storage integration, and 
real-time notification systems to expand usability in various fields. 
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1. Introduction

Human detection is one of the crucial components in the development of computer vision-based systems and artificial 
intelligence [1]. Its application is very wide, ranging from security surveillance systems (CCTV), traffic monitoring, 
automated attendance systems, access control, to human-machine interaction in the context of the Internet of Things 
(IoT) [2]. As the need for systems that are able to detect human presence accurately and efficiently increases, especially 
in real-world situations that take place dynamically, there is a need for technological solutions that are not only fast and 
accurate, but also flexibly accessible through modern platforms such as web applications [3]. 

In the context of object detection technology, the You Only Look Once (YOLO) algorithm has become one of the most 
widely used methods [4]. YOLO works with the principle of single shot detection, which is to detect objects in a single 
image or video scanning process as a whole, thus enabling high speed in the processing of visual data [5]. The latest 
version of this algorithm, YOLOv8, comes with significant improvements in terms of model architecture, calculation 
efficiency, and detection accuracy. YOLOv8 also supports flexibility in various deployment scenarios, such as integration 
with Python, export of models to various formats, as well as improvements to modular structures that allow system 
development to be more optimal and faster [6]. 

While YOLOv8 has superior technical capabilities, its effectiveness in real-world applications largely depends on how it 
is integrated into a user-friendly and widely accessible platform [7]. In this case, the Flask framework is the right choice 
because it is lightweight, flexible, and easy to integrate with deep learning models written in the Python language [8]. 
Flask supports the development of web applications based on REST APIs that can present detection results in real-time 
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as well as based on files uploaded by users [9]. Thus, the human detection system built not only has advantages in terms 
of technical performance, but also in terms of user convenience and accessibility. 

However, the integration between YOLOv8 and Flask to build a web-based human detection system also poses its own 
challenges. Among them is how to optimize the model inference process to stay fast and efficient in web usage 
conditions that may have limited resources. Other challenges include setting up detection flows in two different input 
modes, namely real-time through local cameras and input files in the form of images or videos, as well as how to build 
a web interface that is responsive, lightweight, and easy to use by users with different levels of technological savvy. 
Therefore, a development approach is needed that focuses not only on the accuracy of the model, but also on aspects of 
system architecture, processing efficiency, and user interface design [10]. 

Based on this background, this research aims to develop and optimize a web-based human detection system that 
supports two input modes, namely real-time detection via camera and file-based detection (image and video). The 
system is built by integrating YOLOv8 as the primary detection model and Flask as the web interface development 
framework. The main focus of this research is to optimize the inference process and system workflow in order to 
provide fast, accurate, and stable detection results, both for real-time monitoring needs and visual data analysis from 
existing files. In addition, the system is also designed to be easy to use and accessible through a browser without the 
need for additional application installation, thus expanding the possibilities of implementation in real environments, 
such as offices, schools, factories, or other public areas. 

This research is expected to make a real contribution to the development of an efficient and flexible web-based human 
detection system. The results of this research can be used as a basis for building cost-effective intelligent surveillance 
systems, supporting the application of AI-based technology in environments with hardware limitations, and becoming 
a reference for the development of other detection systems that are modular and open-source. Thus, this system not 
only has scientific value, but also high practical value in supporting digital transformation in various sectors. 

2. Method 

The methods used in this study consist of five main stages: pre-processing of data, detection modeling using YOLOv8, 
integration of models into Flask, optimization of the inference process, and evaluation of system performance. 

2.1. Data Pre-processing 

In file-based detection mode, user-uploaded image or video files will be converted to RGB format using OpenCV. Next, 
resizing and normalization were carried out to adjust to the YOLOv8 model input. YOLOv8 models generally use 
standard resolutions such as 640×640 pixels [11]. 

𝑋𝑛𝑜𝑟𝑚 =
𝑋 − 𝜇

𝜎
 

Where: 

𝑋 = the original pixels of the image, 
μ = average pixel value, 
σ  = standard deviation of pixel values. 

However, for YOLOv8, the image input is simply normalized to the range [0,1] by: 

𝑋𝑛𝑜𝑟𝑚 =
𝑋

255
 

2.2. Data Pre-processing 

YOLOv8 uses an anchor-free architecture and supports direct detection with three outputs: object class, bounding box 
coordinates, and confidence score [12]. The inference process will result in a bounding box B=[x,y,w,h] and a confidence 
score C, with a minimum threshold of Tc = 0.25 (default). The output bounding box is converted to pixel coordinates by: 

𝑥𝑚𝑖𝑛 = 𝑥 −
𝑤

2
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𝑥𝑚𝑎𝑥 = 𝑥 +
𝑤

2
 

𝑦𝑚𝑖𝑛 = 𝑦 −
𝑤

2
 

𝑦𝑚𝑎𝑥 = 𝑦 +
𝑤

2
 

YOLOv8 detects objects through a combined loss function that optimizes three components: 

Ltotal=λcls⋅Lcls+λbox⋅Lbox+λobj⋅Lobj 

Where: 
Lcls  = loss classification, 
Lbox  = loss regression bounding box, 
Lobj  = objectness score loss. 

2.3. Flask Integration 

YOLOv8 models that have been trained or downloaded in .pt format are loaded into Python using the Ultralytics API 
[13]. Flask is used to provide two endpoints: 

• /realtime: captures input from a webcam using OpenCV, and then displays the detection results directly to a 
web page using multipart/x-mixed-replace streaming. 

• /upload: Accepts the uploaded image or video file, saves it temporarily, and then runs the detection process 
using the model. 

The pseudocode is as follows: 

 

Figure 1 Flask Integration 

2.4. Inference Optimization 

Optimization is carried out by: 

• Threading & Buffering: for real-time streaming is used. Thread so that the process of frame capture and 
inference runs in parallel. 

• Dynamic Resizing: changes the input resolution to smaller if the system performance decreases (adaptive 
scaling). 

• Redundant Frame Removal: for videos with minimal changes, only significantly different frames are 
detected. 
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3. Results and Discussion 

This research resulted in a web-based human detection system that is able to operate in two main modes, namely 
through the processing of user-uploaded images and through direct detection using real-time cameras. The system is 
designed using the YOLOv8 model for the visual inference process and is integrated with the Flask framework as an 
interactive web interface. Tests are conducted separately for each mode to evaluate performance in terms of detection 
accuracy, system response speed, and interface display stability. In image upload mode, users can select image files that 
contain human objects, and then the system will process and display the detection results directly through the browser. 
Meanwhile, in real-time mode, the camera is directly used as video input, and the detection results are streamed via a 
web page with fast and responsive frame updates. 

3.1. File-Based Detection 

This test is done by uploading an image containing one or more human objects to the web interface that has been 
provided. The system then processes the image using the YOLOv8 model and displays the detection results in the form 
of a bounding box labeled "person". 

 

Figure 2 File-Based Detection Test Results 

The test of the web-based human detection system was carried out using 50 test images that have diversity in terms of 
background, lighting level, and the number of human objects contained in the image, which is between one and 25 
people per image. The images have varying resolutions, ranging from 640×480 pixels to 1920×1080 pixels, so they can 
represent real conditions of use of the system in general. The test results showed that the system was able to provide 
an average inference time of 0.43 seconds per image, which indicates a high enough processing speed for the needs of 
web applications. 

In this test, the system managed to achieve detection accuracy (mAP@0.5) of 93.4%, precision of 95.1%, and recall of 
91.7%. The precision value is calculated using the formula: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

390

390 + 20
= 0,951 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

390

390 + 35
= 0,917 

Where: 
• TP (True Positive): True human detection (390 detections) 
• FP (False Positive): Non-human object but detected as human (20 detections) 
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• FN (False Negative): Undetectable human (35 cases) 

The information from the calculation is: True Positive (TP) is the number of correct human detections as many as 390 
cases, False Positive (FP) is the number of detections of objects that are actually not human but are detected as human 
as many as 20 cases, and False Negative (FN) is the number of human objects that are not successfully detected as many 
as 35 cases. 

From the results of these calculations, it can be concluded that the system has excellent detection capabilities in 
recognizing human objects accurately and efficiently, despite various environmental conditions, such as complex 
backgrounds and uneven lighting. While poor lighting conditions and crowded backgrounds can slightly affect detection 
performance, they are not significant in terms of overall system performance. In addition, the system is designed to 
compress and send the detection results back to the user interface in less than a second, while maintaining real-time 
performance even when web-based. These results show that human detection systems using YOLOv8 and the Flask 
framework are feasible to implement for monitoring, security, or other object recognition applications that are based 
on static images and run in web environments. 

3.2. Live Camera Detection 

Real-time mode testing was conducted using the laptop's internal (720p) and external (1080p USB Camera) cameras. 
The system displays live streaming video through the browser, then simultaneously processes video frames using 
YOLOv8 and displays the detection results in the form of bounding boxes that are updated each frame. 

 

Figure 3 Live Camera Detection Test Results 

The test results showed that the system was able to maintain a detection accuracy of 92.8% mAP@0.5% with a precision 
of 93.5% and a recall of 90.4%. Performance degradation occurs when motion blur or low lighting occurs, but is still 
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within acceptable tolerance limits for real-time systems. The system is also optimized with multithreading techniques, 
separating the process of capturing and inference to avoid bottlenecks. This has improved frame rate stability by 25%, 
especially as the number of humans in the frame increases. 

4. Conclusion 

This research successfully develops and optimizes a web-based human detection system by integrating the YOLOv8 
object detection algorithm and the Flask framework. The system supports two main modes, namely file-based detection 
and real-time detection, both of which can be accessed through a responsive and user-friendly web interface. Based on 
tests using a test dataset of 50 images with variations in background, lighting, and the number of human objects, the 
system was able to achieve high performance with an average inference time of 0.43 seconds per image, precision of 
95.1%, recall of 91.7%, and accuracy of mAP@0.5 of 93.4%. This performance shows that the system is highly accurate 
and efficient in recognizing human objects, even in sub-ideal environmental conditions. 

In real-time testing using the camera, the system was able to process video at an average speed of 18 to 22 frames per 
second, which is enough to support the need for live monitoring. Despite challenges such as low lighting or fast 
movement that can affect accuracy, the system still shows good stability and responsiveness. These results prove that 
YOLOv8 and Flask-based human detection systems can be used effectively for web-based monitoring, security, and 
surveillance applications. This system also allows use in real environments because it is able to provide fast and accurate 
detection results, both in image upload and real-time mode. 
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