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Abstract 

Artificial intelligence is fundamentally transforming public health decision-making through sophisticated 
computational techniques that analyze complex health data at unprecedented scale and speed. This technical article 
examines how AI technologies are being integrated into public health systems to enhance disease surveillance, optimize 
resource allocation, and address health inequities. The paper explores multimodal data integration for outbreak 
detection, census-level analytics for chronic disease risk assessment, and applications in health system planning 
including social determinants analysis and emergency resource optimization. Methodological considerations regarding 
model architecture selection and validation frameworks are discussed, highlighting the balance between complex deep 
learning approaches and more interpretable models. The article addresses critical ethical challenges including data 
privacy architectures and bias mitigation strategies necessary for responsible implementation. Future research 
directions are identified, including causal AI methodologies, multimodal learning systems, adaptive models that update 
with evolving health patterns, and explainable AI techniques. Throughout, the article emphasizes that successful AI 
integration depends not only on technical sophistication but also on thoughtful implementation that balances 
computational capabilities with human expertise and judgment within appropriate governance frameworks. 
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1. Introduction

Artificial intelligence (AI) is rapidly transforming healthcare systems globally, with particularly significant implications 
for public health decision-making frameworks. The convergence of advanced computational capabilities, big data 
availability, and sophisticated algorithmic approaches has created unprecedented opportunities to enhance population 
health management. This technical article examines the current applications, methodological approaches, challenges, 
and future directions of AI integration in public health decision support systems. 

The adoption of AI in healthcare and public health has grown substantially over the past decade, reflecting a paradigm 
shift in how health-related data is collected, analyzed, and utilized for population-level interventions. AI technologies 
enable the processing of massive datasets that were previously untamable through conventional analytical methods, 
providing public health practitioners with tools to detect patterns, predict outcomes, and optimize resource allocation 
with increasing precision. Recent analyses have shown promising applications of machine learning algorithms in 
disease surveillance, where natural language processing techniques can extract meaningful signals from unstructured 
textual data sources such as social media posts, news reports, and clinical notes, supplementing traditional surveillance 
systems that often suffer from reporting delays [1]. This enhancement in early warning capabilities represents a critical 
advancement for public health emergency preparedness, particularly in the context of emerging infectious diseases 
where rapid response can significantly mitigate population impact. 
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The integration of AI into public health infrastructure encompasses numerous technological approaches, ranging from 
supervised and unsupervised machine learning to deep learning neural networks and reinforcement learning systems. 
These methodologies have been applied across various public health domains, including epidemiological forecasting, 
health resource optimization, and the analysis of social determinants of health. AI-driven platforms increasingly 
incorporate data from diverse sources, creating comprehensive models that account for clinical, environmental, 
behavioral, and socioeconomic factors simultaneously. This multidimensional modeling capability has particular 
relevance for addressing complex public health challenges that involve numerous interacting variables across different 
scales, from molecular to societal levels [2]. The capacity to process heterogeneous data types—including structured 
clinical metrics, genomic sequences, geospatial information, and unstructured text—enables more holistic approaches 
to understanding population health dynamics than was previously possible with traditional statistical methods. 

Contemporary implementations of AI in public health decision support systems face both technical and institutional 
challenges. Issues of data quality, interoperability between systems, and algorithmic bias require careful consideration 
when deploying these technologies in real-world settings. Moreover, the computational requirements for processing 
health-related big data necessitate substantial infrastructure investments, creating potential implementation barriers, 
particularly for resource-constrained public health agencies. Despite these challenges, the strategic integration of AI 
capabilities into existing public health workflows holds significant promise for enhancing surveillance sensitivity, 
improving predictive accuracy, and enabling more nimble responses to emerging threats [1]. The effectiveness of these 
systems ultimately depends not only on their technical sophistication but also on their thoughtful implementation 
within organizational contexts that balance technological capabilities with human expertise and judgment. 

The evolution of AI applications in public health continues to accelerate, with emerging research focusing on explainable 
AI approaches that enhance transparency, federated learning techniques that preserve privacy while enabling 
collaborative analysis, and adaptive systems that continuously update in response to new data. These advancements 
address some of the key limitations in current implementations while expanding the potential application domains 
within public health practice. As computational capabilities continue to advance and data availability increases, the 
integration of AI into public health decision-making frameworks will likely become more seamless and comprehensive, 
offering powerful tools for addressing population health challenges across multiple scales [2]. This transition represents 
not merely a technological shift but a fundamental transformation in how public health evidence is generated, 
interpreted, and translated into action. 

2. Current Applications in Disease Surveillance and Prediction 

2.1. Multimodal Data Integration for Outbreak Detection 

Contemporary AI systems demonstrate a remarkable capacity for synthesizing heterogeneous data sources to predict 
disease emergence and spread patterns. These systems integrate social media sentiment analysis with geospatial 
mapping to generate high-resolution syndromic surveillance that can identify potential outbreak hotspots days before 
traditional reporting systems [3]. Anonymized mobility data from mobile devices provides critical insights into 
population movement dynamics that influence disease transmission, while hospital admission records and clinical data 
repositories add clinical dimensionality to surveillance capabilities. Environmental sensor networks monitoring air 
quality, temperature fluctuations, and water quality parameters provide contextual data enhancing predictive accuracy 
for environmentally sensitive infectious diseases. Research indicates that machine learning algorithms—particularly 
ensemble methods combining multiple predictive models—can detect subtle signal patterns preceding outbreak events. 
Recurrent neural networks (RNNs) with attention mechanisms have proven effective in identifying temporal patterns 
in healthcare utilization data that precede infectious disease outbreaks by several weeks, with predictive accuracy 
significantly exceeding conventional surveillance methods [3]. 

2.2. Census-Level Data Mining for Chronic Disease Risk Assessment 

Demographic information captured through census data represents a valuable resource for public health predictive 
modeling. Census-level variables demonstrate significant predictive power for conditions, including anxiety disorders 
and diabetes, enabling proactive public health planning for high-burden conditions. The analytical workflow for census-
based chronic disease modeling begins with feature extraction and selection processes that identify the most 
informative demographic indicators from hundreds of potential variables. Implementation of regularized regression 
techniques, including LASSO, Ridge, and Elastic Net, effectively manages high-dimensionality challenges while 
preventing overfitting [4]. Advanced ensemble methods such as Random Forests and Gradient Boosting Machines 
capture complex non-linear relationships between socioeconomic factors and health outcomes [5]. Spatial 
autocorrelation analysis enables the identification of geographic clustering patterns, with advanced geospatial 
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statistical methods capturing neighborhood effects and regional variations in social determinants of health. These 
methodological approaches enable the generation of high-resolution risk maps that visualize chronic disease 
vulnerability with remarkable geographic precision, facilitating targeted intervention deployment in vulnerable 
communities. Implementation case studies demonstrate that such targeted approaches achieve significantly greater risk 
reduction per dollar invested compared to population-wide interventions, particularly for conditions with strong 
socioeconomic determinants [4]. 

 

Figure 1 AI Driven Disease surveillance and Prediction Architecture 

3. Strategic Applications in Health System Planning 

3.1. Social Determinants Analysis and Health Equity Optimization 

AI systems are increasingly deployed to analyze the complex relationships between Social Determinants of Health 
(SDOH) and population health outcomes. The sophisticated analytical capabilities of modern AI frameworks have 
transformed how public health systems understand and address health inequities through data-driven approaches. 
Using techniques such as structural equation modeling and causal inference frameworks, these systems can quantify 
the relative contribution of specific social factors to health disparities with unprecedented precision. This quantification 
enables public health planners to prioritize interventions targeting the most influential determinants, moving beyond 
correlation to establish causal pathways between social conditions and health outcomes [6]. The predictive modeling 
capabilities within these frameworks allow for simulation of potential policy interventions before implementation, 
providing decision-makers with evidence-based projections of intervention efficacy across different population 
segments and geographic regions. 

Advanced machine learning approaches have proven particularly valuable in identifying complex interaction effects 
between multiple social determinants that conventional statistical methods often miss. These interaction effects 
frequently reveal synergistic relationships where addressing multiple determinants simultaneously yields outcomes 
superior to targeting individual factors in isolation. The optimization algorithms embedded within these systems enable 
resource allocation modeling that maximizes equity improvements within budgetary constraints, incorporating 
concepts from operations research to determine optimal distribution of limited public health resources across 
communities with varying need profiles [6]. Natural language processing (NLP) applications further enhance these 
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capabilities by extracting SDOH information from unstructured clinical notes and community-level reports, creating 
more comprehensive determinant profiles than structured data alone can provide. These NLP systems can process 
thousands of documents daily, identifying contextual factors such as housing instability, food insecurity, and 
transportation barriers that may not be captured in structured demographic data but significantly influence health 
outcomes and healthcare utilization patterns. 

3.2. Resource Optimization During Public Health Emergencies 

 

Figure 2 Strategic Application in Health system planning 

During crises, AI-driven decision support systems have demonstrated significant value through the dynamic 
coordination of public health resources. The time-sensitive nature of emergency response makes computational 
optimization particularly valuable, as manual planning processes often cannot adjust rapidly enough to changing 
conditions. AI systems enable the dynamic prediction of regional supply needs based on real-time case data, 
incorporating not only current utilization patterns but also predictive models of disease trajectory to anticipate 
resource requirements before shortages occur [7]. These systems typically integrate multiple data streams including 
hospital capacity metrics, supply chain status, epidemiological forecasts, and geographic accessibility factors to 
generate comprehensive resource allocation recommendations. 

The optimization of distribution logistics using reinforcement learning approaches has emerged as a particularly 
effective application during public health emergencies. These algorithms can simultaneously optimize multiple 
objectives including minimizing travel time, maximizing population coverage, and ensuring equitable distribution 
across diverse communities. Advanced reinforcement learning models continually refine their recommendations based 
on observed outcomes, effectively learning from each allocation decision to improve future resource distribution [7]. 
Staffing allocation models represent another critical application, accounting for skill requirements and burnout risk to 
maintain workforce sustainability during prolonged emergency responses. These models incorporate expertise 
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matching, scheduling constraints, and fatigue management considerations to optimize human resource deployment 
while protecting healthcare worker wellbeing. 

Scenario modeling capabilities provide perhaps the most strategically valuable function during emergencies, enabling 
evaluation of potential intervention strategies across multiple possible outbreak trajectories. These applications 
typically employ operations research techniques combined with machine learning to generate actionable 
recommendations under conditions of uncertainty and resource constraint. By simulating hundreds or thousands of 
potential scenarios, these systems help emergency planners identify robust strategies that perform well across a range 
of possible futures rather than optimizing for a single predicted outcome that may not materialize [7]. This approach is 
particularly valuable given the inherent uncertainty in rapidly evolving public health emergencies, where data quality 
varies and conditions can change rapidly. 

4. Methodological and Technical Considerations 

4.1. Model Architecture Selection 

The selection of appropriate AI architectures for public health applications requires careful consideration of multiple 
factors that influence model performance, interpretability, and practical utility. Data dimensionality and heterogeneity 
present significant challenges in public health contexts, where information sources range from structured clinical data 
to unstructured text and complex spatiotemporal patterns. This heterogeneity necessitates thoughtful architecture 
design that can effectively integrate diverse data types while managing the curse of dimensionality that often 
accompanies high-dimensional health datasets [8]. Contemporary approaches increasingly employ hybrid architectures 
that combine multiple modeling techniques to handle different aspects of the data ecosystem, such as convolutional 
components for spatial patterns combined with recurrent elements for temporal sequences. 

Temporal dependencies in health outcome patterns add further complexity to architecture selection, as many public 
health phenomena exhibit seasonal variations, long-term trends, and complex lag structures between exposures and 
outcomes. Models must capture these temporal dynamics while remaining robust to irregular sampling intervals and 
missing data points that commonly occur in real-world health surveillance systems. The growing implementation of 
attention mechanisms and temporal convolutional networks has significantly enhanced capabilities in this domain, 
enabling more sophisticated modeling of variable-length time dependencies than traditional time series approaches [8]. 
Interpretability requirements for clinical and policy implementation represent another critical consideration, as public 
health interventions based on model outputs typically require clear explanations of the decision factors to gain 
stakeholder acceptance and ensure ethical deployment.  

While deep learning approaches offer powerful pattern recognition capabilities that can uncover subtle relationships in 
complex datasets, simpler interpretable models often demonstrate comparable performance for many public health 
applications while providing greater transparency into decision factors. Recent comparative evaluations have shown 
that regularized regression models and gradient-boosted decision trees frequently achieve prediction accuracy within 
5-10% of more complex neural network architectures for many population health prediction tasks while offering 
substantially greater interpretability. This performance similarity has led to the increased adoption of explainable AI 
approaches that prioritize transparency without sacrificing predictive power [8]. Computational efficiency for real-time 
deployment represents a final critical consideration, particularly for surveillance systems that must process streaming 
data and generate alerts with minimal latency. Model architecture selection increasingly incorporates efficiency metrics, 
such as inference time and memory requirements, alongside traditional performance measures, especially for 
applications intended for resource-constrained settings or edge computing environments. 

4.2. Validation Frameworks and Performance Metrics 

Rigorous validation is essential for AI implementation in public health contexts, where model failures can have 
significant consequences for population health outcomes and resource allocation decisions. Conventional validation 
approaches that focus solely on aggregate performance metrics often prove insufficient for public health applications 
as they may mask important variations in model performance across geographic regions, demographic groups, or 
periods. Geographic and temporal cross-validation has emerged as a best practice to assess generalizability, with 
models trained on data from specific locations or periods being evaluated on their performance in novel contexts [9]. 
This approach reveals whether predictive relationships identified by the model represent fundamental causal 
mechanisms or merely context-specific patterns that may not transfer to new settings. 
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Calibration assessment using reliability diagrams provides critical insights into whether model probability estimates 
accurately reflect true outcome likelihoods across the prediction range. This calibration is particularly important for 
risk prediction models that inform intervention prioritization, where both underconfidence and overconfidence can 
lead to suboptimal resource allocation. Recent implementations increasingly incorporate automated recalibration 
procedures that adjust probability outputs to maximize reliability while preserving discrimination performance [9]. 
Equity-focused performance metrics that evaluate model fairness across population subgroups represent another 
essential component of comprehensive validation frameworks, ensuring that AI systems do not perpetuate or amplify 
existing health disparities. These metrics typically examine whether prediction accuracy, false positive rates, and false 
negative rates remain consistent across demographic groups, with particular attention to historically marginalized 
populations. 

Combined technical and domain-expert evaluation of model outputs provides a final critical layer of validation that 
purely statistical approaches cannot replace. This evaluation integrates quantitative performance metrics with 
qualitative assessment by public health practitioners, clinicians, and community representatives who can identify 
practically significant failure modes that may not be apparent from aggregate statistics alone [9]. The implementation 
of structured evaluation protocols that systematically document both technical performance and domain-expert 
assessment has become increasingly common, enabling more comprehensive evaluation of model utility for intended 
use cases. These multifaceted validation approaches help ensure that performance metrics reflect real-world utility 
rather than statistical artifacts, increasing the likelihood that AI implementations will deliver meaningful benefits when 
deployed in operational public health contexts. 

5. Ethical and Governance Challenges 

5.1. Data Privacy and Security Architectures 

The sensitive nature of health data necessitates robust privacy-preserving approaches when implementing AI systems 
in public health contexts. As health data contains intimate details of individuals' medical conditions, genetic information, 
and behavioral patterns, the potential for privacy breaches presents both ethical and legal concerns. Federated learning 
frameworks have emerged as a particularly promising technical solution, enabling model training across multiple 
institutions without centralizing sensitive data. This approach allows algorithms to learn from diverse datasets while 
keeping raw patient data securely within its originating institution, with only model parameters or gradients shared 
during the training process. Implementation studies have demonstrated that federated learning can achieve 
performance comparable to centralized approaches while significantly reducing privacy risks, though additional 
computational overhead and communication requirements present ongoing challenges [10].  

Differential privacy implementation has gained traction as a complementary approach, offering formal mathematical 
guarantees of individual anonymity through the controlled addition of statistical noise to datasets or model outputs. By 
calibrating this noise to specific privacy parameters, system designers can establish quantifiable privacy guarantees 
that limit the ability to infer individual-level information, even through sophisticated re-identification attacks. Secure 
multi-party computation represents another advanced cryptographic technique being deployed for cross-institutional 
analysis, enabling multiple organizations to compute functions over their private inputs without revealing those inputs 
to other parties. This approach facilitates critical analyses such as regional disease clustering or comparative 
effectiveness studies while maintaining strict data segregation between participating institutions [10]. Synthetic data 
generation techniques have also advanced considerably, with generative adversarial networks and other deep learning 
approaches now capable of producing artificial datasets that preserve the statistical properties and relationships of the 
original data while eliminating individual identification risk. These synthetic datasets can support model development, 
validation, and education purposes without exposing actual patient information. 

These technical approaches enable sophisticated analysis while maintaining compliance with regulatory frameworks 
such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States, the General Data 
Protection Regulation (GDPR) in Europe, and emerging AI-specific governance standards being developed globally. The 
implementation of these privacy-preserving technologies requires careful consideration of the specific regulatory 
context, with particular attention to requirements for consent, data minimization, purpose limitation, and individual 
rights regarding automated decision systems that may affect healthcare access or quality. 

5.2. Bias Mitigation and Fairness Engineering 

AI systems risk perpetuating or amplifying existing healthcare disparities if not carefully designed, as algorithms trained 
on historically biased healthcare data may incorporate and subsequently automate these biases. The consequences of 
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such algorithmic bias can be particularly severe in public health contexts, where resource allocation decisions may affect 
large populations and exacerbate existing inequities. Representative dataset curation with comprehensive demographic 
inclusion represents a foundational approach to mitigating this risk, ensuring that training data adequately represents 
diverse populations across dimensions such as race, ethnicity, gender, age, socioeconomic status, and geographic 
location [11]. This approach requires both technical methods for identifying underrepresented groups and institutional 
commitments to inclusive data collection practices. 

Fairness constraints implemented during model training provide another layer of bias mitigation, with various 
mathematical frameworks available to enforce equitable performance across population subgroups. These constraints 
can be implemented through techniques such as adversarial debiasing, where the model is simultaneously trained to 
predict the outcome of interest while being penalized for revealing sensitive attributes, or through regularization terms 
that explicitly minimize disparate impact across groups. Post-processing techniques to equalize error rates across 
population subgroups offer a complementary approach, modifying model outputs after training to ensure consistent 
performance metrics such as false positive and false negative rates across demographic groups [11]. While these 
adjustments may sometimes reduce overall predictive accuracy, they often represent necessary trade-offs to ensure 
equitable treatment across populations. 

 

Figure 3 Ethical and Governance challenges in AI for public health 

Ongoing monitoring frameworks to detect emergent bias in deployed systems provide a critical final component of 
comprehensive fairness engineering, as population distributions and relationships between variables may shift over 
time, introducing new biases not present during initial training and validation. These monitoring systems typically 
implement continuous performance evaluation across demographic subgroups, alerting system administrators when 
significant disparities emerge and triggering model retraining or adjustment. Research indicates that these combined 
approaches can significantly reduce algorithmic bias, though complete elimination remains challenging due to deeply 
embedded structural inequities in healthcare systems that influence every aspect of data generation and collection. 
Addressing these fundamental inequities requires not only technical solutions but also broader societal commitments 
to health equity that extend well beyond AI system design. 
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6. Future Directions and Research Priorities 

The rapidly evolving landscape of AI in public health points toward several emerging research areas with significant 
potential to transform decision-making capabilities. Causal AI approaches that move beyond correlation to identify 
modifiable factors represent one of the most promising frontiers in this domain. While current predictive models excel 
at identifying statistical associations between variables, they often struggle to distinguish causal relationships from 
spurious correlations, limiting their utility for intervention design. Advanced causal inference techniques incorporating 
directed acyclic graphs, instrumental variable methods, and counterfactual reasoning are increasingly being integrated 
with machine learning approaches to address this limitation [12]. These hybrid methodologies enable more robust 
identification of causal pathways between modifiable risk factors and health outcomes, providing clearer guidance for 
policy interventions. Recent implementations have demonstrated particular promise in untangling complex 
relationships between social determinants and health disparities, offering novel insights into potential intervention 
points that traditional epidemiological methods might miss. 

Multimodal learning systems that integrate genomic, clinical, behavioral, and environmental data represent another 
critical research frontier with transformative potential for public health. The siloed nature of health data has historically 
limited the scope of analysis, with most models focusing on single data types or limited combinations. Emerging 
architectural approaches now enable the simultaneous processing of diverse data modalities, creating unified 
representations that capture complex interactions across biological, clinical, and social dimensions [12]. These systems 
can identify risk patterns that emerge only when considering the interplay between genetic predispositions, clinical 
presentations, behavioral factors, and environmental exposures, enabling more personalized and precise public health 
interventions. The implementation challenges remain substantial, requiring advances in data harmonization, cross-
modal representation learning, and computational efficiency to handle the increased dimensionality and heterogeneity 
of integrated datasets. 

Adaptive models that continuously update as population health patterns evolve address a fundamental limitation of 
static AI systems in dynamic public health environments. Traditional model development follows a cyclical pattern of 
training, validation, deployment, and periodic retraining, creating potential lags in adaptation to emerging health 
patterns or intervention effects. Continuous learning approaches implement automated retraining pipelines that 
incrementally update model parameters as new data becomes available, maintaining relevance as population 
characteristics and health relationships shift over time [13]. These systems incorporate concept-drift detection methods 
that identify when underlying relationships between variables have changed significantly, triggering targeted retraining 
to adapt to these new patterns. While promising, these approaches must carefully balance adaptation to genuine 
changes against the risk of incorporating temporary fluctuations or data quality issues, requiring robust validation 
frameworks that maintain performance guarantees throughout the continuous learning process. 

Explainable AI techniques that provide intuitive understanding of complex model decisions continue to advance rapidly, 
addressing a critical barrier to wider adoption of AI in public health decision-making. Beyond simple feature importance 
metrics, contemporary approaches now generate natural language explanations, counterfactual examples, and visual 
decision paths that help stakeholders understand not just what factors influenced a prediction but how they interacted 
to produce the result [13]. These techniques increasingly incorporate domain knowledge to ensure explanations align 
with established public health concepts and terminology, making them more accessible to practitioners without 
technical expertise in AI methods. Research priorities in this area include developing explanation methods that scale 
effectively to the high-dimensional, multimodal data common in public health applications, and validating the impact of 
different explanation approaches on stakeholder trust, decision quality, and implementation outcomes. 

These advances promise to further enhance the utility of AI in public health decision support while addressing current 
limitations in interpretability and causal understanding. The convergence of these research directions suggests a future 
where AI systems not only predict health outcomes with high accuracy but also identify causal mechanisms, adapt to 
changing conditions, integrate diverse data types, and communicate their reasoning clearly to decision-makers. 
Realizing this potential will require continued interdisciplinary collaboration between AI researchers, public health 
experts, ethicists, and community stakeholders to ensure that technological advances translate into meaningful 
improvements in population health outcomes and equity. 

7. Conclusion 

The integration of artificial intelligence into public health represents a paradigm shift in how population health data is 
collected, analyzed, and translated into action. As this article demonstrates, AI approaches offer remarkable capabilities 
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for disease surveillance, risk prediction, resource optimization, and health equity promotion when thoughtfully 
implemented. While technical challenges regarding data quality, interoperability, and computational requirements 
persist, the most significant considerations for successful AI deployment involve ethical governance, privacy protection, 
and bias mitigation. The path forward requires interdisciplinary collaboration between technical experts, public health 
practitioners, ethicists, and community stakeholders to ensure these powerful tools serve the fundamental goals of 
public health. Rather than replacing human judgment, the most promising future lies in human-AI collaborative systems 
that combine the pattern recognition capabilities of machine learning with the contextual understanding, ethical 
reasoning, and domain expertise of public health professionals. Through such balanced integration, AI can help create 
more responsive, precise, and equitable public health systems capable of addressing increasingly complex population 
health challenges across multiple scales and domains. 
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