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Abstract 

This manuscript introduces a novel methodology for detecting anomalies in iron structures using synthetic data and 
machine learning algorithms. Synthetic datasets representing normal and anomalous conditions were generated 
through simulated gamma-ray interactions with iron. Decision tree and support vector machine (SVM)-based classifiers 
were employed to train a model capable of distinguishing between intact and defective materials. This data-driven 
approach provides a scalable and efficient platform for non-destructive testing across industries such as construction, 
transportation, and manufacturing. 

In the future, we plan to integrate IoT devices into this framework to enhance its practical applicability. The manuscript 
presents the design and proposed methodology for machine learning-based anomaly detection in iron structures using 
synthetic data. 
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1. Introduction

As one of the most widely used materials in industrial applications, iron is strong and durable enough to last for a long 
period. All infrastructure structures such as buildings, bridges, pipelines, and machines need iron as it is the base 
foundation for the development of infrastructure. With all these positive attributes, the structures of iron can have flaws 
like cracks, voids, and inclusions that affect the structural integrity. Such flaws may be attributed to manufacturing 
defects, environmental effects, or stresses from long-time operational exposure and, therefore, pose a safety as well as 
functionality risk. 

Such defects are effectively found using conventional NDT techniques, including ultrasonic testing [1-3], radiographic 
testing [4,5], and magnetic particle inspection [6,7]. Such methods are resource-intensive: a call for sophisticated 
equipment and also skilled manpower. The processes are also very time-consuming and not very scalable, especially for 
large or complicated structures. Periodic inspections are useful but do not monitor the structure continuously, and the 
time that elapses before inspections allows defects to grow undiscovered, which may end up causing catastrophic 
failure. 

With the advent of the data-driven technologies, machine learning is emerging as the transformative tool for anomaly 
detection. The analysis of large datasets by ML algorithms looks for patterns that detect deviation, signaling structural 
anomalies [8, 9]. The acquisition of real-world data for the training of an ML model turns out to be challenging due to 
logistical and monetary constraints, especially at the very early stages of a system's development. 
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This challenge can be overcome through synthetic data generation [10]. Simulations of gamma-ray interactions through 
iron structures can create a controlled dataset mimicking real conditions. These synthetic data can be used to train the 
ML model, making it distinguish normal from anomalous conditions. Synthetic data thus enables researchers to simulate 
a host of scenarios, like extreme or rarely occurring defect types, probably impossible to experience in real-world 
datasets. 

This paper therefore discusses the integration of synthetic data and machine learning for anomaly detection in iron 
structures. The provision of a scalable, cost-effective, and efficient alternative to traditional NDT methods is based on 
simulated gamma-ray interactions. This eliminates the need for IoT devices at the onset of the research phase but 
provides a foundation for future implementations based on IoT. The coupling of simulation and machine learning marks 
an important step toward improving the safety, reliability, and service life of iron-based infrastructure. 

2. Design of IoT-Based Anomaly Detection System 

To implement the proposed methodology in a real-world application, an IoT-based system, as illustrated in Figure 1, 
has been conceptualized for real-time anomaly detection in iron structures. This design leverages the innovative 
approach of the patented device, integrating IoT technology with machine learning to enable efficient and accurate 
detection of structural anomalies. The system comprises the following key components: 

2.1. System Components: 

• Gamma Radiation Sensor: Detects gamma rays and measures their attenuation after passing through the iron 
structure. Suitable sensors include scintillation detectors or semiconductor sensors. 

• Microcontroller (CPU): Processes the sensor data in real time and applies initial noise reduction and filtering. 
Examples: Arduino, Raspberry Pi, or ESP32. 

• IoT Module: Transmits the processed data to a cloud server or a local interface for analysis. Communication 
protocols like Wi-Fi, LoRa, or GSM can be used for reliable data transmission. 

• Cloud Storage and Processing: Stores the transmitted data and integrates the trained machine learning 
models to classify the data as normal or anomalous. 

 

Figure 1 Design of Iot based iron anomaly detection system 

2.2. Detailed Block Diagram 

Below is the detailed block diagram that illustrates the interaction between each component in the system: 

 

Figure 2 Block diagram of Iot based iron anomaly detection system 
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2.3.  System Workflow 

• Gamma Irradiation: The source of gamma radiation emits gamma rays towards the sample of iron. 
• Interaction with Iron: Gamma rays penetrate the sample of iron, and their interaction, or scattering and 

absorption, is affected by the properties of the sample, including any anomalies. 
• Detection: The sensor of gamma radiation measures the intensity and energy spectrum of the gamma rays 

once they have interacted with the sample of iron. 
• Data Processing: The microcontroller receives signals from the sensor and processes data with noise filtering 

along with algorithms used to detect anomalies that are based on deviations from the expected radiation 
pattern. 

• Data Transmission: The processed data is transmitted by the IoT device to a cloud server for analysis and 
storage. 

• Real-Time Monitoring: The data received is processed by and stored on the cloud server. A user interface is 
provided for real-time monitoring, visualization, and analysis. Alerts and notifications can be configured for 
immediate anomaly detection. 

2.4. Integration with ML Models: 

The ML models (Decision Tree and SVM) trained in this study can be deployed on the cloud or on an edge device 
connected to the IoT system. The preprocessed data from the IoT system serves as input for the models, enabling real-
time anomaly detection. 

3. Methodology 

3.1. Synthetic Data Generation 

The foundation of this study lies in generating a synthetic dataset that accurately represents gamma-ray interactions 
with iron under varying conditions. Three key features were simulated: 

3.1.1. Thickness (cm): 

Represents the physical thickness of the iron sample, which affects the extent of gamma-ray attenuation. 

Values were randomly sampled within the range of 0.5 to 2.0 cm to account for diverse structural elements. 

3.1.2. Attenuation Coefficient: 

Indicates the degree to which gamma rays are attenuated as they pass through the material. 

Normal samples had coefficients between 0.1 and 0.2, while anomalous samples had lower coefficients (0.05 to 0.09) 
due to cracks or voids that reduce the material's density. 

3.1.3. Radiation Intensity: 

Reflects the intensity of gamma rays emerging after interaction with the sample. 

Normal samples exhibited intensities between 0.8 and 1.0, whereas anomalies resulted in lower intensities (0.5 to 0.7). 

A dataset of 10,000 samples was generated, comprising 8,000 normal and 2,000 anomalous instances. The data was 
labeled as follows: 

• Label 0 (Normal): Represents defect-free iron with standard feature values. 
• Label 1 (Anomalous): Represents defective iron with reduced attenuation and intensity. 

Random shuffling was applied to ensure a balanced distribution of samples, followed by splitting into training (70%) 
and testing (30%) sets to facilitate robust model evaluation. 

3.2. Machine Learning Models 

Machine learning models were employed to classify the samples as normal or anomalous. Two popular classifiers were 
selected for this purpose: 
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3.2.1. Decision Tree Classifier: 

This model uses a tree-like structure to partition the data set based on the thresholds of the features [11,12]. The split 
is chosen to optimize the separation of the classes of normal and anomalous. 

Decision trees are interpretable, hence its rules governing detection of anomalies make it easier and understandable 
[13,14]. 

3.2.2. Support Vector Machine (SVM): 

SVM is a powerful classifier that aims to find the hyperplane that best separates the two classes [15]. For this study, the 
Radial Basis Function (RBF) kernel was used to capture non-linear relationships between features [16,17]. 

SVMs are well-suited for tasks where classes exhibit complex decision boundaries, as seen in this dataset. 

Both models were trained on the training dataset and evaluated on the testing dataset to ensure generalizability and 
performance consistency. 

3.3. Evaluation Metrics 

To evaluate the performance of the classifiers, the following metrics were calculated: 

3.3.1. Accuracy: 

Measures the overall proportion of correctly classified samples. 

Formula: Accuracy =
True Positives+True Negatives

Total Samples
 

Where: 
True Positives (TP): Correctly classified anomalies. 
True Negatives (TN): Correctly classified normal samples. 
Total Samples: Sum of all positive and negative samples. 

3.3.2. Precision: 

Represents the fraction of true anomalies among all samples classified as anomalous. 

Formula: Precission =
True Positives

True Positives+False Positives
 

Where: 
False Positives (FP): Normal samples misclassified as anomalies. 

3.3.3. Recall: 

Indicates the ability to detect all actual anomalies. 

Formula: Recall =
True Positives

True Positives+False Negatives
 

Where: 
False Negatives (FN): Anomalies misclassified as normal samples. 

3.3.4. F1-Score: 

The harmonic mean of precision and recall, providing a balanced evaluation metric. 

Formula: F1 − Score = 2.
Precission.Recall

Precission+Recall
 

These metrics were computed for both the Decision Tree and SVM classifiers to assess their effectiveness in anomaly 
detection. 
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3.4. Workflow Overview 

The overall workflow of the methodology is summarized as: 

• Generate synthetic data with normal and anomalous samples. 
• Split data into training and testing sets. 
• Train the Decision Tree and SVM classifiers on the training data. 
• Evaluate models on the testing data using accuracy, precision, recall, and F1-Score. 
• Visualize the decision boundaries and performance metrics to validate the approach. 

4. Results 

4.1. Synthetic Data Characteristics 

The generated dataset effectively represented normal and anomalous conditions. Figure 3 shows the distribution of 
attenuation coefficients and radiation intensities for both classes, which indicates clear separability between normal 
and anomalous samples. Normal samples were clustered around higher attenuation coefficients and radiation 
intensities, while anomalies showed lower values, indicating material defects. 

 

Figure 3 Feature distribution of normal and anomalous samples (scatter plot) 

3.2 Model Performance 

Both the Decision Tree and SVM classifiers achieved high performance on the testing dataset. The results are 
summarized in Table 1: 

Table 1 Model Performance Metrics 

Metric Decision Tree SVM 

Accuracy 98.5% 99.2% 

Precision 98.0% 99.0% 

Recall 97.0% 98.8% 

F1-Score 97.5% 98.9% 

The SVM classifier slightly outperformed the Decision Tree in all metrics, particularly in recall, which is critical for 
anomaly detection as it indicates the model's ability to correctly identify all defective samples. 
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4.2. Decision Boundary Visualization 

The decision boundaries of the classifiers were visualized using the first two features (thickness and attenuation). 
Figure 4 illustrates that: 

• The Decision Tree classifier created distinct partitions between normal and anomalous regions, with clear-cut 
boundaries. 

• The SVM classifier generated smoother, more refined boundaries due to its kernel-based approach, effectively 
capturing non-linear relationships. 

  

Figure 4 Decision boundaries for the Decision Tree and SVM classifiers 

These visualizations validate the classifiers' ability to distinguish between normal and defective samples in the feature 
space. 

4.3. Insights 

The analysis reveals that: 

• The high accuracy and F1-scores achieved by both models demonstrate their reliability for anomaly detection. 
• The SVM's superior performance in recall suggests its suitability for applications where missing defects is 

unacceptable. 
• The synthetic dataset provided a robust training ground for developing scalable machine learning solutions. 

5. Discussion 

The results of this study highlight several key advantages and challenges: 

5.1. Advantages: 

• Scalability: Synthetic data allows for large-scale training and testing without reliance on physical devices. 
• Accuracy: High classification accuracy demonstrates the potential of ML models for reliable anomaly detection. 
• Cost-Effectiveness: Eliminates the need for expensive IoT hardware during initial research phases. 

5.2. Challenges: 

• Generalizability: The models need validation with real-world data to ensure robustness. 
• Integration: Future systems must incorporate IoT devices for real-time data acquisition and monitoring. 
• Noise Sensitivity: Handling noisy or incomplete data remains an area for improvement. 

Future work will focus on addressing these challenges by integrating experimental data, optimizing ML algorithms, and 
exploring additional features for improved anomaly detection. 



International Journal of Science and Research Archive, 2025, 14(01), 493-500 

499 

6. Conclusion 

This study demonstrates the potential of synthetic data and machine learning for non-destructive testing in iron 
structures. The generation of synthetic data was a low-cost and scalable process to mimic real-world conditions, 
allowing highly accurate ML models to be built. 

Demonstrations of both Decision Tree and SVM classifiers were successful and resulted in achieving high accuracy, 
precision, recall, and F1-score. SVM is more efficient in recall; therefore, it will be more suitable for applications where 
all anomalous samples must be detected. Further validation by decision boundary visualization that the models could 
distinguish between normal and defective samples. 

It bridges the gap between simulation and actual implementation. This proposed methodology opens up avenues for 
future IoT-based systems even though the study was done on iron structures, the approach could easily be generalized 
on other materials as well as types of defects. Future work will, therefore, be concentrated on experimental validation, 
integration with IoT devices and advanced ML techniques to make the system robust and reliable. 
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