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Abstract 

This paper proposes an optimization method based on Multi-Objective Particle Swarm Optimization (MOPSO) for 
addressing the operational optimization challenges of Combined Cooling, Heating, and Power (CCHP) integrated energy 
systems. CCHP systems enhance energy efficiency and reduce environmental pollution, thus possessing significant 
economic and environmental benefits. Despite existing research progress, current methodologies still inadequately 
address the simultaneous optimization of economic and environmental aspects. The key contributions of this research 
include constructing an operational optimization model for the CCHP system, improving the MOPSO algorithm, 
specifically in terms of inertia weight, learning factors, and individual optimal values, and applying these improvements 
to solve the model. The theoretical foundations of the CCHP system, multi-objective optimization problems, principles 
of Particle Swarm Optimization (PSO), and the characteristics and advantages of MOPSO are discussed 
comprehensively. The optimization model targets minimizing economic costs and optimizing environmental 
performance, clearly defining decision variables and constraints, and rigorously evaluating MOPSO algorithm 
applicability. A detailed procedure for constructing and solving the optimization model is provided. A case study is 
conducted by establishing background information, setting system parameters, configuring MOPSO algorithm 
parameters, and performing the optimization. Results are thoroughly analyzed, comparing the method's effectiveness 
against other optimization methods to validate its superiority. The study concludes that this approach effectively 
optimizes CCHP operations, providing a reference for coordinated planning in integrated energy systems, and discusses 
future research directions.  
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1. Introduction

1.1. Background and Significance 

With rapid global economic development and accelerated industrialization, energy demand continuously rises. 
Traditional energy systems, typically planned and operated independently, suffer from low efficiency and exacerbate 
environmental pollution. Consequently, the Combined Cooling Heating and Power (CCHP) integrated energy system 
emerges as an advanced method of energy utilization. Utilizing natural gas combustion in internal combustion engines 
or gas turbines, the CCHP system generates electricity and employs waste heat for heating and cooling, significantly 
improving energy efficiency and reducing environmental impacts, thus offering substantial economic and 
environmental advantages. 
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1.2. Current research status at home and abroad  

Literature Review In recent years, extensive research has been conducted both domestically and internationally on the 
operational optimization of CCHP systems. International research began relatively earlier and has reached a more 
advanced stage, focusing primarily on system modeling, algorithmic improvements, and practical engineering 
applications. For example, studies have proposed optimal capacity allocation methods based on linear models for 
electricity, natural gas, and thermal systems to enhance energy efficiency. Additionally, research addressing carbon 
emissions and the integration of renewable energy sources has introduced new hybrid power-flow calculation methods 
to ensure economic and stable operation of combined heat and power microgrids. Domestic research has closely 
followed international developments, achieving significant progress. Chinese researchers have extensively explored 
system operational characteristics under varying conditions and investigated optimization scheduling strategies to 
enhance energy efficiency. However, despite these advancements, existing research still falls short in simultaneously 
addressing economic efficiency and environmental sustainability. There remains substantial room for improvement, 
particularly regarding enhancements in optimization algorithm performance, adaptability, and the effective handling of 
complex constraints. 

2. Theoretical Foundations for Operational Optimization of CCHP Integrated Energy Systems 

2.1. Overview of CCHP Systems 

A CCHP system is an advanced integrated energy utilization system that employs equipment such as natural gas internal 
combustion engines and gas turbines to generate electricity from natural gas combustion while utilizing the residual 
heat produced during this process for heating and cooling, thereby achieving cascading energy utilization. CCHP systems 
primarily consist of gas turbines, gas boilers, electric chillers, and absorption chillers, which operate collaboratively to 
satisfy user demands for electricity, heat, and cooling. The operating principle involves gas turbines or internal 
combustion engines burning natural gas to generate electricity while simultaneously producing high-temperature 
exhaust gases. These gases are directed into gas boilers to produce steam or hot water for heating purposes. In summer, 
the excess heat can be converted into cooling through absorption chillers or electric chillers. Notably, CCHP systems 
significantly enhance energy efficiency, achieving utilization rates above 70%, effectively reduce environmental 
pollution by lowering emissions of carbon dioxide and other pollutants, and decrease user energy costs, thereby 
improving overall economic efficiency. 

2.2. Overview of multi-objective optimization problems 

Fundamental Concepts of Multi-objective Optimization Problems Multi-objective optimization refers to problems where 
multiple conflicting objectives must be optimized simultaneously. These objectives often conflict with each other, 
making simultaneous optimality challenging. Mathematically, a multi-objective optimization problem is expressed as 

follows: given a decision variable vector 
n

x R , find the optimal solutions that simultaneously optimize multiple 

objective functions ( )if x , where 1,2,...,i m= . A distinctive characteristic of multi-objective optimization is the 

presence of multiple conflicting objectives, implying the non-existence of a single solution optimizing all objectives 
simultaneously. Instead, there exists a set of solutions known as Pareto optimal solutions. A solution x  is defined as 

Pareto optimal if there is no other solution x  that improves at least one objective without worsening others, 

mathematically denoted as: ( ) ( )i if x f x   for all objectives, with at least one strict inequality ( ) ( )i if x f x  . Common 

methods for addressing multi-objective optimization include transforming multi-objective problems into single-
objective formulations or directly applying multi-objective optimization algorithms. 

2.3. Principles of Particle Swarm Optimization  

Particle Swarm Optimization (PSO), proposed by Kennedy and Eberhart in 1995, is a population-based intelligent 
optimization algorithm. The basic principle of PSO mimics the foraging behavior of bird flocks. Each particle in the 
algorithm represents a potential solution and moves through the solution space by continuously updating its velocity 
and position to find an optimal solution. The velocity and position update formulas for particles are defined as follows: 

1 1 2 2( 1) ( ) ( ( )) ( ( ))di di i di div t v t c r pbest x t c r gbest x t+ = + − + − …………⑴.  

( 1) ( ) ( 1)di di dix t x t v t+ = + + ………… .⑵.  
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Here, ( )div t  is the velocity of particle i  in dimension d  at iteration t , ( )dix t  is the position of particle i  in 

dimension d  at iteration t , ipbest ( )dix t  denotes the historical best position of particle i , gbest  represents the 

global best position across the entire swarm,   is the inertia weight, 1c  and 2
c  are learning factors, 1

r  and 2r  are 

random numbers. The PSO algorithm is characterized by simplicity, high computational efficiency, and strong memory 
capabilities, although it faces challenges such as premature convergence and local optima. 

2.4. Features and Advantages of Multi-Objective Particle Swarm Optimization (MOPSO) 

Multi-Objective Particle Swarm Optimization (MOPSO) is an extension of the PSO algorithm specifically tailored for 
multi-objective optimization problems. The key characteristics of MOPSO include: (1) utilizing an external archive to 
store and maintain a diverse set of Pareto optimal solutions, preserving solution diversity; (2) employing techniques 
such as crowding distance to manage the distribution and maintain diversity within the external archive; (3) specially 

handling individual best ( pbest ) and global best ( gbest ) positions by selecting non-dominated solutions from the 

external archive as gbest . The primary advantages of MOPSO are its capability to effectively solve multi-objective 

optimization problems, its excellent performance in maintaining solution diversity and convergence, and its retention 
of the simple implementation and high computational efficiency of PSO, while addressing and overcoming the 
limitations encountered by conventional PSO in multi-objective optimization scenarios. 

3. MOPSO-based Operational Optimization Model for CCHP Systems 

3.1. Objective Functions for CCHP System Operation Optimization  

The definition of objective functions is crucial for the operational optimization of CCHP systems, as it directly 
determines the optimization direction and priorities. This research primarily focuses on two core objective functions: 
minimizing economic costs and optimizing environmental performance, aiming to achieve efficient, economic, and 
environmentally friendly operations for CCHP systems. 

3.1.1. Minimization of Economic Costs  

Economic costs in CCHP systems encompass several aspects, including investment costs of equipment, electricity 
purchase costs, and natural gas purchase costs. Investment costs of units are closely associated with equipment-rated 
power and operational costs. Electricity purchase costs depend on electricity prices and consumption across various 
time intervals, whereas natural gas purchase costs are influenced by gas prices and consumption rates. A 
comprehensive and accurate economic cost objective function is developed through precise calculation and 
consideration of these cost factors, guiding economic optimization in CCHP system operations. 

3.1.2. Optimization of Environmental Performance  

The environmental performance objective function mainly addresses the environmental costs resulting from carbon 
dioxide emissions during system operation. In CCHP systems, burning natural gas for power generation and heating 
constitutes the primary source of CO₂ emissions. By analyzing and quantifying CO₂ emissions from each equipment 
component and integrating unit costs, a reasonable environmental cost objective function is constructed. This ensures 
the full consideration of environmental impacts in the optimization process, promoting the transition of CCHP systems 
towards low-carbon and environmentally sustainable operations. 

3.1.3. Integration of Multi-objective Optimization  

Due to the inherent trade-offs and conflicts between economic and environmental objectives, direct simultaneous 
optimization of these two aspects can introduce complexity. Therefore, an effective method is required to integrate and 
balance these objectives. A weighted sum approach combines economic and environmental costs into a unified 
optimization objective. This approach simplifies the optimization problem and allows decision-makers to express their 
preferences and weighting on economic and environmental considerations, thereby providing a feasible pathway for 
solving multi-objective optimization problems. 

3.2. Decision Variables and Constraints  

Clearly defining decision variables and constraints is a critical step in constructing the optimization model for CCHP 
systems, as it ensures the model's rationality and feasibility. Decision variables represent operational parameters that 
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can be adjusted and controlled within the system, whereas constraints reflect physical laws, equipment performance 
limitations, and practical operational restrictions. 

3.2.1. Decision Variables  

Decision variables primarily include the operational status and power output levels of equipment such as gas turbines, 
gas boilers, and electric chillers. For example, the on/off status of these units and their corresponding power output 
levels directly influence system efficiency, economic performance, and environmental impact. By optimizing these 
decision variables, operational strategies that achieve optimal values of the objective functions can be identified. 

3.2.2. Constraints  

Constraints form the basis for ensuring the normal, safe, and economical operation of the CCHP system, including energy 
balance constraints, equipment operational constraints, and environmental constraints. Energy balance constraints 
ensure equilibrium between energy supply and demand across electrical, thermal, and cooling loads, preventing issues 
of excess or shortage. Equipment operational constraints include restrictions on equipment power output ranges and 
startup or shutdown times, ensuring equipment operates safely and efficiently. Environmental constraints mainly limit 
emissions, such as carbon dioxide, to comply with environmental standards. Collectively, these constraints define the 
feasible solution space, restricting the values of decision variables to ensure that optimization outcomes meet practical 
operational requirements while achieving desired optimization objectives. 

3.3. Applicability Analysis of MOPSO Algorithm in CCHP Systems  

As an efficient multi-objective optimization algorithm, MOPSO demonstrates notable applicability and advantages in 
addressing operational optimization issues within CCHP systems. Its unique mechanisms and characteristics enable it 
to effectively manage the complexity and multi-objective challenges involved in CCHP system optimization. 

3.3.1. Global Search Capability  

MOPSO inherits the global search advantage from the particle swarm optimization algorithm, enabling extensive 
exploration of potential solutions within the solution space. In the operational optimization of CCHP systems, which 
involves various equipment combinations and operational parameters, MOPSO can quickly locate globally optimal 
solution regions through particle collaboration and information sharing. This capability helps prevent premature 
convergence to local optima, thus achieving comprehensive improvements in system performance. 

3.3.2. Multi-objective Optimization Handling  

For the multi-objective characteristics in CCHP system operation optimization, MOPSO employs mechanisms such as 
external archives and crowding distances to effectively handle conflicting objectives. The external archive stores non-
dominated solutions, maintaining diversity and distribution of solutions. Crowding distance measures solution density 
in the objective space, favoring the retention of more dispersed solutions and enhancing the quality of the Pareto 
optimal set. This ability allows MOPSO to comprehensively consider economic and environmental objectives, providing 
decision-makers with a well-distributed Pareto optimal solution set that supports informed decision-making. 

3.3.3. Complex Constraint Handling 

The operational optimization of CCHP systems involves numerous complex constraints, such as equipment power 
output limitations and energy balance constraints. The MOPSO algorithm effectively manages these constraints through 
appropriate constraint-handling mechanisms. For example, during particle position updates, solutions exceeding 
equipment power output ranges are corrected to meet realistic operational conditions. Additionally, during fitness 
evaluations, the degree to which solutions satisfy constraints is thoroughly considered, and solutions that violate 
constraints are suitably penalized. This approach directs particles toward feasible regions of the solution space. This 
efficient handling of complex constraints ensures the practicality and feasibility of the optimization results, highlighting 
the strong applicability of the MOPSO algorithm in the operational optimization of CCHP systems. 

3.4. Establishment and Solution Procedure of the Optimization Model 

To achieve the operational optimization objectives for CCHP systems, it is necessary to establish a comprehensive and 
systematic optimization model along with a scientifically designed solution process. This involves clearly defining the 
model's inputs and outputs, detailing the specific steps of the optimization algorithm, and outlining how the MOPSO 
algorithm is utilized to solve the model. 
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3.4.1. Model Inputs and Outputs 

When constructing the optimization model, clearly identifying the inputs and outputs is essential. Inputs primarily 
include equipment parameters, operational cost data, energy pricing information, and user demands for electricity, heat, 
and cooling. These input data provide the foundational basis and references for optimization. The outputs represent 
optimized operational schemes, including decision variables such as the operational status and power output of each 
piece of equipment, as well as the corresponding objective function values such as economic and environmental costs. 
By accurately defining inputs and outputs, the optimization process for CCHP systems is clearly described, providing 
clear guidance for subsequent model solutions. 

3.4.2. Initialization of MOPSO Algorithm Parameters 

Before employing the MOPSO algorithm to solve the optimization model, it is necessary to initialize various algorithm 
parameters. These include particle swarm size, maximum iterations, inertia weight, and learning factors. The particle 
swarm size determines the diversity of the search and computational complexity; larger swarms can improve solution 
quality but also increase computational time. The maximum number of iterations limits algorithm execution time and 
should be adjusted based on problem complexity. The inertia weight and learning factors influence particle search 
behavior, balancing global search capabilities and local exploitation abilities. Additionally, particle positions and 
velocities must be initialized, typically generated randomly within feasible solution regions, and velocities are set within 
a defined range. 

3.4.3. Iterative Solving Process 

The iterative solving process of the MOPSO algorithm is central to solving the optimization model. In each iteration, the 
fitness value of each particle is first calculated based on the economic and environmental costs defined in the objective 
functions, alongside checking their adherence to constraints. Subsequently, the individual best position (pbest) and 
global best position (gbest) of each particle are updated. Individual best positions are updated based on each particle's 
historical optimal solutions, while global best positions are selected from non-dominated solutions in the external 
archive, using mechanisms such as crowding distance for selection and update. Particle velocities and positions are then 
adjusted according to velocity and position update formulas, directing particles towards improved solutions within the 
solution space. Throughout the iterations, the external archive is continually updated and maintained to preserve a set 
of high-quality non-dominated solutions. The algorithm stops once the predetermined maximum number of iterations 
or other termination criteria are reached, outputting the final Pareto optimal solution set. 

3.4.4. Result Analysis and Decision Making 

Upon obtaining the Pareto optimal solution set, an in-depth analysis and interpretation of the results are required. By 
plotting the Pareto front of the objective functions, the trade-offs between economic and environmental costs are 
visually demonstrated, aiding decision-makers in understanding the characteristics and advantages of different 
solutions. Furthermore, solutions within the Pareto optimal set should be assessed and ranked based on actual 
operational conditions and user demands, selecting the most suitable operational strategy. This may involve detailed 
evaluations of different solutions in terms of equipment efficiency, energy utilization efficiency, and environmental 
impacts. Ultimately, the selected operational strategy is applied to actual CCHP system operations to achieve optimized 
operation, enhance energy efficiency, reduce operational costs, and minimize environmental pollution. 

 

Figure 1 Optimization process 
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4. Case Study and Results Discussion 

4.1. Case Background and System Parameter Settings 

This case study examines a typical commercial building's CCHP system, which includes major equipment such as gas 
turbines, gas boilers, and electric chillers, designed to meet the building's electricity, heating, and cooling demands. 
Regarding parameter settings, the rated electric power of the gas turbine is 500 kW, the maximum thermal power of 
the gas boiler is 400 kW, and the maximum cooling power of the electric chiller is 300 kW. Operational cost parameters 
for equipment are established based on market research data, for instance, the operating cost coefficient for the gas 
turbine is 0.2 yuan/kW, for the gas boiler 0.15 yuan/kW, and for the electric chiller 0.1 yuan/kW. Energy prices include 
time-of-use electricity pricing fluctuating between 0.5 to 0.9 yuan/kW, and natural gas priced at 3 yuan/m³. User 
demands for electricity, heating, and cooling are set according to historical data and building usage characteristics, with 
peak electricity loads during working hours, heating demands concentrated during winter heating periods, and cooling 
demands peaking during summer air conditioning periods. 

4.2. MOPSO Algorithm Parameter Configuration and Solution Process 

In configuring parameters for the MOPSO algorithm, the particle swarm size was set to 100, and the maximum number 
of iterations was set to 200. The inertia weight factor was initialized at 0.9 and linearly decreased to 0.4, while the 
learning factors c1 and c2 were both set at 2. The external archive size was limited to 100, and a crowding distance 
mechanism was employed to maintain archive diversity. At the start of the solution process, particle positions and 
velocities were randomly initialized, with positions generated within feasible ranges of equipment power outputs, and 
velocities initialized within the range of [-1,1]. 

During each iteration, particle fitness—economic and environmental costs—was evaluated to determine compliance 
with constraints, such as equipment power output limitations and energy balance constraints. Individual best positions 
(pbest) were updated based on each particle’s historical optimal solutions, and global best positions (gbest) were 
selected from non-dominated solutions stored in the external archive, using crowding distance to ensure solution 
diversity. Subsequently, particle velocities and positions were updated according to the standard velocity and position 
update equations, ensuring effective exploration within the solution space. 

The external archive was updated after each iteration, removing duplicate solutions and those with smaller crowding 
distances to maintain a uniformly distributed set of solutions. Once the maximum number of iterations was reached, 
the algorithm terminated, and the Pareto optimal solution set stored in the external archive was outputted. 

 

Figure 2 Iterative optimization process 
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Figure 3 Grid operation plan 

 

 

Figure 4 Heating network operation plan 
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Figure 5 Cold network operation plan 

4.3. Optimization Results Analysis 

The operational optimization of CCHP systems based on the Multi-Objective Particle Swarm Optimization (MOPSO) 
algorithm achieved significant economic and environmental benefits. Economic costs substantially decreased by 
rationally scheduling equipment operations, reducing energy waste, equipment wear, and maintenance costs. 
Electricity purchasing costs dropped during off-peak hours, and natural gas costs decreased due to more efficient 
equipment operation. Environmentally, carbon dioxide emissions significantly reduced, promoting environmentally 
friendly operations. Equipment operating efficiency improved, with power outputs aligning closely with user demands, 
thus minimizing frequent startups and shutdowns, extending equipment lifespan. 

The Pareto frontier generated from optimization results illustrated trade-offs between economic and environmental 
objectives clearly. Decision-makers can select suitable operational schemes from the Pareto optimal set based on 
practical requirements and policy considerations. These optimization outcomes serve as robust references for 
collaborative planning in integrated energy systems, confirming the efficacy and superiority of MOPSO in solving 
operational optimization challenges in CCHP systems, steering energy systems towards greater efficiency, economy, 
and environmental friendliness. 

4.4. Comparative Analysis with Other Optimization Methods 

The MOPSO algorithm was compared with other multi-objective optimization algorithms, such as Genetic Algorithm 
(GA) and NSGA-II, in solving the operational optimization problem of CCHP systems. In terms of solution quality, MOPSO 
produced more uniformly distributed Pareto optimal solutions with smaller variations in objective function values 
among solutions, highlighting its superior capability in finding diverse, high-quality solutions. Regarding convergence 
speed, MOPSO converged faster, approaching the optimal region with fewer iterations, whereas GA and NSGA-II 
exhibited slower convergence in early iterations, requiring more iterations to achieve comparable results. Concerning 
computational efficiency, MOPSO showed shorter computation times, particularly noticeable with larger-scale 
problems due to its simpler particle position and velocity updates. Conversely, GA and NSGA-II had higher 
computational complexity due to operations such as selection, crossover, and mutation. However, under certain 
complex constraints, MOPSO occasionally showed decreased solution quality, while GA and NSGA-II tended to exhibit 
greater robustness. 

5. Research Conclusions and Future Prospects 

This study proposed an optimization method based on the MOPSO algorithm for operational optimization in CCHP 
systems, constructing an optimization model aimed at minimizing economic and environmental costs. Case analyses 
validated the effectiveness and advantages of this approach. The optimization results demonstrated that this method 
substantially reduces system operating and environmental costs, enhances energy utilization efficiency, and improves 
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equipment operational efficiency, providing scientifically reasonable optimization schemes for practical CCHP system 
operations. Future research may expand the optimization model further by incorporating more practical operational 
factors, such as dynamic equipment characteristics and renewable energy integration, to adapt to more complex energy 
system environments. Additionally, in-depth research into improving MOPSO strategies to enhance performance under 
complex constraints can further elevate the quality and reliability of optimization outcomes.  

References 

[1] Zhao F, Zhang CH, Sun B, et al. San ji xietong zhengti youhua sheji fangfa de leng re dian liangong gongxitong 
[Three-level collaborative overall optimization design method for combined cooling, heating and power system]. 
Proc CSEE. 2015;35(15):3785-3793. 
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