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Abstract 

In order to cope with the challenges brought by the rapid development of electric vehicles to the safe and stable 
operation of the power grid, this paper proposes an optimization method of orderly charging of electric vehicles based 
on user demand response. Firstly, this paper establishes the EV charging load model, and introduces the model 
considering user demand response. Secondly, an orderly charging guidance method for electric vehicles based on user 
demand is designed, aiming to guide users to adjust charging behavior with dynamic electricity price by considering 
user demand, so as to reduce the load fluctuation of the power grid, reduce the charging cost, and ensure the operation 
stability of the power grid. Finally, through the improved particle swarm optimization (PSO) algorithm, the simulation 
results show that the optimized charging strategy can effectively smooth the load curve of the grid, reduce the load 
pressure during peak hours, reduce the network loss and voltage fluctuations, and effectively control the charging cost 
of users.  
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1. Introduction

In 2020, The State Council issued the "New Energy Automobile Industry Development Plan (2021-2035)" [1], clearly 
pointing out that the development of new energy vehicles is a strategic choice to achieve China's automobile industry 
upgrading and green transformation. With its efficient and clean characteristics, electric vehicles have achieved rapid 
growth with the support of national policies [2]. However, large-scale EV access to the power grid brings new 
challenges: the randomness and uncertainty of its load may lead to the phenomenon of "peak-on-peak" during peak 
hours, exacerbate the fluctuations of the distribution network, expand the peak-valley difference, and lead to problems 
such as equipment overload and loss increase [3-5]. 

Existing studies have made remarkable progress in the optimization of EV charging, but there are still some limitations: 
Literature [6] describes the spatial-temporal distribution of EV through the travel chain model, and introduces prospect 
theory and logit model to analyze user decision-making, but its TOU tariff division is not closely combined with load 
characteristics. The dual-layer energy scheduling model constructed in literature [7] proposes a dynamic time-sharing 
pricing strategy, but there is ambiguity in the user demand response mechanism. Although the literature [8] considers 
both disordered charging and ordered charging modes, and establishes a mathematical model that takes into account 
vehicle owner responsiveness, it does not deeply analyze the impact of scheduling process on the power grid. The 
economic scheduling strategy proposed in literature [9] based on LSTM network considers the demand of electric 
vehicles, but ignores the influence of user behavior factors. In literature [10], battery loss constraints were introduced 
into the charging station scheduling model, but the consideration of users' wishes was still insufficient. The charging 
mode proposed in literature [11] innovatively sets a penalty factor, but its objective function only focuses on minimizing 
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the user's charging cost. The research of literature [12] is limited to considering the interests of power grid or users 
separately, and lacks an overall analysis of the interests of the two. Although the economic benefits of charging behavior 
were considered in literature [13], a complete optimization framework was not established. Literature [14] realizes 
peak cutting and valley filling through unified scheduling time, but there is still room for improvement in enhancing 
user engagement. At present, relevant researches have made progress mainly in the aspects of electricity price guidance 
and compensation mechanism, but the consideration of user willingness and response degree is still insufficient. 
Therefore, this study proposes an optimization method of orderly charging based on user demand response, which 
guides users to adjust charging behavior through dynamic electricity price mechanism, aiming to achieve multiple goals 
of minimizing load fluctuation, reducing charging cost and improving grid efficiency.  

2. Electric vehicle charging load model 

2.1. Electric vehicle user travel rule model 

The family electric car is usually used as a means of commuting during the morning and evening rush hours and is idle 
the rest of the time. This paper takes household electric vehicles as the research object and selects the 2017 National 
Household Vehicle Survey data of the United States (NHTS2017) as the basic data. The time of electric vehicles 
connecting to the grid and leaving the grid meet the normal distribution, and its probability density function is as 
follows: 
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Where at and 1t respectively refers to the time of electric vehicles connecting to the power grid and leaving the power 

grid, a , a , 1 , 1 they represent the corresponding standard deviation of normal distribution and mathematical 

expectation, where the value is  2.4a = , 17.23a = , 1 2.2 = , 1 8.61 = The overall probability distribution of electric 

vehicle users' travel characteristics is shown in Figure 1. 

 

Figure 1 Probability distribution of user travel characteristics 

The probability distribution density function of the average daily mileage driven by EV users satisfies the lognormal 
distribution. 
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Where, s is the daily mileage of the electric vehicle, d and d is the expectation and standard deviation respectively, 

whose values are 3.32d = and 0.86d = . Its probability density is shown in Figure 2. 

 

Figure 2 Probability density of daily mileage 

2.2. Electric vehicle user travel rule model 

As an important reference for the remaining driving distance of electric vehicle users, the State of Charge (SOC) of the 
battery is the ratio of the current battery power to the total battery capacity, and the SOC change expression is as follows: 
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Where, tS and 0S are the state values of SOC at time t and initial time respectively, td is the total mileage of the current 

moment, then maxD is the maximum mileage of the EV. After arriving at the charging station, the charging time is selected 

by the EV user, and the charging time of the user is 
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In the formula, ( )T i is the charging time for the user, cE is the battery capacity, ( )S i is the SOC change of car i , cP and

 are the charging power and charging efficiency for charging pile. 

3. Demand response model considering user psychology 

The charging behavior of electric vehicles is affected by many factors, such as driving time, electricity, electricity price 
and weather, and presents dynamic changes. The traditional model sets the responsivity as a fixed value, ignoring its 
correlation with state of charge (SOC). Therefore, this study introduces the price elasticity coefficient matrix to quantify 
the sensitivity of charging price fluctuation to user demand, and its expression is as follows: 
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Where,
ije represents the element in the price elasticity coefficient matrix, iQ represents the demand for charging 

quantity;
jV represents the electricity price; i
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is the partial derivative of quantity demanded iQ with respect to price

jV , and it is the sensitivity of price change to quantity demanded. 
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Considering the current time-of-use electricity price, a more detailed division of time periods is made on this basis, and 
the current three peak, valley and flat periods are expanded into 24 time periods with hourly intervals, and each time 
period represents the same time, so as to obtain a more detailed electricity price elasticity coefficient matrix M as 
follows: 
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Where,
ijm is the elasticity coefficient of stage time-of-use electricity price. ,i j represent different time periods. 

There are differences in the response behavior of users to electricity prices, which can be divided into adjustable and 
non-adjustable categories. Adjustable users only adjust the charging period if the electricity price changes above a 
specific threshold. Based on the Weber-Fechner law, this response has a nonlinear character, that is, the sensitivity of 
the user to changes in electricity prices is valid within a certain range. In addition, the charging behavior of electric 
vehicles is not only affected by the current electricity price, but also takes into account the price fluctuations of multiple 
periods in the future. Therefore, this paper introduces parameters such as multi-interval price difference, maximum 
response value and period weighting, and constructs a response model that is closer to the reality. When the user 
participates in the demand response, the charging difference between the charging period from i to j is 

ij j iV V V = −  ………(8) 

Here iV and
jV are the electricity prices for the i and j hours, respectively, and

ijV is the difference in electricity prices. 

Consider the impact of user psychology, the transition probability
ijt of charging time from the i  to the j hour is 
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Where, 1v is the dead zone threshold, generally 0.1/kWh; 2v is the saturation region threshold, generally 1/kWh; maxt is 

the maximum transfer probability, which is generally 0.9. 

The model provides an effective method for predicting the charging behavior of users, and can directly calculate the 
change in the demand of users as they move from one time period to another due to differences in electricity prices.     

4. An orderly charging guidance method for electric vehicles based on user demand response 

4.1. Objective function 

In this paper, a dynamic electricity price optimization model based on user demand response is constructed. The model 
aims to stabilize load fluctuation and optimize charging cost. By adjusting charge and discharge price and power, load 
variance is adopted to quantify the stability of power grid, and economic benefit, environmental benefit and user 
satisfaction are coordinated to achieve the optimal management of charge and discharge strategy. 

Considering the magnitude of load fluctuation of the power grid, load variance is selected as the evaluation index. The 
greater the load variance, the greater the load fluctuation of the power grid; otherwise, the smaller the load fluctuation 
of the power grid and the smoother the operation, so the objective function is 
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Where, t

lP represents the fixed load power at the time of charging;
0

t

EVP refers to the charging power of electric vehicles 

before dispatch; t

EVP refers to the charging power of electric vehicles after scheduling; 0aveP refers to the daily average 

power of the grid before dispatching; aveP indicates the average daily power of the grid after dispatching. 

2) In addition, considering the user's participation in charge and discharge scheduling, the maximum proportion of user 
charging cost savings is targeted. 
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Where, ( )0C t and ( )C t respectively represent the charging electricity price during the t period before and after 

scheduling. 

Considering the correlation between the above two objective functions, the total objective function obtained by multi-
objective optimization is 
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In the formula, 1 and 2 represent the corresponding weights of 1F and 2F of the above single objectives. Different 

coefficients can be taken for different application environments and optimization focuses. Here we choose

1 2 1 / 2 = =
 

4.2. Constraint condition 

1) Battery capacity constraints 

Battery capacity limits for electric vehicles are designed to prevent safety problems caused by overcharging or over 
discharging, and to protect the health status of the battery and extend its service life. 

,min ,maxoc t ocS S S   …………(15) 

Where,
,max ,minoc ocS S、 are the upper and lower limits of the remaining battery capacity respectively. 

2) Power grid capacity constraints 

The capacity constraint of the grid is to prevent the overload of the grid due to high charging demand in a specific time 
period or area. 
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t
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Where,
maxgridP refers to the maximum transmission capacity of the power grid, indicating the maximum charging power 

that the power grid can support in a specific period of time. 

3) Electricity price constraint 

Electricity price constraints ensure that users can economically accept price fluctuations of charging or discharging. 

min maxtV V V   ……….(17) 

Where, tV is the charging price at time t ; In order to prevent the extreme electricity price from harming the interests of 

users, minV and maxV are set as the lower limit and upper limit of electricity price respectively. 

5. Algorithm and example analysis 

5.1. Improved particle swarm optimization 

Particle swarm optimization (PSO), as an efficient global optimization tool, is widely used in nonlinear optimization 
problems because of its simple structure, few parameters and strong adaptability. However, the algorithm has 
limitations when dealing with discrete optimization problems. Therefore, this paper introduces an adaptive weight 
strategy to improve the performance of the algorithm by dynamically adjusting the inertia factor. The improved inertia 
factor can be automatically adjusted according to the particle fitness value, and its expression is as follows: 

( ) min
min max min

min

max                                             

i
i ave

avei

i ave

f f
f f

f f

f f

  




−
− −  

−= 
 

  ……….(18) 

Where, min max 、 are the maximum and minimum values of the inertia factor; minavef f、 are the average fitness value 

and minimum fitness value of the current particle, so the value of inertia weight  will be dynamically adjusted 
according to the fitness value of the particle during the iteration process. When increases, the global search capability 

of the algorithm is enhanced. On the contrary, when  decreases, the local search ability of the algorithm will be 
improved. 

5.2. Example analysis 

Based on the typical daily load data of a local power grid in a city, assume that the power grid covers a total of 33 nodes, 
each node has 10 electric vehicles, the total battery capacity of each electric vehicle is 75 kWh, the maximum power of 
electric vehicles during charging and discharging is 12 kW, and the upper and lower limits of battery SOC are 0.9 and 
0.2 respectively. The power grid buys electricity from the main network at a price of 0.6 yuan /kWh, dividing the day 
into 1,440 periods of 1 minute each. The initial simulation population is 650 groups. Through 500 cycles of simulation, 
the average value is taken to simulate the charging behavior of electric vehicles in this environment, and the simulation 
runs in the environment of Matlab 2021b software. 

In the basic scenario of the power grid without electric vehicle load, the change of active power network loss of the 
system in each time period is shown in Figure 3, the voltage distribution of each time period and each node is shown in 
Figure 4, and the interval and price of time-of-use electricity price are shown in Table 1. 
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Figure 3 Active power network loss change 
diagram 

Figure 4 Voltage amplitude distribution diagram of each 
node 

 

Table 1 Time-of-use electricity price range and price list 

Item Time period Price/(Yuan/kWh) 

Peak period 9:00-11:00;18:00-23:00 0.75 

Valley period 1:00-7:00;24:00 0.385 

Normal period 8:00; 12:00-17:00 0.55 

When electric vehicles are connected to the power grid, their disorderly charging will affect the operation of the power 
grid to a certain extent. In order to analyze the impact on the power grid in detail, the power flow calculation and 
indicator analysis can be used to evaluate the operation performance of the power grid when electric vehicles are 
connected to the power grid without order charging. Figure 5 shows the load demand of disordered charging of electric 
vehicles under the effect of time-of-use price; Figure 6 shows the charging load diagram of electric vehicles at each time 
period and each node under disordered charging; Figure 7 shows the change diagram of system active power network 
loss at each time period under disordered charging of electric vehicles; Figure 8 shows the voltage distribution diagram 
at each time period and each node under disordered charging of electric vehicles. 

  

Figure 5 Comparison of electricity price and load under 
unordered charging 

Figure 6 EV charging load diagram under unordered 
charging 
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Figure 7 Disordered charging active power network 
loss change diagram 

Figure 8 Voltage amplitude distribution of each                         
under unordered charging 

The results of the example show that the charging load of the nodes is unevenly distributed in time and space under the 
unordered charging mode, and the phenomenon of "peak-on-peak" will occur in the peak hours of the grid even if 24-
hour dynamic electricity price is used. Figure 7-8 shows that the increase in charging load leads to a significant increase 
in network loss of the system, especially during peak hours, which not only increases the loss cost in the user's electricity 
bill, but also may cause the voltage of some nodes to be lower than 0.95p.u. Security threshold, which threatens the 
stable operation of the power grid. 

In contrast, Figure 9-10 shows the optimization effect of orderly charging: Through dynamic electricity price guidance, 
the load curve flattens out, effectively spreading out the peak pressure. This mode reduces the risk of equipment wear 
and failure, while reducing user charging costs. The load comparison analysis confirms that the optimized charging plan 
improves the economy while ensuring the safety of the grid. 

  

Figure 9 Comparison diagram of electricity price and 
load demand under orderly charging 

Figure 10 Charging load diagram of electric vehicle                    
under orderly charging 

Figure 11-12 shows the system network loss and node voltage distribution during orderly charging. The data show that 
the voltage of each node is stable within the standard range of (0.95-1.05p.u.), which verifies that the charging 
optimization does not affect the stability of the grid. The network loss curve shows that the load balancing strategy 
effectively reduces the energy loss during peak hours, which not only reduces the operating cost of the grid, but also 
improves the charging efficiency. From the perspective of economic benefits, the reduction of network loss helps to 
stabilize the user's charging cost, while increasing the amount of charging per unit time. 
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Figure 11 Change diagram of active power network loss 
under orderly charging 

Figure 12 Voltage amplitude distribution of each de 
under orderly charging 

 

Table 2 Comparison table of different charging strategy indicators 

Item Unordered charging Ordered charging 

Standard deviation of load fluctuation 577.41 362.14 

Peak load curve/kW 2810.81 2448.68 

Load curve Valley value/kW 1016.62 1260.15 

Charging fee/ten thousand yuan 1293.73 995.08 

Table 2 compares the strategies of unordered charging and orderly charging, and the results show that orderly charging 
effectively smooths the load curve of the power grid and reduces load fluctuation. The load peak value decreases and 
the valley value increases, indicating that orderly charging effectively reduces the peak load and improves the trough 
load, and improves the economy and stability of the power system. Dynamic electricity price guides users to charge 
during off-peak hours, reduces charging costs, reduces problems such as power shortage, and optimizes the utilization 
of power grid resources to improve the overall economy of electric vehicles. 

6. Conclusion 

Aiming at the impact of EV charging load on the power grid, this paper proposes an EV charging optimization strategy 
based on demand response. By constructing a charging load model considering user response behavior, the dual 
influence mechanism of electricity price and SOC on charging behavior is analyzed. A multi-objective optimization 
model with the aim of peak cutting and valley filling, reducing user cost and improving power grid economy is 
established. The improved particle swarm optimization algorithm is used to solve the optimization problem, and the 
reasonable allocation of charging period is realized. The simulation results show that this strategy significantly reduces 
the load fluctuation of the power grid, especially in the peak hours, effectively alleviates the power supply pressure, and 
optimizes the charging cost of users. The research shows that the proposed dynamic pricing guidance mechanism can 
improve the charging economy while ensuring the stable operation of the power grid.  
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