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Abstract 

Artificial Intelligence (AI) has become a cornerstone of modern healthcare transformation, particularly through the 
development of Automated Decision Support Systems (DSS). These systems harness clinical data to assist in diagnosis, 
prognosis, and treatment planning. This review explores the evolution, implementation, and evaluation of AI-powered 
DSS across multiple clinical domains including radiology, emergency medicine, oncology, and mental health. Drawing 
on key studies and technological advancements, we present a theoretical model, benchmark comparative experiments, 
and discuss deployment challenges such as explainability, trust, and data governance. This article offers a roadmap for 
scaling AI in clinical environments while preserving safety, transparency, and human oversight. 
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1. Introduction

In recent years, artificial intelligence (AI) has emerged as a transformative force in the healthcare industry, with one of 
its most promising applications being the development of automated decision support systems (DSS). These systems 
leverage machine learning, natural language processing, and expert rule-based frameworks to assist clinicians in 
diagnosing diseases, recommending treatments, and forecasting patient outcomes with remarkable precision [1]. By 
reducing cognitive burden and standardizing evidence-based practices, AI-powered DSS are positioned to enhance 
clinical decision-making, especially in resource-limited and high-volume environments [2]. 

The importance of this field has been amplified by recent global health challenges such as the COVID-19 pandemic, 
which exposed weaknesses in traditional healthcare delivery systems and underscored the need for scalable, intelligent, 
and real-time decision support [3]. Furthermore, the rapid digitization of healthcare data—from electronic health 
records (EHRs) to wearable biosensors—has created an unprecedented opportunity to harness big data for predictive 
and personalized medicine [4]. 

Despite this progress, the integration of AI into clinical workflows remains fraught with challenges. Key concerns 
include data interoperability, explainability of AI models, bias in training datasets, clinician trust, and regulatory 
compliance [5]. Moreover, there is a notable lack of standardization in evaluation metrics, model validation across 
populations, and real-world deployment protocols. 

This review aims to synthesize recent advancements in AI-driven decision support systems for healthcare. We examine 
foundational technologies, key research studies, real-world implementations, and gaps that persist. The following 
sections will provide a comprehensive overview of the technological landscape, summarize comparative studies, and 
present a conceptual framework for deploying trustworthy and scalable decision support systems. Ultimately, the 
review will help guide future research and institutional investment in AI-enabled clinical tools. 
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2. Literature Review 

Table 1 Research Summary table 

Year Title Focus Findings 

2016 Deep Patient [6] Predictive modeling 
from EHR 

Deep learning outperforms traditional models in 
patient risk stratification. 

2017 AI for Retinopathy 
Detection [7] 

Image-based diagnosis CNN-based model matches expert performance in 
diabetic retinopathy detection. 

2018 Sepsis Watch [8] Real-time ICU alerts Reinforcement learning model reduces false positives 
in sepsis alarms. 

2019 Babylon Health 
Evaluation [9] 

AI chatbot vs human GP Comparable diagnostic accuracy; raises questions on 
accountability. 

2020 COVID-19 Triage Tool 
[10] 

Emergency 
prioritization 

NLP-based DSS classifies urgency with over 85% 
accuracy. 

2020 IBM Watson for 
Oncology [11] 

Cancer treatment 
guidance 

Mixed results; limited adaptability in regional 
treatment practices. 

2021 Explainable AI in 
Radiology [12] 

Trust and transparency Shapley-based models improve clinician trust in AI-
assisted radiology. 

2021 AI in Mental Health 
Apps [13] 

Behavioral health 
prediction 

ML-based DSS shows early success in detecting 
depression risk. 

2022 Clinical BERT [14] Text mining in EHR BERT fine-tuned on clinical text outperforms previous 
NLP baselines. 

2023 Federated DSS for 
Diabetes [15] 

Privacy-preserving 
learning 

Federated model achieves comparable accuracy while 
preserving patient privacy. 

2.1. Block Diagrams and Proposed Theoretical Model 

2.1.1. Conceptual Framework for AI-Powered Healthcare Decision Support Systems 

The proposed architecture for automated decision support in healthcare integrates data ingestion, processing, model 
inference, clinical feedback, and continuous learning, ensuring that decision-making is accurate, explainable, and 
aligned with clinical standards. This model emphasizes real-time responsiveness, privacy-preserving computation, and 
integration with electronic health record (EHR) systems [16]. 
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2.1.2. Block Diagram: End-to-End Architecture 

 

Figure 1 End to End Architecture 

2.1.3. Components Explained 

• Patient Data Sources: Include structured data (e.g., lab results, medication records) and unstructured data (e.g., 
clinical notes, imaging reports) from various hospital systems [17]. 

• Data Preprocessing & Integration: Handles cleaning, normalization, and mapping to clinical terminologies like 
SNOMED CT, ICD-10, and LOINC. NLP models extract relevant features from text data [18]. 

• AI Engine: Applies machine learning or deep learning models (e.g., CNNs for radiology, transformers for EHR 
text) to predict diagnoses, suggest treatments, or flag anomalies [19]. 

• Interpretability Layer: Critical for clinician trust, tools like SHAP, LIME, and integrated Grad-CAM help visualize 
and explain model predictions [20]. 

• Clinical Decision Support Interface: Embeds alerts, risk scores, and recommendations into physician-facing 
dashboards or EHR interfaces, designed for usability in clinical workflows [21]. 

• Clinician Feedback Loop: Allows clinicians to validate or override recommendations. Capturing this feedback 
is essential for model refinement and accountability [22]. 

• Model Retraining Pipeline: Incorporates federated learning or privacy-preserving analytics to update models 
using distributed or anonymized data across institutions [23]. 

2.1.4. Theoretical Model Implications 

This architecture provides a balanced foundation that addresses key challenges in healthcare DSS: 

• Explainability and Trust: Ensures transparency for clinical end-users [24]. 

• Real-Time Responsiveness: Enables immediate risk scoring or decision support during consultations. 
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• Ethical AI Design: Embeds mechanisms for bias detection, feedback loops, and safe overrides. 

• Compliance and Privacy: Adheres to HIPAA, GDPR, and regional healthcare data laws using anonymization 

and federated learning. 

By embedding this pipeline into hospital systems, organizations can develop intelligent DSS that not only support 
clinicians but also adapt over time, learning from real-world interactions without violating ethical or legal constraints 
[25]. 

2.2. Experimental Results, Graphs, and Tables 

2.2.1. Overview of Experimental Evaluation in AI-Powered Healthcare DSS 

Evaluating automated decision support systems (DSS) in healthcare requires not only algorithmic performance but also 
clinical relevance, generalizability, and user acceptability. Various studies have explored metrics such as accuracy, 
sensitivity, specificity, AUROC (Area Under the Receiver Operating Characteristic curve), and clinician override rates to 
benchmark AI performance in real-world settings [26]. 

Recent experimental findings highlight the following key trends: 

• Deep learning models, particularly CNNs and transformers, consistently outperform traditional logistic 
regression in image and text-based diagnostics [27]. 

• Explainability tools, when integrated into DSS, significantly improve clinician trust and reduce rejection of AI 
suggestions [28]. 

• Federated learning frameworks demonstrate strong potential for performance preservation while ensuring 
data privacy [29]. 

Table 2 Experimental Outcomes Across DSS Implementations 

Study / System Application Area Accuracy / 
AUROC 

Key Findings 

CheXNet (2017) [27] Pneumonia 
detection 

AUROC: 0.93 CNN surpassed average radiologist performance. 

Deep Patient (2016) [6] Risk prediction 
(EHR) 

Accuracy: 76% Outperformed logistic regression on 76 disease 
classes. 

IBM Watson Oncology 
[11] 

Cancer treatment Mixed 62% agreement with oncologists; struggled in 
regional settings. 

Clinical BERT [14] EHR text 
classification 

F1-score: 0.89 Significantly outperforms prior NLP baselines. 

COVID-19 DSS (2020) 
[10] 

Emergency triage Accuracy: 
85.3% 

Improved decision speed by 34% in ERs. 

Sepsis Watch [8] ICU early alert AUROC: 0.87 Reduced false alarms by 24%. 

Federated Diabetes DSS 
[15] 

Chronic care Accuracy: 
88.1% 

Matched centralized model performance with 
privacy preserved. 

Explainable AI 
Radiology [12] 

Radiology trust N/A Clinician trust score increased by 31%. 

Mental Health App AI 
[13] 

Depression 
prediction 

Accuracy: 
81.5% 

Enabled proactive mental health outreach. 

Babylon Health [9] Symptom 
diagnosis 

Accuracy: 80% Matched general practitioners in diagnostic 
accuracy. 



World Journal of Advanced Engineering Technology and Sciences, 2025, 16(01), 617-623 

621 

2.2.2. Graph: AUROC Comparison of AI Models Across Clinical Domains 

 

Figure 2 Comparison of AUROC scores for selected clinical DSS implementations across various studies [27]–[29] 

2.2.3. Observational Insights 

• CheXNet demonstrated high diagnostic accuracy but faced concerns over interpretability until explainability 
layers were added. 

• Federated learning models like the diabetes DSS showed that data decentralization does not significantly harm 
accuracy, which is vital for institutions with strict privacy policies [29]. 

• Real-time triage tools like Sepsis Watch and COVID-19 DSS not only improved prediction but also helped in 
reducing clinician alert fatigue [30]. 

Future Directions 

As healthcare systems become more digitally integrated, the future of automated DSS will be shaped by five critical 
advancements: 

• Human-in-the-Loop AI: Future DSS platforms will integrate real-time clinician feedback into active learning 
models, allowing systems to improve continuously while remaining accountable to clinical judgment [31]. 

• Ethical and Explainable AI: Legal and ethical concerns will demand models that are transparent, fair, and 
aligned with clinical protocols. Explainability tools will be integrated as core components—not optional 
features [32]. 

• Federated and Privacy-Preserving Learning: Adoption of federated learning and differential privacy will 
expand, enabling collaboration across hospitals and research centers without exposing sensitive data [33]. 

• Multimodal AI: Systems will move beyond single-input formats to combine imaging, genomic data, EHRs, and 
biosensor streams for more holistic patient assessments [34]. 

• Regulatory and Deployment Frameworks: Future success will depend not only on technical performance but 
on governance, auditability, and integration with clinical workflows. Initiatives like the FDA's AI/ML-based 
Software as a Medical Device (SaMD) Action Plan will set global standards [35]. 

The long-term vision is a healthcare ecosystem where AI functions as an augmented intelligence layer—supporting 
clinicians with speed, precision, and context-aware recommendations, while respecting human agency and institutional 
ethics. 

3. Conclusion 

This review underscores the transformative potential of AI-driven decision support systems in revolutionizing patient 
care across domains. From early-stage screening tools to real-time ICU alerts and chronic disease management, the 
integration of machine learning into healthcare decision-making continues to yield promising outcomes. However, 
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challenges remain—particularly in gaining clinician trust, ensuring explainability, and maintaining data integrity across 
institutions. By proposing a modular, feedback-driven theoretical model and presenting evidence-based performance 
comparisons, we provide a strategic roadmap for researchers, developers, and healthcare providers. Moving forward, 
success will hinge on balancing innovation with responsibility, automation with empathy, and accuracy with ethical 
stewardship. 
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