
* Corresponding author: John Adeyemi Eyinade

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0. 

Geospatial machine learning for flood risk assessment in contrasting physiographic 
environments 

Adebisi Joseph Ademusire 1 and John Adeyemi Eyinade 2, * 

1 Department of Computer Sciences, Faculty of Physical Sciences, Precious Cornerstone University, Ibadan, Nigeria. 
2 Department of Surveying and Geoinformatics, Faculty of Environmental Design and Management, Obafemi Awolowo 
University, Ile-Ife, Nigeria. 

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(01), 436-446 

Publication history: Received on 11 June 2025; revised on 16 July 2025; accepted on 19 July 2025 

Article DOI: https://doi.org/10.30574/wjaets.2025.16.1.1232 

Abstract 

One of the biggest hydrological hazards in Sub-Saharan Africa is flooding, which is exacerbated by increasing rainfall, 
inadequate drainage systems, and growing urbanization. In Nigeria, fragmented datasets and inadequate 
methodological integration continue to limit the ability to map flood susceptibility in a spatially detailed manner. This 
work presents a hybrid framework that creates interpretable and highly accurate flood susceptibility models for two 
physiographically distinct regions: Ile-Ife (inland uplands) and Ilaje (coastal lowlands) by combining the Analytic 
Hierarchy Process (AHP) with the Random Forest (RF) classifier. For Ilaje and Ile-Ife, a total of 43,825 and 8,632 spatial 
sample points were produced. In order to create a composite Flood Susceptibility Index (FSI), four flood-related 
predictors elevation, slope, rainfall, and distance to river were normalized and weighted using AHP. To train RF models 
for each region, the FSI was reclassified into three risk categories. F1-scores, precision, recall, and confusion matrices 
were used to assess the model’s performance. According to the results, Ilaje and Ile-Ife had classification accuracy rates 
of 98% and 97%, respectively. In both areas, rainfall and river proximity were the most important predictors, whereas 
the complexity of the terrain affected the patterns of susceptibility. The AHP-RF framework proved to be highly 
transparent and dependable, providing a scalable flood risk zoning tool, especially in settings with limited data. This 
work promotes interpretable geospatial modeling for disaster risk reduction by combining machine learning and expert 
judgment. The results provide a replicable model for climate adaptation in flood-prone areas of Sub-Saharan Africa and 
support the incorporation of physiographically informed flood planning into policy frameworks. 
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1. Introduction

With serious socioeconomic, environmental, and infrastructure repercussions, flooding is a ubiquitous hazard on a 
global scale [1, 2, 3]. Its frequency and intensity have increased over the past 20 years, especially in the Global South, as 
a result of land-use change, urban sprawl, deforestation, and intensifying rainfall linked to climate variability [4, 5]. Both 
inland and coastal communities in Nigeria have frequently suffered catastrophic floods [6,7], but there are still few 
efficient early-warning and spatial risk zoning systems in place [8]. This has made the creation of flexible, scalable, and 
interpretable data-driven methods for assessing flood susceptibility necessary. 

Even though conventional hydrological and hydraulic models are well-established, they are less useful in areas with 
limited data because they frequently call for large amounts of field data and computational resources [9, 10]. In 
response, there has been an increase in the use of machine learning (ML) and remote sensing techniques for geospatial 
modeling. Because of their ability to handle high-dimensional, nonlinear data, machine learning classifiers like Random 
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Forest (RF), Support Vector Machine (SVM), and XGBoost have been widely used for flood susceptibility mapping [11, 
12, 13]. With the added advantage of interpretability through variable importance scores, RF has shown itself to be 
particularly robust among these [14, 15]. 

But ML models by themselves frequently don't reveal how decisions are made; this is known as the "black-box" problem. 
As a result, researchers are increasingly using hybrid approaches that integrate machine learning (ML) with expert-
informed decision frameworks such as the Analytic Hierarchy Process (AHP) [16, 17]. When combined with geospatial 
tools, AHP has been successfully used in flood modeling, allowing for the systematic assignment of weights to input 
variables based on domain knowledge [18]. Notwithstanding these developments, the majority of flood susceptibility 
studies conducted in Nigeria have been limited to specific geographic areas and have relied solely on machine learning 
or deterministic modeling [19, 20, 21]. Limited research has been done on integrated AHP–ML models in various 
physiographic regions [22]. Few studies, specifically, have used a consistent methodological framework to compare 
flood drivers and modeling behavior in inland and coastal environments [23, 22, 24]. 

By applying a hybrid AHP–Random Forest approach in two physiographically distinct areas of southwestern Nigeria 
Ile-Ife, a topographically diverse inland environment, and Ilaje, a low-lying coastal floodplain this study fills that gap 
[25, 26]. Based on theoretical and empirical evidence of flood risk drivers, four geospatial predictors were chosen: 
elevation, slope, rainfall, and distance to river. The study enhances regional flood modeling and advances scalable and 
interpretable risk zoning for environments with limited data by examining these variables across various terrains. 

The study uses the Analytic Hierarchy Process (AHP) to determine expert-informed weights for important 
environmental factors that affect flood susceptibility in order to accomplish these goals. These weights are then 
incorporated into a hybrid modeling framework that combines Random Forest classification with AHP, enabling both 
predictive robustness and interpretability. Confusion matrices, precision, recall, and feature importance rankings are 
used to evaluate the model's performance. In order to find spatial differences in flood drivers and susceptibility patterns, 
the study also compares the flood susceptibility of two physiographically different regions: inland Ile-Ife and coastal 
Ilaje. The study offers a new and transferable framework for flood risk modeling in settings with both spatial diversity 
and data constraints by fusing expert judgment with data-driven machine learning in a cross-regional setting. 

2. Materials and Methods 

In order to model flood susceptibility across two physiographically distinct regions in southwest Nigeria, this study uses 
a hybrid methodological framework that combines supervised machine learning with expert-based multi-criteria 
analysis. The workflow consists of five main steps: (1) defining the study areas; (2) obtaining and preprocessing 
environmental variables; (3) utilizing the Analytic Hierarchy Process (AHP) to determine variable weights; (4) 
calculating a Flood Susceptibility Index (FSI); and (5) classifying the data using the Random Forest (RF) algorithm. 

2.1. Study Areas 

The two chosen study areas, Ile-Ife in Osun State and Ilaje in Ondo State, reflect different physiographic conditions. Low 
elevation, a lot of rainfall, estuarine water bodies, and little drainage relief make Ilaje a coastal area that is particularly 
vulnerable to tidal and fluvial flooding [26]. Ile-Ife, on the other hand, is an inland area characterized by complicated 
topography, including drainage basins, rolling hills, and more fluctuating hydrological conditions [25]. The sensitivity 
and generalizability of flood susceptibility modeling frameworks under various hydrological and geomorphological 
conditions can be assessed thanks to this regional contrast. The figure 1 depicted the study areas. 
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Figure 1 The study area maps 

2.2. Data Acquisition and Preprocessing 

Spatial sampling points were created over each study region using Google Earth Engine (GEE). Ilaje received 43,825 
points in total, while Ile-Ife received 8,632 points. The area's greater lowland extent and spatial homogeneity, which 
necessitated denser sampling to capture subtle variability, are reflected in Ilaje’s higher point count. On the other hand, 
fewer but more topographically informative samples were needed due to the more complicated terrain of Ile-Ife.  
Four important flood-related environmental variables were obtained at each location: (i) elevation, taken from the 
Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (30 m resolution); (ii) slope, taken from the 
elevation layer using the GEE terrain function; (iii) mean annual rainfall, taken from the CHIRPS v2 dataset (1981–
2023); and (iv) distance to the closest river, taken from the JRC Global Surface Water dataset. To guarantee spatial 
consistency, all layers were projected to WGS 84 (EPSG:4326). Min–max scaling was used to normalize the four 
variables to a [0, 1] scale. Elevation, slope, and river distance variables that were negatively associated with flood 
susceptibility were inversely normalized, meaning that higher normalized values consistently represented a higher 
potential for flood risk. 

2.3. AHP-Based Weight Derivation 

Each variable was given a relative importance weight using the Analytic Hierarchy Process (AHP). Expert judgment and 
pertinent literature were used to build a pairwise comparison matrix [27, 28, 29]. To validate the matrix, the Saaty 
Consistency Ratio (CR) was computed; a CR < 0.10 indicates acceptable consistency. Elevation (0.30), slope (0.20), 
rainfall (0.30), and distance to river (0.20) were the final weights assigned. At each spatial point, a Flood Susceptibility 
Index (FSI_AHP) was calculated using these weights as a weighted linear combination of the normalized variables: 

FSIAHP=0.30⋅Einv+0.20⋅Sinv+0.30⋅R+0.20⋅Dinv 



World Journal of Advanced Engineering Technology and Sciences, 2025, 16(01), 436-446 

439 

where Einv, Sinv, and Dinv  represent the inverse-normalized values of elevation, slope, and distance to river, respectively, 
and R denotes the normalized rainfall. 

2.4. Classification and Model Training 

The quantile-based thresholds were used to reclassify the continuous FSI_AHP values into three distinct classes: Class 
0 (No Flood), Class 1 (Moderate Flood Risk), and Class 2 (High Flood Risk) in order to facilitate supervised classification. 
In addition to improving model generalization, this classification scheme guarantees statistical balance across classes 
[30, 31, 32]. A Random Forest Classifier (RFC) was independently trained using the labeled datasets for each region. 
20% of the data was used for testing and validation, and the remaining 80% was used for model training. The RF 
algorithm was selected because it provides internal feature importance rankings, is robust against overfitting, and can 
handle non-linear feature interactions. Standard metrics, such as confusion matrices, precision, recall, and F1-scores, 
were calculated for each class in order to assess the model's performance. In order to evaluate each environmental 
variable's contribution to the classification process, feature importance scores were also extracted. Interpretability and 
predictive reliability in a variety of physiographic contexts are made possible by this dual approach, which combines 
AHP and ML. 

3. Results and Discussion 

The results of the flood susceptibility modeling procedure for Ilaje and Ile-Ife are shown and explained in this section. 
The Random Forest (RF) models' classification performance, feature importance interpretation, confusion matrix 
analysis, and comparative regional insights are all included. Where appropriate, figures and tables are cited to bolster 
important conclusions.  

3.1. Classification Performance for Flood Susceptibility  

Three common evaluation metrics precision, recall, and F1-score were computed for every class in order to evaluate 
the model's classification performance in addition to overall accuracy. A more detailed picture of the model's predictive 
behavior is offered by these metrics:  

In order to evaluate the model's ability to prevent false positives, precision measures the percentage of accurate positive 
predictions among all positive predictions. It is computed as: 

Precision = True Positives / (True Positives + False Positives) 

Recall measures the model’s ability to identify all actual positive instances, reflecting its effectiveness in minimizing 
false negatives. It's calculated as:  

Precision = True Positives / (True Positives + False Positives) 

F1-score represents the harmonic mean of precision and recall, providing a balanced evaluation where both false 
positives and false negatives are important. Calculated as:  

F1 = 2 * (Precision * Recall) / (Precision + Recall) 

80% of the labeled data was used to train the Random Forest classifier, and the remaining 20% was used for testing. 
The model's overall classification accuracy was 97% for Ile-Ife and 98% for Ilaje. The precision, recall, and F1-scores for 
every class in both regions are shown in Tables 1 and 2. 

Table 1 Classification Metrics for Ile-Ife 

Class Label Precision Recall F1-Score Support 

0 No Flood 0.99 0.98 0.99 555 

1 Moderate Risk 0.95 0.97 0.96 551 

2 High Risk 0.98 0.96 0.97 567 

Accuracy  -- -- 0.97 1673 
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Macro Avg  0.97 0.97 0.97 1673 

Weighted Avg  0.97 0.97 0.97 1673 

Model Accuracy: 0.97 

Table 2 Classification Metrics for Ilaje 

Class Label Precision Recall F1-Score Support 

0 No Flood 0.98 0.98 0.98 2782 

1 Moderate Risk 0.97 0.97 0.97 2848 

2 High Risk 0.98 0.99 0.99 3017 

Accuracy  -- -- 0.98 8647 

Macro Avg  0.98 0.98 0.98 8647 

Weighted Avg  0.98 0.98 0.98 8647 

Model Accuracy: 0.98 

The model performed especially well in identifying high-risk zones in both regions. The slightly lower recall in Class 2 
(High Risk) in Ile-Ife suggests a small number of false negatives, likely due to complex terrain-induced transitions. 

3.2. Confusion Matrix Interpretation 

The confusion matrices in Figures 2a and 2b show the predicted vs. actual class distribution. 

 

Figure 2a Confusion Matrix for Ile-Ife 
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Figure 2b Confusion Matrix for Ilaje 

In Ile-Ife, the model correctly predicted: 

• 544 out of 555 instances of Class 0 (No Flood) 
• 535 out of 551 instances of Class 1 (Moderate Risk) 
• 547 out of 567 instances of Class 2 (High Risk) 

In Ilaje, the RF model correctly classified: 

• 2,727 out of 2,782 instances of Class 0 
• 2,750 out of 2,848 instances of Class 1 
• 2,981 out of 3,017 instances of Class 2 

Strong diagonal dominance is confirmed by these matrices, suggesting high class-specific accuracy and little confusion, 
especially between Class 1 and Class 2.  

3.3. Analysis of Feature Importance  

Internal feature importance scores, which measure each variable's contribution to classification decisions, are provided 
by Random Forest. The feature importance plots for Ilaje and Ile-Ife are shown in Figures 3a and 3b, respectively. 

 

Figure 3a Feature Importance (Ile-Ife) 
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Figure 3b Feature Importance (Ilaje) 

Rainfall and river proximity were found to be the most significant factors in both Ile-Ife and Ilaje, underscoring the 
importance of hydrological inputs and river proximity in determining flood susceptibility in both inland and coastal 
terrains. 

3.4. Regional Interpretation in Comparison  

The usefulness of using a consistent hybrid modeling framework across disparate physiographic environments is 
illustrated by the comparative results between Ilaje and Ile-Ife. Although the two regions’ primary flood drivers were 
rainfall and river proximity, there were notable differences in the spatial expression of flood risk. Ilaje’s extensive 
hydrological networks and uniform elevation made it more spatially continuous in terms of flood susceptibility. Ile-Ife’s 
vulnerability, on the other hand, was more dispersed and influenced by slope variability and topographic complexity. 
These results demonstrate the significance of context-specific planning for flood risk mitigation and validate the 
framework's sensitivity to local hydrology and terrain. 

4. Conclusion  

The Analytic Hierarchy Process (AHP) and the Random Forest (RF) machine learning algorithm are combined in this 
study to create a novel hybrid framework for flood susceptibility modeling that produces high-accuracy, interpretable 
flood risk maps. The study provides one of the first cross-regional, ML-enhanced flood assessments in the nation by 
using this approach in two physiographically distinct regions: Ile-Ife (an inland upland terrain) and Ilaje (a low-lying 
coastal environment) in southwest Nigeria. By filling two enduring gaps in the geospatial flood modeling literature the 
limited investigation of physiographic heterogeneity in flood risk mapping and the black-box nature of machine learning 
models this comparative design advances the field. 

Despite having distinct spatial expressions of risk, the results show that rainfall and river distance are the main 
predictors of flood susceptibility in both regions. Because of its flat terrain and closeness to estuarine and coastal 
channels, Ilaje’s vulnerability is spatially continuous, but Ile-Ife shows a more fragmented risk pattern that is influenced 
by intricate slope dynamics and elevation profiles. Notwithstanding these variations, the suggested AHP–RF framework 
produced strong classification results, with 98% and 97% accuracy rates in Ilaje and Ile-Ife, respectively. The model's 
excellent performance in differentiating between low, moderate, and high flood risk zones was further supported by 
evaluation metrics such as precision, recall, and F1-score. 

The hybrid model makes important conceptual and practical contributions in addition to its technical performance. 
Methodologically, it enables both interpretability and data-driven classification by fusing the flexibility of RF with the 
transparency of AHP. From a conceptual standpoint, it shows how a consistent modeling framework can be used with 
great spatial sensitivity in a variety of physiographic zones. Because of its scalability, the model can be used to adapt to 
other flood-prone and data-poor Sub-Saharan African regions. Additionally, the operational viability of the framework 
for planners and local authorities is improved by the utilization of publicly available geospatial datasets and open-
source tools such as Google Earth Engine. 
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This work has equally significant policy implications. The AHP–RF framework's proven scalability and dependability 
provide urban and regional planners with a useful tool for incorporating flood susceptibility into infrastructure 
development, land-use zoning, and disaster preparedness plans. Second, evidence-based decision-making and 
stakeholder engagement are facilitated by the model's interpretability, which is demonstrated by both AHP weights and 
RF feature importance. Third, the necessity for focused catchment management techniques, such as afforestation, 
floodplain restoration, and real-time hydrological monitoring, is highlighted by the discovery that rainfall and river 
proximity are the two most important variables. 

Crucially, the findings require policy responses that take terrain into account. Wetland conservation, hydrological 
connectivity, and the development of drainage infrastructure should be given top priority in policy initiatives in flat 
coastal regions like Ilaje. Slope stabilization, zoning enforcement on susceptible hillsides, and stormwater control 
system investment should be prioritized in upland urban areas such as Ile-Ife. These unique approaches can support 
larger climate adaptation initiatives while enhancing local flood resilience. 

In the end, this research closes the gap between innovative methodology and useful policy assistance. It adds a robust, 
interpretable, and reproducible modeling approach to the expanding field of geospatial disaster risk science. The model 
could be improved in future work by adding dynamic environmental variables, experimenting with different ensemble 
learning algorithms, and comparing results with participatory GIS or historical flood inventories. Frameworks like this, 
which are based on both data and domain knowledge, are essential for promoting equitable and sustainable flood risk 
governance in vulnerable areas as climate change exacerbates hydrological variability. 

5. Limitations of the study  

By combining the Analytic Hierarchy Process (AHP) and Random Forest (RF), this study presents a strong and 
understandable framework for flood susceptibility modeling; however, in order to put the results in perspective and 
direct future developments, some limitations must be noted. Elevation, slope, long-term mean rainfall, and distance to 
rivers are the main static environmental variables used in the modeling approach, which are obtained from globally 
distributed and remotely sensed datasets. Even though these factors are commonly acknowledged as key factors that 
influence flood vulnerability, the model's ability to respond to short-term flood drivers like intense rainfall, seasonal 
variations in land cover, or abrupt hydrological changes is constrained by the lack of temporal variability. This lessens 
its usefulness for early warning or real-time flood forecasting applications. 

Furthermore, rather than using historical flood occurrence records, the classification labels used for supervised learning 
were derived from a reclassified Flood Susceptibility Index (FSI). Despite being interpretable and methodologically 
sound, this approach may introduce latent biases because it lacks empirical ground-truth validation. Therefore, an 
incomplete representation of actual flood dynamics may limit the model's performance in areas with localized or 
undocumented flooding events. Although it is based on the spatial extent and terrain structure, the disparity in sampling 
density between Ilaje and Ile-Ife may also introduce minor discrepancies in comparative performance. Although 
methodological reasoning supported this design choice, it might have an impact on the level of detail in the spatial 
patterns recorded in each area. 

Furthermore, the study was restricted to four main variables, leaving out potentially significant elements like soil type, 
drainage density, infrastructure proximity, and land use/cover. The model’s capacity to represent anthropogenic and 
compound flood risks may be improved by adding such variables, especially in quickly urbanizing environments where 
hydrological processes are heavily mediated by human activity.  

Lastly, although statistically balanced, the conversion of continuous FSI values into categorical flood risk classes using 
quantile-based thresholds may mask transitional gradients in susceptibility. In areas where risk boundaries are not 
clearly defined, this could result in overgeneralization. When combined, these drawbacks emphasize how crucial it is to 
make additional improvements, especially by incorporating ground-truth flood inventories, dynamic datasets, and a 
wider range of predictor variables. The model's operational reliability will be increased, and its applicability to adaptive 
flood resilience planning, participatory risk mapping, and early warning systems will be expanded. 
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