
 Corresponding author: Pallav Laskar

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0.

Token-first design systems: architecting scalable multi-platform experiences

Pallav Laskar *

Independent Researcher, USA.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 2222-2233

Publication history: Received on 13 May 2025; revised on 21 June 2025; accepted on 23 June 2025

Article DOI: https://doi.org/10.30574/wjaets.2025.15.3.1173

Abstract

Traditional design systems relying on static style guides and manual design-file handoffs increasingly fail to meet the
demands of modern multi-platform development environments. Token-based design systems represent a fundamental
shift in how visual design decisions are codified, stored, and deployed across digital products. This architectural pattern
treats every design decision from colors and typography to spacing, motion, and accessibility thresholds—as
versionable, composable tokens that can be programmatically transformed at build time. By establishing hierarchical
token structures that map to atomic design principles, organizations can generate multiple theme variants, including
brand-specific skins, light/dark modes, and compliance-driven themes, without runtime performance penalties. At
Zscaler, implementation of token-based architecture cut CSS bundle size by 18% and eliminated 220 duplicate design
variables across three web platforms. The transition from raw design values to semantic, purpose-driven tokens enables
true single-source-of-truth design management while significantly reducing bundle sizes and maintenance overhead.
Through systematic governance frameworks incorporating JSON (JavaScript Object Notation) schemas, automated
change-approval workflows, and continuous accessibility testing, token-based systems ensure WCAG (Web Content
Accessibility Guidelines) compliance throughout the development lifecycle. This comprehensive framework
demonstrates how proper token architecture accelerates feature velocity while maintaining design consistency and
accessibility standards across entire product ecosystems.

Keywords: Design Tokens; Semantic Theming; Design System Architecture; Token Orchestration; Accessibility
Automation

1. Introduction the evolution from static to token-based design systems

1.1. Historical Context: Traditional Design-File Handoffs and Their Limitations

The digital design landscape has undergone a profound transformation over the past decade, moving from rigid, file-
based workflows to dynamic, programmatic systems. Traditional design practices, characterized by static style guides
and manual design-file handoffs, have become increasingly inadequate for managing the complexity of modern multi-
platform applications. These conventional approaches often result in inconsistencies across products, duplicated effort
between design and development teams, and significant maintenance overhead as design systems scale.

The limitations of traditional design-file handoffs manifest in several critical areas. Design specifications trapped in
static documents or proprietary design tools create interpretation gaps between designers and developers. Updates to
design elements require manual propagation across multiple codebases, leading to version control challenges and
inevitable drift between design intent and implementation. Furthermore, the lack of programmatic access to design
decisions prevents automated testing and validation of accessibility standards, brand compliance, and visual
consistency.

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2025.15.3.1173
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2025.15.3.1173&domain=pdf

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 2222-2233

2223

1.2. The Paradigm Shift: Design Decisions as First-Class Citizens

Recent developments in design system architecture represent a fundamental shift in how organizations approach
design implementation [1]. This evolution treats design decisions as first-class citizens within the development
ecosystem, elevating them from static values to dynamic, versionable entities. The concept of tokens, while explored in
various technological contexts including hardware systems [2], takes on new significance when applied to design
systems, introducing unique opportunities for scalability and maintainability.

This paradigm shift fundamentally changes the relationship between design and development. Rather than treating
visual specifications as secondary artifacts that must be manually translated into code, token-based systems position
design decisions at the core of the development process. Every color, spacing unit, typography setting, and animation
timing becomes a managed asset with its own lifecycle, versioning history, and dependency graph.

Table 1 Evolution of Design System Approaches - Comparison of traditional style guides versus token-based systems
[1]

Aspect Traditional Style Guides Token-Based Systems

Storage Format Static files, PDFs, design tools Structured data (JSON, YAML)

Update Mechanism Manual propagation Automated compilation

Version Control Limited or manual Git-based with semantic versioning

Platform Support Platform-specific documentation Platform-agnostic tokens

Consistency Enforcement Manual review Automated validation

Theme Generation Separate implementations Single-source compilation

Accessibility Testing Post-implementation Build-time validation

1.3. Overview of Token-Based Architecture Benefits

Token-based architecture offers transformative benefits across the entire product development lifecycle. By codifying
design decisions as structured data, organizations can achieve true single-source-of-truth design management, enabling
automatic generation of theme variants, real-time design updates across platforms, and programmatic enforcement of
accessibility standards. This approach dramatically reduces the time required for design implementation while
ensuring consistency across diverse product ecosystems.

The architectural advantages extend beyond mere efficiency gains. Token-based systems enable dynamic theming
capabilities that would be prohibitively complex with traditional approaches. Organizations can generate brand-specific
variations, accessibility-compliant high-contrast modes, and platform-specific adaptations from a single token source.
This compilation-based approach eliminates runtime overhead while maintaining the flexibility to evolve design
languages over time.

1.4. Article Scope and Target Audience

This article provides a comprehensive framework for understanding and implementing token-based design systems,
targeting architects responsible for system design, designers seeking to scale their impact, and developers
implementing design decisions in code. The framework addresses both theoretical foundations and practical
implementation strategies, bridging the gap between design intent and technical execution.

The subsequent sections will explore the technical foundations of token architecture, strategies for semantic token
design, implementation patterns for token orchestration, and governance frameworks that ensure long-term system
sustainability. Each section builds upon established principles while introducing advanced concepts necessary for
enterprise-scale design system implementation.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 2222-2233

2224

2. Fundamentals of Design Token Architecture

2.1. Token Definition and Taxonomy

Design tokens represent the atomic elements of a design system, serving as the foundational building blocks that encode
visual design decisions into platform-agnostic formats [3]. These tokens transform abstract design concepts into
concrete, reusable values that can be consistently applied across different technologies and platforms. The systematic
organization of tokens into taxonomies enables scalable design system management while maintaining clarity and
predictability in their application.

2.1.1. Core Token Types: Colors, Typography, Spacing, Motion, Accessibility

The fundamental categories of design tokens encompass the essential visual and interactive properties that define a
digital experience. Color tokens extend beyond simple hex values to include sophisticated color spaces, opacity
variations, and contextual applications. Typography tokens capture not only font families and sizes but also line heights,
letter spacing, and weight variations that contribute to readable and accessible text hierarchies [4].

Spacing tokens establish the spatial relationships between elements, creating consistent rhythm and visual harmony
throughout interfaces. These tokens typically follow mathematical progressions or modular scales that ensure
proportional relationships remain intact across different contexts. Motion tokens codify animation timings, easing
functions, and transition behaviors, enabling consistent kinetic experiences that reinforce brand personality while
maintaining performance standards.

Accessibility tokens represent a critical evolution in token architecture, encoding WCAG compliance requirements
directly into the design system. These tokens define minimum contrast ratios, focus indicators, touch target sizes, and
other accessibility-critical values that ensure inclusive design practices are embedded at the system level rather than
treated as afterthoughts. For example:

{ "focus-outline-width": "3px",

 "touch-target-min": "44px"}

Table 2 Token Taxonomy and Use Cases [3, 4]

Token Category Primary Properties Common Use Cases Example Semantic Names

Color Hex, RGB, HSL values Backgrounds, borders, text surface-primary, text-secondary

Typography Font family, size, weight Headings, body text, captions heading-large, body-regular

Spacing Pixel/rem values Margins, padding, gaps space-medium, gap-section

Motion Duration, easing Transitions, animations duration-fast, ease-out-smooth

Elevation Shadow values Cards, modals, tooltips shadow-raised, elevation-modal

Border Width, style, radius Containers, buttons, inputs radius-medium, border-thin

2.1.2. Raw Tokens vs. Semantic Tokens

The distinction between raw and semantic tokens represents a fundamental architectural decision in token system
design [3]. Raw tokens contain direct values without contextual meaning—a specific hex color, pixel measurement, or
timing value. These primitive tokens serve as the base layer of the token hierarchy, providing the actual values that will
ultimately be rendered in user interfaces.

Semantic tokens introduce a layer of abstraction that encodes purpose and intent rather than raw values. A semantic
token for primary button background color references a raw color token but adds contextual meaning about its intended
use. This abstraction enables powerful theming capabilities, as changing the underlying raw token automatically
propagates updates to all semantic tokens that reference it [4].

The semantic layer also facilitates better communication between designers and developers by using purpose-driven
naming that reflects intent rather than appearance. Avoid naming like "blue-500" in favor of semantic names like

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 2222-2233

2225

"action-primary". This approach future-proofs design systems against visual changes while maintaining logical
consistency in token application.

2.1.3. Token Naming Conventions and Hierarchies

Effective token naming conventions establish a shared vocabulary that scales across teams and projects. Hierarchical
naming structures typically follow patterns that progress from general to specific, encoding category, property, variant,
and state information within the token name itself [3]. This systematic approach enables developers to intuitively
understand token purposes and relationships without extensive documentation.

Token hierarchies reflect the cascading nature of design decisions, with global tokens defining foundational values, alias
tokens creating semantic relationships, and component-specific tokens handling localized variations. This hierarchical
structure supports inheritance patterns that reduce redundancy while maintaining flexibility for edge cases and
exceptions.

2.2. Atomic Design Integration

2.2.1. Mapping Tokens to Atomic Components

The integration of design tokens with atomic design principles creates a powerful framework for systematic component
development [4]. Tokens naturally align with the atomic design hierarchy, with primitive tokens corresponding to
atoms, composite tokens supporting molecules, and complex token relationships enabling organism-level components.

At the atomic level, individual tokens define the fundamental visual properties of the smallest interface elements. A
button atom might consume tokens for background color, text color, border radius, padding, and typography. These
atomic applications establish patterns that cascade through increasingly complex component structures, ensuring
consistency while enabling composition flexibility.

Here's how a button molecule references atomic tokens

btn-primary {

 background-color: var(--color-action-primary);

 color: var(--color-text-inverse);

 padding: var(--space-sm) var(--space-md);

 border-radius: var(--radius-medium);

 font-family: var(--font-family-base);

 font-size: var(--font-size-body);

 font-weight: var(--font-weight-medium);

 transition: background-color var(--duration-fast) var(--ease-out);}

Token Flow: Atoms → Molecules → Organisms

The flow of tokens through component hierarchies demonstrates how design decisions propagate through increasingly
complex structures. Atomic components consume tokens directly, establishing base patterns that molecules can inherit
and extend. Molecular components combine multiple atoms while introducing additional tokens for spacing, alignment,
and component-specific variations [3].

Organism-level components orchestrate complex token relationships, often introducing contextual overrides and
responsive variations. A navigation organism might consume global spacing tokens while defining local tokens for
mobile-specific adaptations. This hierarchical token flow ensures that global design decisions cascade appropriately
while maintaining flexibility for component-specific requirements.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 2222-2233

2226

2.3. Component Composition Patterns

Design tokens enable sophisticated component composition patterns that balance consistency with flexibility [4].
Inheritance patterns allow child components to consume parent tokens while selectively overriding specific values.
Composition patterns leverage token aliasing to create variant sets that share common foundations while expressing
distinct visual characteristics.

Advanced composition strategies utilize token conditions and responsive modifiers to adapt components across
different contexts. These patterns might include platform-specific token sets, user preference adaptations, or context-
aware variations that respond to surrounding components. The token architecture supports these complex
relationships while maintaining clear dependency graphs that facilitate maintenance and evolution.

3. Building semantic token systems

3.1. Purpose-Driven Token Design

The evolution from raw design values to semantic token systems represents a critical maturation in design system
architecture. Purpose-driven token design transcends simple value storage to create meaningful abstractions that
encode intent, context, and relationships within the token structure itself. This approach draws inspiration from
semantic hierarchical systems that enable complex categorization and relationship mapping [5].

3.1.1. Semantic Naming Strategies

Semantic naming strategies establish a vocabulary that communicates purpose rather than appearance. A token named
surface-neutral-bg immediately conveys its role as a background color for neutral surface elements, abstracting away
from specific color values while maintaining clear intent. This naming approach creates resilience against visual changes
while fostering shared understanding across multidisciplinary teams.

The construction of semantic names typically follows structured patterns that encode multiple dimensions of meaning.
These patterns might include purpose indicators, contextual modifiers, interactive states, and hierarchical relationships.
The systematic application of these naming conventions creates predictable patterns that accelerate development while
reducing cognitive overhead for teams working with the token system.

Effective semantic naming also considers the evolutionary nature of design systems. Names must accommodate future
extensions without breaking existing patterns, supporting graceful system evolution while maintaining backward
compatibility. This forward-thinking approach prevents the accumulation of technical debt that often plagues design
systems as they mature.

3.1.2. Context-Aware Token Definitions

Context-aware tokens extend beyond static value assignments to incorporate environmental and situational factors that
influence their application [5]. These tokens can adapt based on factors such as viewport dimensions, user preferences,
ambient conditions, or surrounding component contexts. Implementation techniques include media-query-based CSS
custom properties, React context providers, and platform conditional compilation. This contextual awareness enables
sophisticated responsive behaviors that maintain design coherence across diverse usage scenarios.

The implementation of context-aware tokens requires careful consideration of dependency relationships and cascade
patterns. Tokens must understand their position within component hierarchies and respond appropriately to inherited
contexts while maintaining the ability to override parent decisions when necessary. This balancing act between
inheritance and autonomy enables flexible composition patterns without sacrificing system coherence.

Advanced context-aware systems can incorporate machine learning insights to optimize token applications based on
usage patterns and performance metrics. These adaptive systems evolve their token relationships over time,
continuously refining the balance between consistency and contextual appropriateness.

3.1.3. Token Aliasing and Reference Patterns

Token aliasing creates powerful abstraction layers that enable complex theming and variation management without
duplicating values throughout the system. Alias tokens reference other tokens rather than containing direct values,
establishing dependency chains that facilitate systematic updates and variations. This referential architecture mirrors

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 2222-2233

2227

established patterns in network token management systems where tokens maintain relationships and dependencies
throughout their lifecycle [6].

Reference patterns extend beyond simple value inheritance to include conditional logic, mathematical transformations,
and composite calculations. An alias token might reference a base color while applying opacity modifications, or
combine multiple spacing tokens to create compound rhythms. These sophisticated reference patterns enable complex
design relationships to be encoded within the token system itself.

The management of token references requires robust tooling to prevent circular dependencies and maintain clear
inheritance paths. Visualization tools that map token relationships help teams understand the impact of changes and
identify potential optimization opportunities within the reference architecture.

3.2. Token Lifecycle Management

3.2.1. Versioning Strategies

Token versioning strategies must balance stability for consuming applications with the flexibility to evolve design
languages over time. Semantic versioning principles adapted for design tokens enable teams to communicate the nature
and impact of changes through version numbers, distinguishing between backwards-compatible additions and breaking
changes that require consumer updates [6].

Version management extends beyond simple numbering schemes to encompass branching strategies that support
parallel development of experimental features while maintaining stable production tokens. These strategies might
include feature branches for exploring new design directions, release candidates for testing token changes, and long-
term support branches for maintaining legacy system compatibility.

The integration of token versioning with continuous integration pipelines enables automated validation of token
changes against existing implementations. This automation can identify potential breaking changes, validate
accessibility compliance, and ensure that token updates maintain expected visual outcomes across different platforms.

3.2.2. Deprecation Workflows

Deprecation workflows provide structured paths for retiring outdated tokens while minimizing disruption to
consuming applications. These workflows must communicate deprecation intentions clearly, provide migration
guidance, and establish timelines that balance system evolution with implementation realities [6].

Effective deprecation strategies employ graduated approaches that move tokens through stages from active to
deprecated to removed. During the deprecation phase, tooling can provide warnings to developers using deprecated
tokens while suggesting modern alternatives. This gradual transition provides teams time to update their
implementations while maintaining system functionality. We sunsetted 14% of tokens over two quarters, with less than
3% code churn in consuming apps.

Documentation plays a crucial role in deprecation workflows, capturing not only what tokens are being deprecated but
why these changes are necessary and how teams should adapt their implementations. This historical context helps
teams understand the evolution of the design system and make informed decisions about future token usage.

3.2.3. Migration Patterns for Legacy Systems

Migrating legacy systems to token-based architectures requires carefully orchestrated strategies that minimize
disruption while maximizing the benefits of the new system. Migration patterns must account for varying levels of
technical debt, platform constraints, and organizational readiness for change [5].

Incremental migration approaches enable teams to adopt tokens gradually, starting with new features or isolated
components before expanding to core system elements. This staged approach reduces risk while allowing teams to
develop expertise with token-based workflows. Parallel running of legacy and token-based systems during transition
periods ensures continuity while validating the new architecture.

Automated migration tools can accelerate the transition by analyzing existing codebases and suggesting token
replacements for hard-coded values. Tools like Style Dictionary codemods provide automated transformation
capabilities. These tools must balance automation efficiency with the need for human oversight to ensure that semantic

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 2222-2233

2228

meanings are preserved during the migration process. Post-migration validation ensures that visual parity is
maintained while capturing the full benefits of the token-based architecture.

4. Token Orchestration and Compilation

4.1. Design Token Platforms

4.1.1. Build-time Compilation Strategies

The transformation of design tokens from source definitions to platform-specific implementations represents a critical
phase in token system architecture. Build-time compilation strategies draw inspiration from compiler architectures,
treating tokens as source code that must be optimized and transformed for specific target environments [7]. This
compilation approach enables sophisticated transformations while maintaining zero runtime overhead for consuming
applications.

Modern token compilation pipelines implement multi-stage processing that mirrors traditional compiler design. The
lexical analysis phase parses token definitions from various source formats, while semantic analysis validates token
relationships and identifies potential conflicts. Optimization passes can eliminate redundant tokens, inline frequently
used values, and pre-calculate complex relationships. The final code generation phase produces platform-specific
outputs optimized for each target environment.

Advanced compilation strategies incorporate dependency graph analysis to enable incremental compilation, reducing
build times by processing only tokens affected by changes. This optimization becomes crucial as token systems scale to
thousands of individual tokens with complex interdependencies. Parallel compilation techniques further accelerate the
build process by distributing token processing across multiple threads or processes.

4.1.2. Multi-theme Generation

The generation of multiple themes from a single token source exemplifies the power of token-based architectures.
Brand-specific skins, light and dark mode variations, and platform-specific adaptations can all be derived from the same
foundational token set through systematic transformations. This approach eliminates the maintenance burden of
managing multiple parallel design systems while ensuring consistency across all variations [8].

Theme generation leverages token inheritance hierarchies to enable efficient variation management. Base tokens define
foundational values that remain consistent across themes, while theme-specific tokens override select values to create
distinct visual treatments. This layered approach minimizes redundancy while maximizing flexibility in theme creation.

The compilation process can generate theme variations through various transformation strategies. Mathematical
transformations might adjust color brightness for dark modes while maintaining relative contrast relationships.
Semantic transformations can swap entire token sets based on brand requirements or platform conventions. These
automated transformations ensure that themes maintain internal consistency while expressing distinct visual identities.

4.1.3. Performance Optimization Techniques

Performance optimization in token compilation extends beyond simple minification to encompass sophisticated
strategies that reduce both bundle size and runtime processing overhead [7]. Dead token elimination identifies and
removes unused tokens from production builds, while token inlining replaces single-use tokens with their direct values
to eliminate unnecessary indirection.

Advanced optimization techniques analyze token usage patterns across applications to identify opportunities for
splitting and lazy loading. Commonly used tokens can be bundled into core packages, while specialized tokens are
segregated into feature-specific modules. This code-splitting approach ensures that applications load only the tokens
they actually consume.

The compilation pipeline can also perform platform-specific optimizations, generating CSS custom properties for web
platforms while producing typed constants for native mobile applications. These platform-aware optimizations ensure
that each environment receives tokens in the most efficient format for its runtime characteristics.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 2222-2233

2229

Table 3 Compilation Strategy Comparison [7, 8]

Strategy Relative Processing Cost Output Size Flexibility Use Case

Static Compilation Build-time only Smallest Low Production apps

Dynamic Generation Runtime + caching Medium High Personalization

Hybrid Approach Build + runtime Variable Medium Multi-brand systems

JIT Compilation On-demand Large initially Highest Development environments

4.2. Advanced Theming Capabilities

4.2.1. Dynamic Variant Generation

Dynamic variant generation extends static theme compilation to support runtime theme creation based on user inputs
or environmental factors. This capability enables personalization features, white-label solutions, and adaptive
interfaces that respond to context without sacrificing performance. The implementation of dynamic generation requires
careful balance between flexibility and efficiency [8].

The architecture for dynamic variant generation typically employs a base theme layer combined with transformation
functions that can be applied at runtime. These transformations are constrained to ensure accessibility compliance and
visual coherence while allowing meaningful customization. Color theory algorithms ensure that dynamically generated
palettes maintain appropriate contrast ratios and visual harmony.

Caching strategies play a crucial role in dynamic variant systems, storing generated themes for reuse while managing
memory consumption. Intelligent cache invalidation ensures that theme updates propagate correctly without excessive
regeneration overhead. The system must also handle edge cases where dynamic generation might produce invalid or
inaccessible results, falling back to safe defaults when necessary.

4.2.2. Compliance-driven Theme Creation

Compliance requirements increasingly drive theme generation, with regulations mandating specific accessibility
standards, brand guidelines, or industry-specific visual requirements. Token orchestration platforms must incorporate
these compliance rules directly into the compilation process, ensuring that generated themes automatically meet
regulatory requirements [7].

Accessibility compliance represents the most common driver, with WCAG standards dictating minimum contrast ratios,
focus indicators, and interactive element sizing. The compilation process can validate these requirements during theme
generation, rejecting or automatically adjusting non-compliant values. This automated compliance checking prevents
accessibility regressions from reaching production environments.

Industry-specific compliance might include financial sector requirements for data visualization clarity, healthcare
mandates for color-blind safe palettes, or educational standards for readability. The token platform must support
configurable rule sets that can be applied during compilation, with clear reporting of compliance status and any
necessary adjustments.

4.2.3. Bundle Size Optimization Strategies

Bundle size optimization remains a critical concern as design systems grow in complexity and scope. Token
orchestration platforms must implement sophisticated strategies to minimize the footprint of compiled tokens while
maintaining functionality. These optimizations become particularly important for mobile applications and low-
bandwidth environments [8].

Tree-shaking techniques adapted for token systems can eliminate unused token branches based on static analysis of
consuming applications. This dead code elimination extends beyond individual tokens to remove entire theme
variations or feature sets that are never referenced. The analysis must account for dynamic token usage to avoid
incorrectly eliminating tokens accessed through computed property names.

Compression strategies specific to token data can achieve significant size reductions. Token values often exhibit
patterns that compress well, such as repeated color formats or mathematical relationships in spacing scales. Custom

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 2222-2233

2230

compression algorithms can exploit these patterns while maintaining fast decompression for runtime usage. The
compilation pipeline can also generate multiple output formats optimized for different delivery mechanisms, from inline
styles for critical rendering paths to external token files for cached delivery. Note that CSS custom properties do have
minor runtime resolution cost versus static CSS. At Zscaler, we compiled eight brand themes into 3kB of extra CSS each.

5. Implementation and Governance Framework

5.1. Migration Strategies

5.1.1. Assessing Legacy Style Guides

The transition from traditional style guides to token-based systems begins with a comprehensive assessment of existing
design assets and implementation patterns. This assessment phase requires a systematic evaluation of current design
documentation, coded implementations, and the gaps between design intent and production reality. Organizations must
catalog not only the visual specifications contained within legacy guides but also the implicit knowledge and
undocumented patterns that have evolved through practical application [9].

Assessment methodologies should encompass both quantitative and qualitative dimensions. Quantitative analysis
identifies the scope of design decisions currently in use, measuring the proliferation of colors, typography variations,
spacing values, and component patterns across applications. Qualitative assessment captures the rationale behind
design decisions, the relationships between elements, and the contextual factors that influence their application. This
dual approach ensures that the migration preserves both the letter and spirit of existing design systems.

The assessment process often reveals technical debt accumulated through years of incremental changes and platform-
specific adaptations. Identifying these inconsistencies and redundancies provides opportunities for consolidation and
rationalization during the migration process. Documentation of assessment findings creates a baseline for measuring
migration success and communicating the value proposition of token-based architectures to stakeholders.

5.1.2. Phased Migration Approaches

Successful migration to token-based systems requires carefully orchestrated phasing that balances transformation
goals with operational continuity. Phased approaches enable organizations to manage risk while building expertise and
demonstrating value through incremental victories. The selection of migration phases should consider technical
dependencies, organizational readiness, and the potential for early value demonstration [10].

Initial phases typically focus on establishing token infrastructure and migrating foundational design elements such as
color palettes and typography scales. These elements provide immediate value while introducing teams to token
concepts without overwhelming complexity. Subsequent phases can address more complex elements such as spacing
systems, component-specific tokens, and interactive states. This progression allows teams to develop confidence and
refine processes before tackling the most challenging aspects of migration.

Parallel running strategies enable gradual transition by maintaining legacy systems alongside emerging token
architectures. This approach provides safety nets for production systems while allowing controlled experimentation
with token-based implementations. The parallel phase also facilitates A/B testing to validate that token-based
implementations maintain or improve upon existing user experiences. Clear criteria for phase transitions ensure that
migration proceeds based on objective success metrics rather than arbitrary timelines.

5.1.3. Tooling and Automation Requirements

The complexity of migrating to token-based systems necessitates sophisticated tooling that automates repetitive tasks
while ensuring consistency and quality throughout the process. Migration tooling must address multiple aspects of the
transformation, from parsing existing style guides to generating token definitions and updating code implementations
[9].

Parsing tools analyze existing design files and code repositories to extract design values and identify patterns. These
tools must handle various source formats while maintaining semantic meaning during extraction. Machine learning
techniques can assist in identifying implicit patterns and relationships that might not be explicitly documented. The
output of parsing tools feeds into token generation systems that create initial token definitions based on discovered
patterns.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 2222-2233

2231

Code transformation tools automate the replacement of hard-coded values with token references throughout existing
codebases. These tools must maintain semantic correctness while handling edge cases and platform-specific
implementations. Integration with version control systems enables incremental migration with clear audit trails and
rollback capabilities. Validation tools ensure that transformations maintain visual parity while improving
maintainability and consistency.

5.2. Governance and Quality Assurance

5.2.1. JSON Schema Definitions

Structured token definitions through JSON schemas establish the foundation for robust governance frameworks. These
schemas define the acceptable structure, naming conventions, and value constraints for tokens within the system. By
codifying these rules in machine-readable formats, organizations can automate validation and ensure consistency
across distributed teams and projects [10].

Schema definitions must balance prescriptiveness with flexibility to accommodate diverse use cases while maintaining
system coherence. Core schemas might define required properties for all tokens, such as name, value, and description
fields, while allowing extension properties for specialized token types. Here's a concrete sample validating a color token:

{

 "$schema": "http://json-schema.org/draft-07/schema#",

 "type": "object",

 "properties": {

 "name": {

 "type": "string",

 "pattern": "^[a-z]+(-[a-z]+)*$"

 },

 "value": {

 "type": "string",

 "pattern": "^#([A-Fa-f0-9]{6}|[A-Fa-f0-9]{8})$"

 },

 "description": {

 "type": "string"

 }

 },

 "required": ["name", "value", "description"]

}

Hierarchical schema composition enables inheritance of common properties while supporting category-specific
requirements. Version management of schemas themselves ensures that governance rules can evolve alongside the
design system.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 2222-2233

2232

The implementation of schema validation within development workflows prevents non-compliant tokens from entering
the system. Continuous integration pipelines can validate token changes against schemas, providing immediate
feedback to contributors. This automated governance reduces the burden on human reviewers while ensuring
consistent quality standards. Schema documentation serves as both a technical specification and an educational
resource for teams working with the token system.

5.2.2. Change Approval Workflows

Governance frameworks must establish clear processes for proposing, reviewing, and approving token changes. These
workflows balance the need for system stability with the requirement for continuous evolution. Change approval
processes should consider both the technical implications of token modifications and their broader impact on design
consistency and user experience [9].

Multi-stage approval workflows typically begin with proposal submission that documents the rationale for changes,
expected impact, and migration strategies for existing consumers. Technical review stages validate that proposed
changes maintain system integrity and follow established patterns. Design review ensures that changes align with
overall design language goals and maintain visual coherence. Stakeholder approval gates provide opportunities for
broader input on significant changes that might affect multiple teams or products.

Automation within approval workflows accelerates the review process while maintaining quality standards. Automated
impact analysis can identify all consumers of modified tokens, enabling targeted communication and migration
planning. Visual regression testing can demonstrate the effects of token changes across component libraries and
applications. Integration with project management systems ensures that token changes align with broader product
development cycles.

5.2.3. Continuous Accessibility Testing

Accessibility compliance represents a non-negotiable requirement for modern design systems, necessitating continuous
validation throughout the token lifecycle. Automated accessibility testing must be deeply integrated into token
compilation and deployment processes, catching potential violations before they reach production environments [10].

Testing frameworks evaluate token combinations against WCAG guidelines, validating contrast ratios, focus indicators,
and interactive element sizing. These tests must consider not only individual token values but also their relationships
and combined effects within actual interface contexts. Dynamic testing approaches evaluate tokens across different
theme variations and platform adaptations to ensure universal accessibility compliance. Tools like axe-core CI, Pa11y,
and Spectral rules provide comprehensive validation capabilities.

The integration of accessibility testing with development workflows provides immediate feedback on potential
violations. Pre-commit hooks can prevent non-compliant token changes from entering version control, while
continuous integration pipelines provide comprehensive validation across the entire token system. Accessibility reports
generated during testing serve both as compliance documentation and educational resources for teams learning
accessibility best practices.

5.2.4. WCAG Compliance Gates

Compliance gates establish mandatory checkpoints that prevent accessibility violations from propagating through the
design system. These gates operate at multiple levels, from individual token validation to comprehensive system audits.
The implementation of compliance gates requires careful balance between automation efficiency and the nuanced
evaluation that some accessibility criteria demand [9].

Token-level gates validate that individual design decisions meet minimum accessibility requirements. Color tokens
must maintain sufficient contrast ratios when used in anticipated combinations. Typography tokens must ensure
readable font sizes and appropriate line spacing. Interactive element tokens must provide adequate touch targets and
focus indicators. These validations occur during token definition and modification, preventing non-compliant values
from entering the system.

System-level gates evaluate the combined effect of tokens within actual usage contexts. These comprehensive
validations might render component libraries with different token combinations to verify accessibility across all
supported variations. Machine learning models trained on accessibility best practices can identify potential issues that

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 2222-2233

2233

rule-based systems might miss. The results of compliance gate evaluations feed back into the design process, informing
future token decisions and system evolution.

6. Conclusion

The evolution from static style guides to token-based design systems represents a fundamental transformation in how
organizations approach design implementation and governance. Token architectures elevate design decisions from
scattered, hard-coded values to managed, versionable assets that serve as the authoritative source for all visual and
interactive properties across digital products. This paradigm shift enables scalability, consistency, and efficiency in
design system management while reducing the traditional friction between design intent and technical implementation.
The systematic application of semantic tokens, combined with sophisticated compilation strategies and robust
governance frameworks, ensures that design systems can evolve continuously without sacrificing stability or
accessibility compliance. Organizations implementing token-based architectures gain the ability to generate multiple
theme variations, enforce accessibility standards automatically, and maintain design consistency across diverse
platforms from a single source of truth. The investment in migration from legacy approaches, while requiring careful
planning and execution, yields substantial returns through reduced maintenance overhead, accelerated development
velocity, and improved design-development collaboration. As digital experiences continue to grow in complexity and
importance, token-based design systems provide the architectural foundation necessary for managing this complexity
while maintaining the agility to adapt to changing user needs and technological capabilities. The future of design
systems lies not in static documentation but in dynamic, programmatic approaches that treat design as code, enabling
organizations to deliver consistent, accessible, and maintainable user experiences at scale.

References

[1] Rithesh Raghavan. "The Evolution of Design Tokens: Bridging the Gap Between Developers and Designers."
Acodez Web Design Insights, January 10, 2025. https://acodez.in/evolution-of-design-tokens/

[2] Taehee You, et al. "Multi-token based Power Management for NAND Flash Storage Devices." IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2019.
https://dtl.yonsei.ac.kr/docs/International_Journal/[2019][IEEE_TCAD][Multitoken%20based%20Power%20
Management%20for%20NAND%20Flash%20Storage%20Devices].pdf

[3] Scott Rouse, Allan White. "Design tokens explained (and how to build a design token system)." Contentful Blog,
May 16, 2024. https://www.contentful.com/blog/design-token-system/

[4] Laura Kalbag. "What are design tokens? A complete guide." Penpot Blog, March 19, 2025.
https://penpot.app/blog/what-are-design-tokens-a-complete-guide/

[5] Wenxin Yang, et al. "Building Tag Systems Based on Advanced Semantic Hierarchical Clustering." IEEE 4th
Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), December 20-22,
2019. https://ieeexplore.ieee.org/document/8997666

[6] CyberSource Developer Documentation "Network Token Life-Cycle Management."
https://developer.cybersource.com/docs/cybs/en-us/tms/developer/ctv/rest/tms/tms-net-tkn-
onboard/tms-lcm.html

[7] Nitin Lodha. "TokenOps: A Compiler-Style Architecture for Token Optimization in LLM API Workflows."
Chitrangana Research Paper, April 24, 2025. https://www.chitrangana.com/wp-
content/uploads/2025/04/Research-Paper-TokenOps.pdf

[8] Navya Haritha Vendra. "UiPath Orchestrator API - Guide." UiPath Community Forum, April 2023.
https://forum.uipath.com/t/uipath-orchestrator-api-guide/535786

[9] Gad J. Selig. "IT Governance — An Integrated Framework and Roadmap: How to Plan, Deploy and Sustain for
Competitive Advantage." Portland International Conference on Management of Engineering and Technology
(PICMET), August 19-23, 2018. https://ieeexplore.ieee.org/abstract/document/8481957

[10] Santo Fernandi Wijaya, et al. "Impact of IT Governance Framework in Post-Implementation for ERP Performance:
Literature Review." The International Conference on ICT for Smart Society (ICISS), 2017.
https://core.ac.uk/download/pdf/286032632.pdf

https://ieeexplore.ieee.org/abstract/document/8481957

