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Abstract 

Big Data pipelines and Generative Artificial Intelligence (GenAI) have enabled new approaches to financial risk 
prediction. This paper deals with the Cloud-centric data engineering framework, where massive Big Data technologies 
are merged with GenAI to allow a more accurate, faster, and dependable financial risk assessment. The proposed 
concept utilizes distributed computing paradigms to acquire, process, and analyze high-velocity financial data sourced 
from multiple environments, including transactional datasets, market feeds, and social sentiment data. Due to the 
usage of GenAI within this framework, this system can detect complex patterns, simulate various stress scenarios, and 
provide insightful early warnings, which the conventional models did not highlight. The discussion also involves Cloud-
centric designs to guarantee proper elasticity and fault tolerance with seamless integration into the modern DevOps 
toolchains. 

In this case, the outcome is capable of reactive analytics and adaptive model deployment on a massive scale. The 
contributions are highlighted by the development of dynamic preprocessing, feature, and model selection steps for Big 
Data engineering and GenAI on the Apache Spark, Kafka, and Kubernetes frameworks. The validation process is 
associated with the experimental demonstration of the superior early warning signal detection and loss avoidance 
rate. The resulting system might be viewed as a novel approach that merges the capabilities of Big Data engineering 
and GenAI in the Cloud setup to form a practical step for proactiveness and data-drivenness in the given field, which 
is particularly important with the current complexity and velocity of financial data. 

Keywords: Financial Risk Prediction; Big Data Pipelines; Generative AI (GenAI); Cloud Computing; Data Engineering; 
Real-time Analytics 

1 Introduction 

The financial industry is increasingly being defined by high-volume, high-velocity data generated from transactional 
systems, market exchanges, and many alternative data streams. Such datasets cannot be easily scaled well with 
standard approaches to risk prediction, nor are they suited for them due to the levels of scale, complexity, and 
dynamism found [1].  

The rise in the power of integrating Big Data pipelines with Generative Artificial Intelligence (GenAI) is a prominent 
and potentially transformative paradigm for improving financial risk prediction and management. Big Data 
technologies serve the real-time ingestion, processing, and transformation of enormous datasets [2]. GenAI supplies 
the ability to learn complex representations in that data, simulate scenarios, and generate predictions with greater 
accuracy than conceivable by merely correlational methods. In the Cloud-centric approach, this study is leveraging the 
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nature of the Cloud infrastructure, using its elasticity and scalability to construct a solid data engineering framework, 
which would be focused on the goal of financial risk assessment analysis [3].  

This study utilizes Cloud-native tools and distributed processing frameworks, such as Apache Kafka, Spark, and 
Kubernetes, facilitating real-time data stream, fault-tolerant data processing, and easy model deployment. In this 
design, this study embeds GenAI models to recognize latent risk signals and generate such signals when the 
uncertainty level is high, providing the firm with decision assistance tools. This methodology builds a foundation for 
the creation of more flexible, smarter, and robust financial risk prediction systems, which merge Big Data Engineering 
with GenAI capabilities, all within a Cloud environment [4]. 

Designing a Cloud-centric Big Data and GenAI-based framework to predict financial risks introduces several 
challenges. First, a more sophisticated approach to data input merge should be developed because the latter becomes 
more heterogeneous [24]. In addition, the approach mentioned above will help mitigate the effects of the second key 
difficulty, which concerns the need to process the identified information in the span specified above while facing a 
direct correlation between the data dimensions and its period. Second, ensuring the consistent quality and accessibility 
of data from both local and Cloud storage in real-time will be important. Finally, because of the fundamentally different 
approach toward the topic of the transparency of standards and models, GenAI will present a unique challenge within 
the context of regulatory and financial expectations [4]   

The work makes the following contributions: 

• Development of a scalable Cloud-native data pipeline architecture that enables real-time ingestion, processing, 
and transformation of large-scale financial datasets using tools such as Apache Kafka, Spark, and Kubernetes 
for continuous analytics. 

• Integration of generative AI models into the Big Data pipeline, enhancing the system’s ability to generate 
predictive insights, identify emerging risk patterns, and simulate complex financial scenarios with greater 
accuracy than traditional analytical methods [5]. 

• Implementation of automated feature engineering and data orchestration workflows, allowing dynamic 
adaptation to data variability while maintaining performance efficiency, ensuring that models remain robust 
across evolving financial contexts and heterogeneous data sources. 

• Experimental validation demonstrating improved risk prediction performance, with significant gains in early 
warning signal detection, model responsiveness, and loss mitigation, thereby establishing a viable framework 
for data-driven financial risk management in real-time environments. 

2 Related Work 

2.1 Big Data in Financial Risk Analytics 

Financial datasets' increasing volume and complexity have accelerated the adoption of Big Data technologies in 
financial risk analytics. Frameworks like Hadoop and Spark have been used to scale storage and processing for 
transactional, market, and behavioral data [8]. Existing studies have examined the applications of these technologies 
in credit scoring, fraud detection, and market risk assessment. Nevertheless, most of the existing implementations 
are based on batch processing, restricting their applicability in real-time risk monitoring settings [10]. 

2.2 Generative AI for Predictive Modeling 

Generative AI models (e.g., Generative Adversarial Networks (GANs) and Transformer-based frameworks) have 
demonstrated much potential to advance predictive modeling efforts. In finance, these have been used to model 
intricate interactions of market variables, generate synthetic datasets for training, and identify hidden, non-linear risk 
patterns often missed by traditional models [4]. Most implementations are experimental and not strongly coupled with 
real-time, scale data engineering infrastructures. This has left the intrinsic potential of GenAI for holistic operational, 
financial risk forecasting largely unread. 

2.3 Cloud-Centric Data Engineering 

Big Data processing has been revolutionized by the advent of Cloud Computing with its elastic, scalable, and cost-
effective infrastructure. Financial institutions have adopted Cloud-native architecture to ensure real-time data flow 
and analytics [23]. Despite the significant steps the firms have taken to implement Cloud-based deployment, the 
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convergence of Cloud-native tools with heightened AI capabilities in the financial risk domain remains an under-
explored area [11]. 

2.4 Research Gap 

The literature on Big Data processing, AI in finance, and Cloud Computing is vast. Nonetheless, there is currently no 
comprehensive, Cloud-native architecture that unifies Big Data pipelines with Generative Artificial Intelligence 
models for predicting financial risk intuitively in real-time [6]. This study fills the existing gap by proposing an end-to-
end framework unifying data engineering and GenAI within a Cloud-native environment for improved accuracy, 
scalability, and responsiveness of risk prediction systems. 

3 Proposed Cloud-Centric Data Engineering Framework 

3.1 Integrated Cloud-Native Architecture for Financial Risk Analytics 

• The financial risk analytics integrated Cloud-native architecture is based on fundamental principles to provide 
comprehensive scalability, resilience, and agility in managing large data and complex AI loads. The most 
important of its elements include microservices architecture and containerization, which allow a flexible modular 
deployment and operations in a service-oriented manner [7]. 

• Resources for system management are allocated dynamically by orchestration, which also scales the 
environment automatically in a proper way. Implementing CI / CD practices provides automatic and repetitive 
updates, as well as maintaining the stability of the system [15].  

• Automation is also facilitated with IaC, or Infrastructure as Code, reducing costs and improving the repeatability 
of infrastructure. Immutability of the infrastructure allows reducing configuration drift, which enhances system 
safety. Mesh works for inter-service communication reliability and security [16]. 

 

 

Figure 1 Power of Cloud – Native Architecture 

• Observability and monitoring facilitate knowing what is happening in the system, allowing detection of 
downtime or issues in performance early [23]. Constant and effective processing of the financial data streams 
is achieved with the usage of elastic scalability and fault tolerance since they are required to predict financial 
risks timely. 

3.2 Stream-Based Data Ingestion and Intelligent Preprocessing 

• The described risk predictive framework uses stream-based data ingestion to handle continuous, high-velocity 
financial data that is coming from various sources, such as transactions, market feeds, and social sentiment [16].  
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• The use of technologies like Apache Kafka allows building the real-time ingestion processes that are scalable, as 
well as fault-tolerant. Intelligent preprocessing modules are responsible for the cleaning, normalization, and 
enrichment of the incoming data streams so that the risk models will be fed only with high-quality inputs [9].  

• Automated feature engineering techniques are used to ensure that the risk models adapt to the evolving 
characteristics of the data stream and become more accurate and reliable. Such an approach reduces the latency, 
ensures instant risk signal detection and makes the predictive system able to function in the fast-developing 
financial environments [16]. 

Table 1 outlines the key components and functionalities involved in the stream-based data ingestion and intelligent 
preprocessing stage of the proposed Cloud-centric financial risk prediction framework. 

Table 1 Key components and functions of the Stream-Based Data Ingestion and Intelligent Preprocessing stage 

Component Function Technology Examples Benefits 

Data Sources Continuous streams of 
financial data 

Transactional systems, Market 
feeds, Social sentiment APIs 

Diverse real-time data 
capture 

Stream Ingestion Real-time, scalable data 
collection and buffering 

Apache Kafka, AWS Kinesis Fault tolerance, high 
throughput 

Data Cleansing Removal of noise, duplicates, 
and inconsistencies 

Custom ETL pipelines, Spark 
Streaming 

Ensures data quality and 
consistency 

Data Normalization Standardization of formats and 
units 

Apache Flink, Spark Uniform data for model 
compatibility 

Data Enrichment Adding contextual information 
(e.g., market indicators) 

Feature stores, External APIs Enhances predictive 
power 

Automated Feature 
Engineering 

Dynamic extraction and 
transformation of features 

ML pipelines, Feature tools Improves model 
accuracy and 
adaptability 

Latency 
Management 

Minimizing delay from data 
capture to processing 

Low-latency stream processors Supports real-time risk 
detection 

Table 1 summarizes key components, technologies, and benefits that enable real-time, scalable, and high-quality 
financial risk data processing. 

3.3 Secure and Compliant Infrastructure for Financial Data Governance 

• In the presented Cloud-centric architecture, managing sensitive financial information must be accompanied by 
ensuring security and complying with specific rules. In this way, the framework relies on encryption protocols 
for data-at-rest and data-in-transit, and a comprehensive set of access controls and identity management 
measures that prevent unauthorized data access [10].  

• Automating audit trails ensures that they are continuously monitored and, at the same time, that the financial 
data does not violate any rules stipulated by financial regulatory institutions. Additionally, they guarantee that 
workloads are separated, thanks to secure multi-tenant environments, and the timely recognition of 
vulnerabilities, by means of threat detection tools, also contributes to financial data management [11].  

• Overall, the proposed framework is the tools used to manage sensitive financial data in the presented cloud-
centric architecture combined to create a robust, multi-faceted protective stance. As a result, data integrity and 
confidentiality are preserved, and organizations can build trusts and be compliant with a wide array of 
governance requirements without compromising system performance or scalability [12]. 

4 Experimental Setup and Methodology 

4.1 Implementation Environment 

4.1.1 Data ingestion and stream processing 

Apache Kafka is key in receiving data in real time from multiple sources such as market feeds, transactional logs, IoT 
systems, and social media. Spark Streaming Structured takes data from Kafka, makes it clean and joins two data sources 
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in real time [13]. Such an approach matches the standards for linking Kafka with Spark to perform real‑time analysis 
and machine learning computations. 

4.1.2 Batch ETL and feature engineering 

Batch Apache Spark jobs are scheduled every day to move historical data from NoSQL (like Cassandra) and Cloud 
storage (such as GCS or S3) to help with dynamic feature extraction. Spark SQL and MLlib are used by these jobs to take 
care of feature stores and upgrade the GenAI models [20]. 

4.1.3 Generative AI model hosting 

Using AWS SageMaker or Databricks, one has been using Kubernetes to run the models to fine-tune in the same way as 
GPT. As a result, one can control versions, adjust according to demand, and keep improving the model continuously. 

4.1.4 Stress simulation & anomaly detection 

The GenAI engine helps to design counterfactual scenarios and detect anomalies by processing input embeddings as 
stress‑test data is generated [14]. 

4.1.5 Orchestration and DevOps 

Using Kubernetes and Argo Workflows, to allow the pipeline to be deployed, rolled back, and delivered in a CI/CD 
manner. The Kafka Connect and Spark Streaming both are set to work on fault-tolerant systems [24]. 

4.2 Evaluation Scenarios 

To assess the system and its ability to detect risks, to came up with three important evaluation situations: 

4.2.1 High‑velocity event detection 

Produces large swings in market values, for example, running up to 100,000 trades every minute. In order to look at 
how fast the platform reacts to quick jumps in prices by using automated rules, in addition to unusual patterns picked 
up by GenAI, replaying the events that happened in the banking stress of 2022 [22]. 

4.2.2 Complex pattern recognition across modalities 

Determines if the model can connect changes in transactions, news, and public opinions with early alerts of damage 
ahead. Information from various sources is fed into Kafka and then sent to GenAI to spot possible risks hidden across 
the different inputs [15]. 

4.2.3 Stress‑test simulation and early-warning alerts 

Brings in synthetic situations like rate surprises and a lack of liquidity to run the pipeline through. This module allows 
early alert generation because it creates challenging hypothetical situations and predicted loss ranges that are checked 
against regulatory limits. 

Every scenario gets tested for four weeks, during which the models powered by Spark-ML and GenAI functions work 
simultaneously and are compared [17]. 

4.3 Performance Metrics 

Table 2 Several quantitative and qualitative measures were applied to study the system’s performance 

Metric Category Specific Metric Purpose 

Detection 
Accuracy 

F1‑Score, Precision, and Recall for Risk Signal 
Detection 

Compare GenAI vs. conventional models in 
early signal detection 

Latency / 
Throughput 

End‑to‑end pipeline latency, events/sec Evaluate the ability to meet SLA in 
high‑velocity ingestion scenarios 

Resource 
Efficiency 

CPU/GPU utilization, cost per 10k events Measure operational efficiency on Cloud and 
Kubernetes infrastructure 
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Stress Prediction 
Quality 

Mean Absolute Error, KL Divergence of 
predicted vs. true loss distributions 

Quantify the quality of GenAI-generated 
stress outputs vs. classical simulation 

System Resilience Recovery time and data loss in fault-injection 
tests 

Assess the fault tolerance of streaming and 
processing components 

Operational 
Readiness 

Number of false positives/negatives in real-
world alerting 

Ensure alerts are actionable and minimize 
noise 

Sensitivity analysis was done by altering the number of input events, the sizes of selected features, and the models used. 
GenAI models performed better by gathering early warnings 15% quicker and with a 10% higher F1-score than Spark-
ML’s results, all with a very quick end-to-end time. Kubernetes’s scaling alongside DevOps automation made sure there 
was less than 0.5% message loss at peak loads [23]. 

5 Results  

5.1 Analysis 

Two systems were examined in experiments: the Spark ML with static features system and the Spark + GenAI models 
system [17]. The testbed dealt with financial data that mimicked several kinds of market situations: 

• High-frequency transactional flows (50k–150k events/min) 
• Social sentiment feed (Twitter-like real-time feeds) 
• Market data (price ticks across assets) 

 

Figure 2 Process of Real-time data pipelines with Kafka and Spark 

Full observability of the data pipelines was achieved by monitoring metrics like Latency, Throughput, CPU/GPU 
utilization, and the time it takes to run model inference. GenAI models were directly used in the system to produce stress 
scenario embeddings and to flag possible anomalies [18]. Regular re‑engineering of features and retraining of the model 
was done whenever a considerable shift in predicted risk values was noticed. The basic psychological needs impact 
engagement with GenAI chatbots like ERNIE Bot in second language learning [24]. Findings show that needs satisfaction 
mediates this relationship, with chatbots enhancing emotional engagement more effectively than teachers. 

Table 3 Analysis Results 

Metric Category Sub-metric Baseline 
Setup 

GenAI Variant Improvement/Notes 

A. Detection 
Accuracy 

F1-score ~0.72 0.79 +9.7% gain 

 Precision/Recall 0.72 / 0.77 0.75 / 0.83 Improved recall → fewer missed 
signals 
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 Lead Time – +12% earlier 
warnings 

~30 minutes advance for hourly 
stress events 

B. Pipeline 
Performance 

End-to-End Latency 1.8 sec/event 2.1 sec/event Maintained SLA < 2.5 seconds 

 Throughput 120k 
events/min 

120k 
events/min 

No bottleneck under peak load 

C. Resource 
Utilization 

CPU Load (Spark) ~65% ~70% Slight increase 

 GPU Usage (LLM) – ~55% Requires GPU provisioning 

 Cost per 10k events $0.045 $0.065 ~44% cost overhead 

D. Stress 
Simulation 
Fidelity 

Mean Absolute Error 
(Predicted Loss) 

12.3% 8.1% Better prediction accuracy 

 KL Divergence – Reduced by 
~35% 

Improved stress scenario fidelity 

E. System 
Resilience 

Recovery Time (under 
failure) 

– ≤ 45 seconds Minimal recovery delay 

 Data Loss (under 
failure) 

– <0.3% Highly resilient architecture 

 Exactly-once Semantics – Achieved Via Spark checkpointing + 
idempotent Kafka sinks 

 

 

Figure 3 GenAI in Financial Services 

The respective Figure depicts the rise of Generative AI in Financial Services from the year 2020 up to 2030, split into 
Cloud-based and on-premises uses. Most AI-driven analytics now take place in the Cloud, signaling a decision by the 
industry to use flexible infrastructures. Experts forecast that the market will expand from $1.7B this year to a greater 
size by 2030, mainly due to the need for risk assessment in real-time [19]. The increasing popularity of Cloud-native 
GenAI for financial risk management and predictive analytics is evident from the 39.1% growth rate expected during 
the period [20]. 
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6 Discussion 

GenAI models, honed through multimodal embeddings, greatly contributed to these improvements since they help 
reveal hidden connections like changes in sentiment and market behaviors that ordinary machine learning may miss. 
As a result, the warning accuracy improved by more than 9%, along with better F1 scores, proving the model's 
performance increased significantly. Up to 30 minutes before, the early reports play a vital role in finance since they 
allow for action that could prevent significant losses during sudden market changes [24]. 

Despite the modest 300 ms delay increase in event processing, this is still acceptable to be deployed in real-time 
systems. The increase from $0.045 to $0.065 in the cost per 10,000 events is offset by the significant decrease in risk 
that results [21]. During peak times, the system worked as expected and processed over 16 Spark nodes and 4 GPU-
powered LLM pods using Kubernetes without service slowdowns. 

6.1 Implementation Challenges and Limitations 

 

Figure 4 ESG Optimization of event-driven architecture with Data Streaming 

6.2 Data Heterogeneity 

Connecting the market, transactional, and social feeds involved using an extensive schema registry and designing the 
transformations by hand. Errors happened sometimes because timestamps were not always the same, and some 
necessary fields were lacking [24]. Solutions for tougher schema validation might lower the system’s workload. 

6.3 Model Explainability & Compliance 

The forecasts performed well, however, the method of prediction using the “stress-case embeddings” was not very 
intuitive, thus a person still needed to check them manually per task. Using LLMs to identify risks in regulated markets 
could go against the principles of fairness and openness. 

6.4 Resource & Cost Constraints 

Load caused peak times of 500 ms, which could influence the upholding of SLAs. The right size must be chosen to prevent 
wasting money. Using spot instances solved part of the problem, yet orchestration needed adjustments. 

6.5 Operational Complexity 

Making and looking after CI/CD pipelines for model retraining, container orchestration, A/B testing, and rollback was 
not an easy task. The need to use Spark, Kafka, and GenAI together led to bringing Prometheus and MLFlow together, 
setting higher expectations for tooling. 
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6.6 Stress Testing Limitations 

Synthetic stress does not always match real-world shocks as closely as one would hope since actual shock events are 
still hard to compare. As retraining continued, new shifts in the market and unpredictable events led to a 5–7% drop in 
performance before things were corrected. 

Generative AI has rapidly gained prominence through tools like ChatGPT and DALL·E, yet its definition remains 
inconsistent across public and academic domains. This paper maps 631 AI-driven content generation solutions to clarify 
how “Generative AI” is understood and applied [22]. The investigation shows that a Cloud‑native, GenAI‑enhanced Big 
Data pipeline works better in early warning and risk prediction than conventional Spark‑ML systems at costs and 
latency, which people are willing to accept. The main obstacles during implementation are managing data, 
understanding regulations, and creating complex inferring systems, which call for further research and changes. 

7 Conclusion  

The findings proved that using Big Data pipelines and GenAI on a Cloud platform improves the proactive detection of 
financial risks. Using Apache Kafka, Spark, and Kubernetes and relying on GenAI’s advanced AI, the plan greatly 
enhances the detection of financial risks at an early stage. Dealing with a wide range of data at high speed in real time 
gave the business better insight, which raised its early warning level by 9% and resulted in fewer losses. Tests showed 
that the solution could be used in real financial situations because of its scalability, affordable cost, and low lag. 

7.1 Future Work 

The proposed architecture for financial risk prediction using GenAI and Big Data will need certain innovative solutions 
to remain relevant. The modifications will promote the system to be more precise in predicting outcomes, more 
transparent, able to be extended, elastic, and sustainable. 

• Integration of Multimodal Data Sources 
• Advanced Explainability and Compliance 
• Expansion into DeFi and Crypto Ecosystems 
• Sustainable AI and Cloud Efficiency 

Advances will rely on using IoT with geospatial information from satellites to boost the effectiveness of risk models. 
Using these approaches will result in more openness and adherence to regulations. Getting into DeFi will mean using 
pipelines specific to blockchain and adaptable models. Making AI sustainable will rely on efficient models, less power-
consuming GPUs, and considering the carbon impact when scheduling AI jobs in the Cloud. The rise of GenAI presents 
immense opportunities but also significant regulatory challenges, as highlighted in a workshop by Google, UW-Madison, 
and Stanford. This paper captures key insights on aligning evolving GenAI technologies with effective, innovation-
friendly regulation. 
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