
 Corresponding author: Naresh Kiran Kumar Reddy Yelkoti

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

Comprehensive Security Framework for Serverless Computing: Integrating
DevSecOps Practices in Aws Lambda and Azure Functions

Naresh Kiran Kumar Reddy Yelkoti *

Wilmington University, USA.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 1393-1401

Publication history: Received on 05 May 2025; revised on 12 June 2025; accepted on 14 June 2025

Article DOI: https://doi.org/10.30574/wjaets.2025.15.3.1052

Abstract

Serverless computing has fundamentally transformed application architecture by abstracting infrastructure
management, yet this paradigm shift introduces distinctive security challenges that conventional tools struggle to
address. The ephemeral nature of serverless functions creates visibility gaps that leave organizations vulnerable to
configuration drift, runtime attacks, and compliance violations. This article presents a comprehensive security
framework that addresses these challenges through systematic integration of protection mechanisms across the entire
serverless lifecycle. The framework encompasses static code analysis tailored for function-based architectures,
automated configuration scanning that adapts to rapid deployment cycles, and agentless runtime monitoring that
maintains performance efficiency. By embedding Policy as Code within CI/CD pipelines and implementing lightweight
instrumentation techniques, organizations can achieve continuous compliance with standards such as PCI-DSS and CIS
benchmarks while maintaining developer agility. The proposed model demonstrates how security controls can be
seamlessly integrated without impeding deployment velocity, utilizing automated compliance checks and real-time
threat detection to minimize both misconfiguration risks and runtime vulnerabilities. This holistic approach enables
organizations to leverage the benefits of serverless computing while maintaining robust security postures across their
AWS Lambda and Azure Functions deployments.

Keywords: Serverless security; AWS Lambda; Azure Functions; Policy as Code; Runtime protection

1. Introduction: The Serverless Security Paradigm Shift

1.1. Evolution from Traditional Infrastructure to Serverless Computing

The computing landscape has undergone a fundamental transformation with the emergence of serverless architectures,
marking a significant departure from traditional infrastructure management paradigms. This evolution represents
more than a technological shift—it embodies a complete reimagining of how applications are developed, deployed, and
secured. Traditional infrastructure required organizations to manage servers, operating systems, and runtime
environments, demanding significant operational overhead and expertise. The transition to serverless computing
eliminates these responsibilities, allowing developers to focus exclusively on business logic while cloud providers
handle all infrastructure concerns [1].

1.2. Overview of AWS Lambda and Azure Functions Architectures

Serverless computing abstracts away the underlying infrastructure, allowing developers to focus solely on code
execution in response to events. AWS Lambda pioneered this model by introducing Functions as a Service (FaaS), where
code runs in stateless compute containers that are event-triggered, automatically scaled, and fully managed by the cloud
provider. Azure Functions followed with similar capabilities, offering deep integration with Microsoft's ecosystem while

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2025.15.3.1052
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2025.15.3.1052&domain=pdf

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 1393-1401

1394

maintaining the core serverless principles of automatic scaling, pay-per-execution pricing, and zero server
management. Both platforms execute code in isolated environments that exist only for the duration of the function
invocation, creating a fundamentally different security context from persistent server-based applications. These
platforms support multiple programming languages and integrate seamlessly with their respective cloud ecosystems,
enabling developers to build complex applications using small, focused functions that respond to specific events [2].

1.3. Unique Security Challenges in Ephemeral, Event-Driven Environments

The ephemeral and event-driven nature of serverless architectures introduces unique security challenges that
traditional security models struggle to address. Unlike conventional applications running on long-lived servers,
serverless functions exist momentarily, triggered by diverse event sources ranging from HTTP requests to database
changes, message queues, and scheduled events. This transient existence complicates security monitoring, as functions
may complete execution before traditional security tools can assess them. The distributed nature of serverless
applications, often composed of hundreds of interconnected functions, creates complex attack surfaces where each
function, its triggers, and dependencies represent potential vulnerability points. The stateless nature of functions means
that a security context must be established and validated for each invocation, increasing the complexity of access control
and authentication mechanisms [1].

Table 1 Comparison of Security Challenges in Traditional vs. Serverless Architectures [1, 2]

Security Aspect Traditional
Architecture

Serverless Architecture Key Implications

Infrastructure
Management

Direct control over
servers and OS

Abstracted by the cloud
provider

Limited visibility into the underlying
infrastructure

Security Perimeter Well-defined network
boundaries

No fixed perimeter Requires identity-based security
models

Runtime Environment Persistent, long-running
processes

Ephemeral, event-triggered
execution

Cannot deploy traditional security
agents

Attack Surface Fixed endpoints and
services

Dynamic function endpoints Continuously changing attack
vectors

Access Control Network-based + IAM Primarily IAM-based Complex permission management

Monitoring Approach Agent-based monitoring API and log-based
monitoring

Requires new observability
strategies

1.4. The Visibility Gap: Why Traditional Security Tools Fall Short

Traditional security tools, designed for persistent infrastructure, face significant limitations in serverless environments.
Conventional vulnerability scanners expect long-running processes and stable network endpoints, neither of which
exists in serverless architectures. Runtime application self-protection (RASP) solutions and host-based intrusion
detection systems require persistent agents that cannot be deployed in ephemeral function containers. Even cloud-
native security tools often lack the granularity to monitor individual function executions or the speed to capture security
events in functions that execute for mere milliseconds. This visibility gap leaves organizations blind to potential security
incidents, configuration drift, and compliance violations in their serverless deployments. The challenge extends beyond
runtime monitoring to encompass the entire development lifecycle, as traditional static analysis tools may not
understand serverless-specific patterns and vulnerabilities [2].

1.5. Research Objectives and Article Scope

This article addresses these challenges by presenting a comprehensive security framework specifically designed for
serverless architectures. The framework encompasses the entire serverless lifecycle, from development through
production, integrating security controls that respect the unique characteristics of AWS Lambda and Azure Functions.
By examining code-level vulnerabilities, configuration security, runtime protection, and compliance automation, this
work provides actionable strategies for organizations seeking to secure their serverless deployments without
sacrificing the agility and efficiency that make serverless computing attractive. The scope includes practical
implementation guidance for embedding security into CI/CD pipelines, leveraging Policy as Code for automated
governance, and deploying lightweight monitoring solutions that maintain visibility without impeding function

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 1393-1401

1395

performance. The article aims to bridge the gap between traditional security practices and the requirements of modern
serverless architectures, providing a roadmap for organizations to achieve comprehensive security coverage across
their serverless deployments [1].

2. Serverless Attack Surface and Threat Landscape

2.1. Function-level Vulnerabilities and Injection Attacks

The serverless paradigm introduces a distinct set of vulnerabilities at the function level that differ significantly from
traditional application security concerns. Each serverless function represents an isolated execution environment that
processes inputs from various event sources, creating multiple entry points for potential attacks. Injection
vulnerabilities remain a critical concern in serverless environments, where functions often process data from API
Gateway requests, message queues, storage events, and other triggers without adequate input validation. SQL injection,
command injection, and code injection attacks can be particularly devastating in serverless contexts because functions
typically have elevated permissions to access cloud resources. The stateless nature of serverless functions complicates
security validation, as each invocation must independently verify and sanitize inputs without the benefit of a persistent
security context or session management [3].

2.2. Event-Source Mapping Security Risks

Event-source mappings in serverless architectures create unique attack vectors that traditional security models fail to
address adequately. Functions can be triggered by numerous event sources, including HTTP requests, database changes,
file uploads, message queues, and scheduled events, each presenting distinct security challenges. Attackers can exploit
misconfigured event mappings to trigger unauthorized function executions, potentially leading to resource exhaustion
or data breaches. The complexity of event-source permissions and the lack of visibility into cross-service interactions
make it difficult to maintain a comprehensive security posture. Organizations often struggle to implement proper
authentication and authorization controls across diverse event sources, particularly when functions are triggered by
internal services or third-party integrations [4].

2.3. Identity and Access Management Complexities

Identity and access management in serverless environments presents unprecedented complexity due to the fine-
grained permission requirements and the principle of least privilege. Each function requires specific permissions to
access cloud resources, creating a proliferation of IAM roles and policies that become difficult to manage and audit. The
challenge intensifies when functions need to assume different identities based on the triggering event or when
implementing cross-account access patterns. Service-to-service authentication in serverless architectures often relies
on cloud provider IAM systems, but misconfigurations can lead to privilege escalation or unauthorized access to
sensitive resources. The ephemeral nature of function execution makes it challenging to implement traditional identity
verification mechanisms, forcing organizations to rely heavily on cloud provider security controls [3].

2.4. Third-party Dependency Vulnerabilities

Serverless functions heavily rely on third-party libraries and dependencies, creating a significant attack surface that
extends beyond the function code itself. The lightweight nature of serverless deployments encourages developers to
include numerous external packages, often without proper security vetting. Vulnerable dependencies can introduce
security flaws that attackers can exploit to compromise function execution or access sensitive data. The challenge is
compounded by the rapid deployment cycles typical of serverless development, where dependency updates may be
overlooked in favor of feature delivery. Modern security tools such as Prisma Cloud and Wiz.io have evolved to address
these challenges by providing comprehensive vulnerability scanning capabilities for serverless deployments, including
deep inspection of function packages, container images for custom runtimes, and third-party libraries. These platforms
can identify known vulnerabilities in dependencies, detect outdated packages with security patches available, and even
analyze the actual usage of vulnerable code paths within functions. Supply chain attacks targeting popular serverless
frameworks and libraries pose an increasing threat, as compromised packages can affect thousands of deployed
functions across multiple organizations. The integration of automated dependency scanning into CI/CD pipelines,
coupled with runtime protection that monitors for exploitation attempts of known vulnerabilities, provides a multi-
layered defense against dependency-based attacks [4].

2.5. Cold Start Exploitation and Timing Attacks

Cold start latency in serverless platforms creates opportunities for sophisticated timing-based attacks that can reveal
sensitive information or enable denial-of-service scenarios. Attackers can deliberately trigger cold starts to measure

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 1393-1401

1396

execution times and infer information about function behavior, dependencies, or data processing patterns. The
predictable nature of cold start behavior across cloud providers enables attackers to craft targeted attacks that exploit
initialization vulnerabilities or resource allocation patterns. Asymmetric DDoS attacks specifically designed for
serverless environments can overwhelm auto-scaling mechanisms, causing significant cost implications and service
degradation. These attacks exploit the economic model of serverless computing, where defenders pay for each function
invocation regardless of its legitimacy [3].

2.6. Data Exposure Through Misconfigured Triggers

Misconfigured triggers represent one of the most common yet severe security risks in serverless deployments, often
leading to unintended data exposure or unauthorized access. Functions triggered by storage events may inadvertently
process sensitive data without proper encryption or access controls, while API Gateway misconfigurations can expose
internal functions to public internet access. The complexity of trigger configurations across different event sources
makes it difficult to maintain consistent security policies, particularly in multi-cloud environments. Data leakage can
occur through various channels, including function logs, error messages, and response payloads that contain sensitive
information. The distributed nature of serverless applications means that a single misconfigured trigger can
compromise the security of an entire application ecosystem [4].

Table 2 Common Serverless Attack Vectors and Mitigation Strategies [3, 4]

Attack Vector Description Potential Impact Mitigation Strategy

Injection Attacks Malicious input through event
sources

Code execution, data
breach

Input validation, parameterized
queries

Event-Source
Manipulation

Exploiting misconfigured
triggers

Unauthorized function
execution

Strict event-source permissions

Cold Start DoS Deliberate cold start triggers Cost inflation, service
degradation

Rate limiting, reserved concurrency

Dependency
Vulnerabilities

Exploiting third-party
packages

Supply chain
compromise

Automated dependency scanning

IAM Privilege
Escalation

Exploiting overly permissive
roles

Unauthorized resource
access

Principle of least privilege

Secrets Exposure Hardcoded credentials or logs Credential theft Automated secrets management

3. Shift-Left Security: Embedding Protection in Development

3.1. Static Application Security Testing (SAST) for Serverless Code

Static Application Security Testing in serverless environments requires specialized approaches that account for the
unique characteristics of function-based architectures. Traditional SAST tools often struggle to analyze serverless code
effectively due to the distributed nature of functions and their heavy reliance on cloud service integrations. Modern
SAST solutions such as Fortify, AWS CodeGuru, and Snyk Code have evolved to address serverless-specific security
concerns, providing deep analysis of function code while understanding cloud service integrations. These tools scan for
various vulnerability categories including injection flaws, authentication bypasses, cryptographic weaknesses, insecure
deserialization, and business logic errors that could lead to unauthorized access or data exposure. AWS CodeGuru
specifically understands AWS SDK usage patterns and can identify improper API calls, while Fortify provides
comprehensive coverage across multiple programming languages commonly used in serverless development. The
analysis must extend beyond traditional code scanning to include configuration files, deployment templates, and
function metadata that define security boundaries. SAST tools for serverless environments detect code-level
vulnerabilities such as SQL injection vulnerabilities in database queries, command injection through unsanitized inputs,
path traversal attacks in file operations, and cross-site scripting (XSS) in function responses. They also identify logic
errors including race conditions in concurrent executions, improper error handling that leaks sensitive information,
and missing authentication checks in function handlers. Serverless SAST tools need to recognize patterns such as
improper input validation from event sources, insecure deserialization of event payloads, and potential injection points
across various trigger types. Advanced capabilities include taint analysis to track untrusted data flows through function

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 1393-1401

1397

code, semantic analysis to understand the security implications of cloud service calls, and custom rule creation to
enforce organization-specific coding standards [5].

3.2. Infrastructure as Code (IaC) Security Scanning

Infrastructure as Code has become integral to serverless deployments, making IaC security scanning a critical
component of the shift-left security approach. Serverless applications are typically defined using templates such as AWS
CloudFormation, Terraform, or Azure Resource Manager, which specify function configurations, permissions, and
resource relationships. Modern IaC security scanning tools like Prisma Cloud's Checkov, Bridgecrew, and Wiz.io provide
comprehensive analysis of these templates before deployment, identifying potential security risks across multiple cloud
providers and IaC frameworks. These tools can detect misconfigurations such as overly permissive IAM roles, publicly
accessible functions, unencrypted environment variables, and missing security controls. Checkov, for instance, offers
hundreds of built-in policies specifically designed for serverless resources, while Wiz.io provides graph-based analysis
to understand the relationships between different resources and their potential security implications. The scanning
process validates compliance with organizational security policies and industry best practices while ensuring that the
principle of least privilege is maintained across all function definitions. These tools integrate seamlessly into CI/CD
pipelines through CLI interfaces and API integrations, enabling automated policy enforcement at pull request time.
Advanced features include custom policy creation using languages like Python or YAML, automatic remediation
suggestions, and drift detection between deployed resources and their IaC definitions. Automated IaC scanning enables
teams to catch security issues before deployment, preventing costly remediation efforts in production environments
[6].

3.3. Policy as Code Implementation Strategies

Policy as Code represents a paradigm shift in how organizations enforce security standards across serverless
deployments. This approach involves codifying security policies, compliance requirements, and governance rules into
executable formats that can be automatically validated during the development process. For serverless architectures,
Policy as Code must address function-specific concerns such as runtime configurations, event source permissions, and
resource access patterns. Implementation strategies include using policy engines that evaluate function definitions
against predefined rules, integrating policy validation into CI/CD pipelines, and providing developers with immediate
feedback on policy violations. The policies should be version-controlled, tested, and maintained alongside application
code, ensuring consistency and traceability across the development lifecycle [5].

3.4. Automated Vulnerability Detection in CI/CD Pipelines

Integrating automated vulnerability detection into CI/CD pipelines is essential for maintaining security in the rapid
deployment cycles typical of serverless development. This integration must encompass multiple scanning layers,
including dependency vulnerability analysis, container image scanning for custom runtimes, and configuration
validation. The automation should trigger security checks at various pipeline stages, from code commit through
deployment, ensuring that vulnerabilities are identified and addressed before reaching production. Pipeline integration
must be designed to minimize false positives while maintaining comprehensive coverage, as excessive security alerts
can lead to alert fatigue and bypassed controls. The feedback loop should be rapid enough to support agile development
practices while thorough enough to catch critical security issues [6].

3.5. Developer-friendly Security Feedback Mechanisms

Creating developer-friendly security feedback mechanisms is crucial for successful shift-left security adoption in
serverless environments. Security findings must be presented in context, with clear explanations of risks and actionable
remediation guidance that developers can implement without extensive security expertise. Feedback should be
integrated into developer workflows through IDE plugins, pull request comments, and dashboard visualizations that
highlight security issues without disrupting development velocity. The mechanisms should prioritize findings based on
severity and exploitability, helping developers focus on the most critical issues first. Educational components within the
feedback system can help developers understand serverless-specific security patterns and build more secure functions
from the outset [5].

3.6. Security Unit Testing for Serverless Functions

Security unit testing for serverless functions extends traditional testing practices to include security-specific scenarios
and attack simulations. These tests should validate input sanitization, authentication mechanisms, authorization logic,
and secure handling of sensitive data within function code. Security unit tests must account for the event-driven nature
of serverless functions, testing various event payload formats and edge cases that could lead to security vulnerabilities.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 1393-1401

1398

The testing framework should include checks for common serverless security anti-patterns such as hardcoded
credentials, insufficient input validation, and improper error handling that could leak sensitive information. Integration
with local serverless emulation tools enables developers to run security tests in development environments that closely
mirror production behavior, catching security issues early in the development cycle [6].

Table 3 Shift-Left Security Tools for Serverless Development [5, 6]

Tool Category Purpose Implementation Stage Key Features

SAST Tools Code vulnerability
scanning

Pre-commit/commit Serverless-aware patterns, cloud SDK
analysis

IaC Scanners Template security
validation

Pull request Policy enforcement, misconfiguration
detection

Dependency
Checkers

Third-party
vulnerability scan

Build stage CVE database integration, license
compliance

Policy Validators Compliance
verification

Pre-deployment Custom rule engines, automated
remediation

Security Unit Tests Function security
validation

Test stage Attack simulation, input fuzzing

IDE Security Plugins Real-time developer
feedback

Development Inline suggestions, secure coding
patterns

4. Configuration and Compliance Automation

4.1. CIS Benchmarks Adaptation for Serverless Environments

The Center for Internet Security (CIS) benchmarks require significant adaptation to address the unique characteristics
of serverless architectures. Traditional CIS controls designed for server-based infrastructure must be reinterpreted for
ephemeral function environments where concepts like host hardening and network segmentation apply differently.
Serverless-specific benchmarks focus on function-level security controls, including proper authentication mechanisms,
encrypted environment variables, and minimal function permissions. The adaptation process involves mapping
traditional security controls to serverless equivalents, such as replacing network-based controls with API Gateway
configurations and translating OS-level hardening to function runtime settings. Organizations must develop automated
validation mechanisms that continuously assess serverless deployments against these adapted benchmarks, ensuring
consistent security posture across all functions [7].

4.2. PCI-DSS Compliance in Stateless Architectures

Achieving Payment Card Industry Data Security Standard (PCI-DSS) compliance in stateless serverless architectures
presents unique challenges that require innovative approaches to data protection and audit trails. The ephemeral
nature of serverless functions complicates traditional compliance requirements such as system logging, data retention,
and network segmentation. Serverless PCI-DSS implementations must ensure that cardholder data is never stored in
function memory beyond the execution lifecycle and that all data transmissions are encrypted using approved protocols.
Compliance automation tools must validate that functions handling payment data implement proper tokenization,
maintain comprehensive audit logs despite their transient nature, and enforce strict access controls through cloud
provider IAM mechanisms. The stateless architecture requires careful consideration of how compliance evidence is
collected and maintained, particularly for requirements related to system monitoring and incident response [8].

4.3. Automated Configuration Drift Detection

Configuration drift in serverless environments can occur rapidly due to the ease of function deployment and the
distributed nature of serverless applications. Automated drift detection systems must continuously monitor function
configurations, permissions, and dependencies to identify deviations from approved baselines. These systems need to
track changes across multiple configuration layers, including function code, runtime settings, environment variables,
and associated cloud resources. The detection mechanisms should differentiate between authorized changes deployed
through proper channels and unauthorized modifications that could indicate security breaches or compliance

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 1393-1401

1399

violations. Real-time alerting and automated remediation capabilities enable organizations to maintain configuration
integrity without impeding legitimate development activities [7].

4.4. Resource Permission Boundary Enforcement

Enforcing permission boundaries in serverless architectures requires sophisticated automation to manage the complex
web of function permissions and resource access patterns. Each function must operate within strictly defined
permission boundaries that grant only the minimum access required for its specific purpose. Automated enforcement
systems must validate that functions cannot exceed their designated permissions through privilege escalation or cross-
function attacks. The enforcement mechanisms should implement defense-in-depth strategies using both preventive
controls at deployment time and detective controls during runtime. Organizations must establish clear permission
hierarchies and implement automated tools that validate permission assignments against security policies, preventing
overly permissive configurations that could lead to data breaches [8].

4.5. Secret Management and Rotation Strategies

Secrets management in serverless environments demands automated approaches that eliminate hardcoded credentials
while ensuring seamless access to required resources. Functions require access to various secrets, including API keys,
database passwords, and encryption keys, which must be securely stored and regularly rotated. Automated secrets
management systems must integrate with cloud provider secret stores, implement just-in-time secret retrieval, and
ensure that secrets are never logged or exposed in function responses. Rotation strategies must account for the
distributed nature of serverless applications, coordinating secret updates across multiple functions without causing
service disruptions. The automation should include mechanisms for detecting and alerting on potential secret exposure,
such as credentials accidentally committed to source control or logged in error messages [7].

4.6. Cross-Function Security Policy Consistency

Maintaining consistent security policies across hundreds or thousands of serverless functions requires comprehensive
automation that can enforce standardized controls while accommodating function-specific requirements. Cross-
function policy consistency involves ensuring that all functions within an application ecosystem adhere to the same
security standards for authentication, authorization, encryption, and logging. Automated policy enforcement must
validate that security controls are uniformly applied regardless of function language, trigger type, or deployment
method. The consistency mechanisms should include template-based deployments that embed security controls by
default, policy validation gates in CI/CD pipelines, and continuous compliance monitoring that identifies functions
deviating from organizational standards. Organizations must implement centralized policy management systems that
propagate security updates across all functions while maintaining audit trails of policy changes and enforcement actions
[8].

5. Runtime Protection and Observability

5.1. Agentless Monitoring Approaches for Lambda and Azure Functions

Agentless monitoring represents a fundamental shift in how security teams approach runtime protection for serverless
environments, where traditional agent-based solutions cannot be deployed in ephemeral function containers. These
approaches leverage cloud-native logging services, API integrations, and platform-specific telemetry to gather security-
relevant data without modifying function code or runtime environments. For AWS Lambda, agentless monitoring
utilizes CloudTrail for API activity, X-Ray for distributed tracing, and Lambda Extensions for custom telemetry
collection. Azure Functions similarly provides Application Insights integration and diagnostic logs that enable
comprehensive monitoring without embedded agents. The challenge lies in aggregating and correlating data from
multiple sources to create a unified security view while maintaining the performance characteristics that make
serverless attractive [9].

5.2. Real-time Threat Detection Using CloudWatch and Azure Monitor

CloudWatch and Azure Monitor serve as the foundation for real-time threat detection in serverless environments,
providing native integration with function execution metrics and logs. These platforms enable security teams to define
custom metrics and alerts that identify suspicious patterns such as unusual invocation rates, abnormal error
frequencies, or unexpected resource access patterns. Real-time detection strategies must account for the bursty nature
of serverless workloads, distinguishing between legitimate traffic spikes and potential attacks. The implementation
involves creating composite alarms that correlate multiple indicators, setting dynamic baselines that adapt to changing
usage patterns, and integrating with security information and event management (SIEM) systems for comprehensive

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 1393-1401

1400

threat analysis. Advanced detection capabilities include analyzing function execution duration anomalies, memory
usage patterns, and concurrent execution limits that might indicate resource exhaustion attacks [10].

5.3. Behavioral Anomaly Detection in Function Execution

Behavioral anomaly detection in serverless environments requires sophisticated analysis of function execution patterns
to identify deviations that could indicate security incidents. This approach involves establishing baseline behaviors for
individual functions, including typical execution times, resource consumption patterns, API call sequences, and data
access patterns. Machine learning algorithms analyze historical execution data to build models that can identify
anomalous behaviors in real-time, such as functions accessing unusual resources, processing atypical data volumes, or
exhibiting unexpected error patterns. The detection system must adapt to the dynamic nature of serverless applications,
where legitimate behavior changes frequently due to code updates or shifting usage patterns. Anomaly detection must
balance sensitivity to potential threats with the need to minimize false positives that could overwhelm security teams
[9].

5.4. Lightweight Instrumentation Techniques

Implementing security observability in serverless functions requires lightweight instrumentation techniques that
minimize performance impact while providing comprehensive visibility. These techniques include structured logging
practices that capture security-relevant events, custom metrics emission for tracking security indicators, and
distributed tracing integration for understanding request flows across multiple functions. Instrumentation must be
designed to operate within the constraints of function execution time limits and memory allocations while providing
sufficient detail for security analysis. Modern approaches utilize Lambda Layers or Azure Functions Extensions to inject
instrumentation code without modifying function logic, enabling consistent security telemetry across diverse function
implementations. The instrumentation should capture contextual information such as user identity, request origins, and
data classifications to support forensic analysis and compliance requirements [10].

5.5. Security Event Correlation Across Distributed Functions

Security event correlation in serverless architectures presents unique challenges due to the distributed and
asynchronous nature of function executions. Effective correlation requires tracking request flows across multiple
functions, identifying related events that occur at different times, and understanding the causal relationships between
function invocations. Correlation engines must process high volumes of events from diverse sources, including function
logs, platform audit trails, and custom security telemetry, to identify attack patterns that span multiple functions. The
implementation involves using correlation identifiers that propagate through function chains, temporal analysis to
group related events, andpattern-matchingg algorithms that recognize known attack signatures. Advanced correlation
techniques employ graph analysis to understand function relationships and identify potential lateral movement
patterns within serverless applications [9].

5.6. Incident Response Automation for Serverless Environments

Incident response in serverless environments demands automated approaches that can react to security events at the
speed and scale of function executions. Automation frameworks must integrate with cloud provider APIs to implement
response actions such as disabling compromised functions, revoking permissions, or blocking malicious event sources.
The response automation should follow predefined playbooks that account for the stateless nature of functions and the
potential for rapid propagation of attacks across interconnected services. Implementation strategies include using step
functions or logic apps to orchestrate response workflows, leveraging cloud-native security services for automated
remediation, and maintaining immutable audit trails of all response actions. The automation must balance aggressive
response actions with the need to maintain service availability, implementing graduated responses based on threat
severity and confidence levels [10].

6. Conclusion

The serverless computing paradigm represents a fundamental shift in application architecture that demands equally
transformative approaches to security. The comprehensive framework presented demonstrates that securing
serverless environments requires integration across the entire application lifecycle, from development through runtime
operations. By embedding security controls into CI/CD pipelines through Policy as Code, implementing automated
compliance validation, and deploying agentless monitoring solutions, organizations can achieve robust protection
without sacrificing the agility and efficiency that make serverless attractive. The evolution from reactive security
measures to proactive, automated controls enables teams to address the unique challenges of ephemeral, event-driven
architectures while maintaining continuous compliance with regulatory standards. Success in serverless security hinges

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 1393-1401

1401

on recognizing that traditional security tools and practices cannot simply be transplanted to these environments;
instead, purpose-built solutions that understand the stateless, distributed nature of functions are essential. As
serverless adoption continues to accelerate across industries, the security practices and frameworks outlined provide
a foundation for organizations to confidently embrace this technology while maintaining strong security postures. The
future of serverless security lies in continued automation, deeper integration with cloud-native services, and the
development of security tools that operate at the speed and scale of modern serverless applications.

References

[1] Xing Li, et al., "Securing Serverless Computing: Challenges, Solutions, and Opportunities," IEEE Network, vol. PP,
no. 99, October 31, 2022. https://ieeexplore.ieee.org/document/9933509/citations#citations

[2] Alex Kaplunovich, "ToLambda—Automatic Path to Serverless Architectures," in 2019 IEEE/ACM 3rd
International Workshop on Refactoring (IWoR), IEEE, September 19, 2019.
https://ieeexplore.ieee.org/document/8844428

[3] Dengzhe Wang, et al., "Autoscaling Cracker: An Efficient Asymmetric DDoS Attack on Serverless Functions," in
GLOBECOM 2022 - IEEE Global Communications Conference, IEEE, January 11, 2023.
https://ieeexplore.ieee.org/abstract/document/10001386/references#references

[4] Kien Nguyen, et al., "Serverless Computing Lifecycle Model for Edge Cloud Deployments," in 2023 IEEE
International Conference on Communications Workshops (ICC Workshops), IEEE, October 23, 2023.
https://ieeexplore.ieee.org/document/10283589

[5] Kamalakar Reddy Ponaka, "Shift-Left Approach for Vulnerability Management in SDLC," International Journal of
Scientific Research in Engineering and Management (IJSREM), 2023. https://ijsrem.com/download/shift-left-
approach-for-vulnerability-management-in-sdlc/

[6] Mark Pitchford "The 'Shift Left' Approach to Securing Connected Embedded Systems," 1st June 2024.
https://ldra.com/the-shift-left-approach-to-securing-connected-embedded-systems/

[7] Trieu C. Chieu, et al., "Automation System for Validation of Configuration and Security Compliance in Managed
Cloud Services," in 2012 IEEE Ninth International Conference on e-Business Engineering, IEEE, February 25,
2013. https://ieeexplore.ieee.org/document/6468252/figures#figures

[8] Ghareeb Falazi, et al., "On Unifying the Compliance Management of Applications Based on IaC Automation,"
Research Group Software Architecture, University of Vienna, 2023.
https://eprints.cs.univie.ac.at/7272/1/IEEE___On_Unifying_the_Compliance_Management_of_Applications_base
d_on_IaC_Automation.pdf

[9] Bertrand Anckaert, et al., "Runtime Protection via Dataflow Flattening," in 2009 Third International Conference
on Emerging Security Information, Systems and Technologies, IEEE, August 21, 2009.
https://ieeexplore.ieee.org/document/5211006

[10] Nima Mahmoudi, et al., "Performance Modeling of Metric-Based Serverless Computing Platforms," IEEE
Transactions on Cloud Computing, February 2022. https://arxiv.org/pdf/2202.11247

https://ieeexplore.ieee.org/document/9933509/citations#citations
https://ieeexplore.ieee.org/document/9933509/citations#citations
https://ieeexplore.ieee.org/document/8844428
https://ieeexplore.ieee.org/document/8844428
https://ieeexplore.ieee.org/document/8844428
https://ieeexplore.ieee.org/abstract/document/10001386/references#references
https://ieeexplore.ieee.org/abstract/document/10001386/references#references
https://ieeexplore.ieee.org/abstract/document/10001386/references#references
https://ieeexplore.ieee.org/document/10283589
https://ieeexplore.ieee.org/document/10283589
https://ieeexplore.ieee.org/document/10283589
https://ijsrem.com/download/shift-left-approach-for-vulnerability-management-in-sdlc/
https://ijsrem.com/download/shift-left-approach-for-vulnerability-management-in-sdlc/
https://ijsrem.com/download/shift-left-approach-for-vulnerability-management-in-sdlc/
https://ldra.com/the-shift-left-approach-to-securing-connected-embedded-systems/
https://ldra.com/the-shift-left-approach-to-securing-connected-embedded-systems/
https://ldra.com/the-shift-left-approach-to-securing-connected-embedded-systems/
https://ieeexplore.ieee.org/document/6468252/figures#figures
https://ieeexplore.ieee.org/document/6468252/figures#figures
https://eprints.cs.univie.ac.at/7272/1/IEEE___On_Unifying_the_Compliance_Management_of_Applications_based_on_IaC_Automation.pdf
https://eprints.cs.univie.ac.at/7272/1/IEEE___On_Unifying_the_Compliance_Management_of_Applications_based_on_IaC_Automation.pdf
https://eprints.cs.univie.ac.at/7272/1/IEEE___On_Unifying_the_Compliance_Management_of_Applications_based_on_IaC_Automation.pdf
https://eprints.cs.univie.ac.at/7272/1/IEEE___On_Unifying_the_Compliance_Management_of_Applications_based_on_IaC_Automation.pdf
https://ieeexplore.ieee.org/document/5211006
https://ieeexplore.ieee.org/document/5211006
https://ieeexplore.ieee.org/document/5211006
https://arxiv.org/pdf/2202.11247
https://arxiv.org/pdf/2202.11247

