
 Corresponding author: Venkateswarlu Boggavarapu.

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0.

Architecting real time data pipelines for AI driven fraud detection

Venkateswarlu Boggavarapu *

Visvesvaraya Technological University (VTU), India.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 1088-1098

Publication history: Received on 29 April 2025; revised on 08 June 2025; accepted on 11 June 2025

Article DOI: https://doi.org/10.30574/wjaets.2025.15.3.0978

Abstract

Financial institutions face increasingly sophisticated fraud attacks that require immediate detection and prevention
mechanisms. This article presents a comprehensive framework for architecting real time data pipelines specifically
designed for AI driven fraud detection systems. It examines the critical components necessary for achieving low latency
processing, scalability, and reliability in fraud detection workflows. The architecture integrates streaming technologies,
cloud native infrastructure, graph databases, event sourcing patterns, and feature stores to form a cohesive system
capable of detecting fraudulent activities as they occur. The framework addresses key challenges including data
consistency in distributed environments, relationship-based fraud detection, and model deployment strategies.
Implementation patterns discussed provide financial institutions with practical approaches for enhancing their fraud
prevention capabilities while accommodating evolving attack vectors. The findings demonstrate that properly
architected real time data pipelines enable organizations to significantly reduce their vulnerability window while
improving operational efficiency in fraud management operations.

Keywords: Real Time Data Pipelines; Fraud Detection; Graph Databases; Event Sourcing; Feature Stores

1. Introduction

The financial sector experiences billions in losses annually due to fraudulent activities, with global fraud losses
estimated to exceed billions in recent years. Traditional batch-oriented fraud detection systems operate with significant
time delays, often identifying fraudulent transactions hours or days after they occur. This delay creates a critical window
of vulnerability during which financial institutions remain exposed to further attacks and financial losses.

Real time data pipelines have emerged as a vital infrastructure component for modern fraud detection systems, enabling
financial institutions to analyze transactions and user behaviors as they occur. The integration of artificial intelligence
(AI) and machine learning (ML) algorithms with these real time pipelines provides a powerful mechanism for
identifying complex fraud patterns that would otherwise remain undetected by rule-based systems. However, designing
effective real time data pipelines for fraud detection presents unique architectural challenges that must be addressed
to ensure optimal performance, reliability, and scalability.

This paper explores the architectural considerations, technological components, and implementation patterns
necessary for building effective real time data pipelines for AI driven fraud detection systems. It examines how these
pipelines can be optimized to support the demanding requirements of fraud prevention while accommodating the
evolving nature of financial fraud.

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2025.15.3.0978
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2025.15.3.0978&domain=pdf

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 1088-1098

1089

2. Low latency data processing frameworks

2.1. Stream Processing Technologies

The foundation of any real time fraud detection system is the ability to process high volumes of transaction data with
minimal latency. Apache Kafka has emerged as the de facto standard for building real time data pipelines, providing a
distributed event streaming platform capable of handling trillions of events per day. Kafka's publish subscribe model
enables fraud detection systems to ingest transaction data from multiple sources simultaneously while maintaining data
ordering and providing fault tolerance through data replication.

Apache Flink complements Kafka by providing a stream processing framework with precise control over event time
processing and state management. Flink's ability to process events with millisecond latency while maintaining exact
once processing guarantees makes it particularly suitable for fraud detection scenarios where precision is paramount.
The stateful processing capabilities of Flink enable the implementation of complex fraud detection algorithms that
analyze patterns across multiple transactions over time.

Table 1 Stream Processing Technologies for Fraud Detection [3]

Technology Latency Throughput State
Management

Primary Fraud
Detection Use Case

Cloud Provider
Managed Service

Apache Kafka Medium Very High Limited Data ingestion, event
streaming

AWS MSK, Azure Event
Hubs, Google Pub/Sub

Apache Flink Low High Advanced Stateful pattern
detection, temporal
analysis

AWS Kinesis Data
Analytics, Google
Dataflow

Apache Spark
Streaming

Medium
High

Medium
High

Basic Batch stream hybrid
processing

Azure Synapse
Analytics, GCP Dataproc

Apache Storm Low
Medium

Medium Limited Real time scoring, rule
processing

AWS EMR, Azure
HDInsight

Kafka Streams Low Medium
High

Advanced Localized transaction
processing

AWS MSK with custom
deployment

2.2. Performance Optimization Techniques

Beyond the selection of appropriate stream processing technologies, optimizing performance requires careful
consideration of data serialization formats, network topology, and hardware configurations. High performance
serialization frameworks such as Apache Avro and Protocol Buffers enable efficient data transmission while
maintaining schema evolution capabilities crucial for evolving fraud detection systems.

Memory centric computing approaches, including in memory databases and compute grids, further reduce processing
latency by minimizing disk I/O operations. Research indicates that in memory processing can significantly reduce fraud
detection latency compared to disk-based approaches [1], making it an essential consideration for time critical fraud
prevention.

Table 2 Real Time Fraud Detection Architecture Components [1]

Layer Key Components Primary Functions

Data Ingestion Kafka, Kinesis Capture transaction events, user behavior

Stream Processing Flink, Spark Streaming Pattern detection, feature extraction

Storage Graph databases, Event stores Relationship modeling, audit trails

Analytics Feature stores, ML model servers Model serving, feature computation

Orchestration Kubernetes, Serverless Resource scaling, deployment management

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 1088-1098

1090

3. Scalable Cloud Native Architectures

3.1. Containerization and Orchestration

Cloud native architectures provide the foundation for building scalable and resilient fraud detection pipelines.
Containerization technologies such as Docker enable consistent deployment of fraud detection components across
development and production environments. Kubernetes extends this capability by providing orchestration features that
automatically scale processing resources based on transaction volume, ensuring optimal resource utilization during
both normal operations and peak transaction periods.

3.2. Serverless Computing and Function as a Service (FaaS) for Fraud Detection

Serverless computing represents a paradigm shift in how fraud detection logic is deployed and executed. Unlike
traditional deployment models that require continuous infrastructure provisioning and management, serverless
platforms enable organizations to focus exclusively on fraud detection logic while delegating infrastructure concerns to
cloud providers.

3.2.1. Event Driven Processing with FaaS

Function as a Service (FaaS) platforms such as AWS Lambda, Azure Functions, and Google Cloud Functions provide ideal
environments for implementing discrete fraud detection components that respond to specific events within the
transaction flow. These lightweight, specialized functions can be triggered directly by transaction events, customer
authentication attempts, or anomaly signals, creating a highly responsive fraud detection ecosystem.

For example, a dedicated function might be deployed to evaluate device fingerprints during authentication, while
another function analyzes transaction velocity across merchant categories. This granular approach enables precise
scaling of individual fraud detection components based on their specific resource requirements and execution
frequency.

3.2.2. Benefits of Serverless for Fraud Detection

Serverless architectures provide significant advantages for fraud detection systems:

• Dynamic Scalability: Serverless functions automatically scale from zero to thousands of concurrent executions
without manual intervention, enabling fraud detection systems to handle volatile transaction volumes during
peak periods.

• Cost Efficiency: The consumption-based pricing model of serverless platforms eliminates costs during periods
of inactivity, potentially reducing infrastructure expenses by 60-80% compared to continuously running
servers.

• Reduced Time to Market: Serverless deployment models simplify the implementation and updating of fraud
detection logic, with research indicating development time reductions of up to 70% compared to traditional
server-based deployments.

3.3. Multi Region Deployment Strategies

Financial institutions with global operations require fraud detection capabilities that span multiple geographic regions
while maintaining data sovereignty compliance. Multi region deployment strategies utilizing global virtual private
clouds (VPCs) with region specific data processing components enable organizations to implement real time fraud
detection while adhering to local regulatory requirements. Cross region data replication with appropriate
anonymization techniques ensures comprehensive fraud detection while maintaining regulatory compliance.

3.4. MLOps with Kubernetes for Fraud Detection

While serverless approaches excel for event driven components, Kubernetes provides a robust foundation for the
continuous delivery and operation of machine learning models within fraud detection pipelines.

3.4.1. Model Deployment and Versioning

Kubernetes facilitates sophisticated model deployment strategies that reduce risk when updating fraud detection
models

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 1088-1098

1091

• Canary Deployments: New fraud detection models can be deployed alongside existing models, with a
controlled percentage of traffic directed to the new version.

• A/B Testing: Multiple model variants can be deployed simultaneously, with traffic segmentation based on
defined criteria (e.g., transaction type, merchant category).

• Shadow Deployment: New models can run in parallel with production models, receiving the same input data
but with their predictions logged for analysis rather than affecting actual decisions.

Kubernetes native technologies such as Seldon Core and KServe provide specialized capabilities for model deployment,
simplifying the implementation of these patterns for fraud detection teams.

3.4.2. Kubernetes Operators for ML Workflows

Specialized Kubernetes operators extend the platform's capabilities for managing complex machine learning
workflows:

• Kubeflow: This ML specific Kubernetes framework provides end to end orchestration of fraud detection model
training pipelines, hyperparameter optimization, and deployment workflows.

• Argo Workflows: This workflow engine enables the definition of complex model training and evaluation
sequences as DAGs (Directed Acyclic Graphs), providing reproducibility and auditability.

• Feast Operator: This specialized operator manages feature store deployments, ensuring consistent feature
computation and serving across training and inference environments.

4. Graph Databases for Relationship Analysis

4.1. Network Centric Fraud Detection

Fraudulent activities frequently involve networks of accounts, devices, and transactions that exhibit subtle relationships
not easily detected through traditional analysis methods. Graph databases provide a natural representation for these
relationships, enabling efficient traversal and pattern matching operations essential for identifying complex fraud
schemes. Research published in Decision Support Systems investigates how fraud detection systems leverage graph
analytics capabilities to model intricate networks of transactions and entities, supporting the identification of fraud
rings and sophisticated collusion-based schemes [5]. The study demonstrates that graph-based approaches offer
substantial improvements in fraud detection accuracy over conventional statistical methods by capturing the inherent
network structures underlying coordinated fraud activities.

Table 3 Graph Database Comparison for Fraud Detection [5]

Database Query Language Scalability Real Time
Updates

Key Fraud Detection Strength

Neo4j Cypher Vertical + Read
Replicas

Good Community detection, Path
finding

Amazon
Neptune

SPARQL/Gremlin Horizontal Good Basic analytics, Custom
traversals

TigerGraph GSQL Horizontal Excellent Pattern matching, Deep link
analysis

JanusGraph Gremlin Horizontal Limited Basic traversals with Spark
integration

Neo4j and Amazon Neptune have emerged as leading graph database platforms for fraud detection, providing
specialized query languages (Cypher and Gremlin respectively) that simplify the implementation of relationship-based
fraud detection algorithms. These graph database systems support specialized algorithms for community detection,
centrality analysis, and path finding that are directly applicable to fraud detection scenarios. The application of these
techniques enables financial institutions to identify previously undetectable fraud patterns by analyzing the structural
properties of transaction networks rather than focusing solely on individual transaction attributes [5]. By representing
entities (customers, devices, accounts) as nodes and their interactions (transactions, relationships, communications) as

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 1088-1098

1092

edges, graph databases create a comprehensive model of financial activities that reveals suspicious patterns through
both direct and indirect connections.

The application of community detection algorithms to transaction graphs enables identification of organized fraud rings
operating across multiple accounts. Studies demonstrate that eigenvector centrality and PageRank derived metrics offer
superior performance for identifying central accounts in fraud networks. Financial institutions implementing graph-
based fraud detection systems report significant reductions in false positives while simultaneously increasing fraud
capture rates compared to traditional rule-based systems, demonstrating the value of relationship centric analysis in
complex fraud scenarios [5].

4.2. Real Time Graph Updates and Queries

Maintaining graph data structures in real time presents significant technical challenges, particularly in high volume
transaction environments. Incremental graph updates algorithms combined with specialized index structures enable
continuous modification of graph representations as new transactions occur. Time windowed graph projections provide
a mechanism for analyzing temporal patterns within relationship networks, enabling detection of coordinated fraud
attacks occurring across multiple accounts within narrow time windows. Research indicates that optimized
implementations can sustain high update rates while maintaining query latencies suitable for real time transaction
authorization workflows [5].

Specialized subgraph matching algorithms optimized for fraud detection patterns have demonstrated substantial
computational efficiency improvements compared to general purpose graph query approaches. These optimizations
enable comprehensive relationship analysis within the strict latency constraints of real time transaction authorization
workflows. Leading financial institutions have implemented dedicated graph processing infrastructure that maintains
continuously updated graph structures representing customer interactions across multiple channels, providing a
unified view of relationship patterns that significantly enhances fraud detection capabilities across diverse product
offerings [5].

5. Event Sourcing and Data Integrity

5.1. Immutable Transaction Logs

Event sourcing patterns provide a robust foundation for fraud detection pipelines by maintaining an immutable record
of all system events. By capturing each transaction, account modification, and authentication attempt as immutable
events, financial institutions create a comprehensive audit trail that enables retroactive analysis of fraud patterns and
supports regulatory compliance requirements. Technical documentation from industry experts emphasizes that event
sourcing creates an audit log that represents a complete historical record of all actions and changes within the system,
providing invaluable data for both fraud investigation and compliance reporting [6]. This architectural pattern enables
financial institutions to reconstruct the exact state of accounts and transactions at any historical point in time,
facilitating detailed forensic analysis of suspected fraud cases.

Table 4 Event Sourcing Patterns for Fraud Detection [6]

Pattern Description Key Benefit Fraud Detection Application

Basic Event Sourcing Events as source of
truth

Complete audit trail Transaction history
reconstruction

CQRS with Event Sourcing Separate read/write
models

Optimized query models Specialized fraud analysis views

Event Sourcing with
Snapshots

Periodic state
snapshots

Faster recovery Account state reconstruction

Distributed Event Sourcing Partitioned event stores Regulatory compliance Regional fraud detection

The Command Query Responsibility Segregation (CQRS) pattern frequently complements event sourcing by separating
transaction processing from analytical query operations. This separation enables optimization of real time fraud
detection queries without impacting transaction processing performance. The CQRS pattern divides the application into
two distinct parts: the command side that handles write operations and the query side that manages read operations,

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 1088-1098

1093

with events serving as the communication mechanism between these components [6]. For fraud detection systems, this
separation enables specialized analytical data models optimized for detecting suspicious patterns without
compromising the performance or integrity of core transaction processing functions. Implementation guidance
emphasizes that CQRS provides significant advantages for applications with complex domain models and high-
performance requirements, characteristics typical of enterprise fraud detection systems.

Append only event stores built on distributed ledger technologies provide enhanced tamper resistance, with
cryptographic verification reducing the risk of insider threats. Technical documentation highlights that immutable
event logs provide strong guarantees against retroactive data manipulation, creating a foundation of trust essential for
both internal fraud controls and regulatory compliance [6]. While event sourcing offers compelling benefits for data
integrity and audit capabilities, implementation guidance cautions that this pattern introduces additional complexity
and requires careful consideration of event schema evolution and storage requirements. Organizations implementing
event sourcing for fraud detection commonly adopt specialized event store technologies designed to handle high
volumes of immutable records while providing efficient temporal query capabilities.

5.2. Data Consistency in Distributed Environments

Maintaining data consistency across distributed fraud detection components presents significant challenges,
particularly when implementing global fraud controls. Conflict free replicated data types (CRDTs) and vector clocks
provide mechanisms for maintaining eventual consistency without requiring global transaction coordination, enabling
scalable deployment of fraud detection systems across geographic regions. Research into end-to-end real time
architectures for fraud detection emphasizes the importance of consistency models that balance performance
requirements with correctness guarantees in geographically distributed deployments [7]. This research demonstrates
how carefully selected consistency models can maintain sufficient accuracy for fraud detection while significantly
reducing cross region latency compared to strict consistency approaches.

Zero trust data validation frameworks further enhance data integrity by verifying the provenance and authenticity of
each data element before incorporation into fraud analysis workflows. This approach is particularly valuable for
financial institutions that aggregate transaction data from multiple external sources with varying levels of
trustworthiness. Studies of real time fraud detection architectures highlight the importance of comprehensive data
validation in multi-source environments for reducing data quality related fraud detection errors [7]. The
implementation of robust data validation encompasses both structural verification (ensuring data conforms to expected
formats and relationships) and semantic validation (confirming that data values fall within reasonable boundaries and
conform to business rules).

Causal consistency models provide an optimal balance between performance and correctness for distributed fraud
detection systems. Research into end-to-end architectures for fraud detection has demonstrated that carefully selected
consistency models achieve most of the fraud detection effectiveness of strict consistency while dramatically reducing
cross region latency [7]. These characteristics make causal consistency particularly suitable for global fraud detection
architectures with stringent latency requirements. Implementation guidance for real time fraud detection systems
emphasizes the importance of explicitly defining consistency requirements based on specific fraud control objectives
rather than defaulting to the strongest (and most expensive) consistency models across all system components.

6. Feature Stores for AI Model Development

6.1. Unified Feature Management

Feature stores have emerged as a critical component of AI driven fraud detection pipelines, providing a centralized
repository for managing and serving the features (data attributes) used by machine learning models. By separating
feature computation from model training and inference, feature stores enable consistent use of features across multiple
fraud detection models while simplifying model deployment and maintenance. Research into end-to-end architectures
has demonstrated how feature stores address critical challenges in machine learning operations for fraud detection,
including feature reuse, consistent feature computation, and point in time correctness for model training [7]. These
specialized data systems provide dedicated capabilities for managing both batch and real time features, ensuring that
fraud detection models have access to the most current data while maintaining historical consistency.

Leading feature store implementations such as Feast and Tecton provide specialized capabilities for real time feature
serving, enabling fraud detection models to access both historical and real time features during transaction analysis.
This capability is particularly valuable for detecting account takeover scenarios where current user behavior deviates

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 1088-1098

1094

from historical patterns. Research into fraud detection architectures emphasizes that low latency feature serving
represents a critical performance bottleneck for real time fraud detection, requiring specialized infrastructure to meet
sub second response time requirements [7]. Organizations implementing centralized feature stores for fraud detection
report significant reductions in model development time and improvements in model performance consistency across
deployment environments. These efficiency gains derive primarily from elimination of redundant feature engineering
efforts and reduction of training serving skew that commonly occurs when features are computed differently in
development and production environments.

6.2. Feature Engineering for Fraud Detection

Effective fraud detection requires sophisticated feature engineering that captures the multidimensional attributes of
financial transactions. Automated feature engineering frameworks accelerate this process by systematically generating
and evaluating candidate features derived from raw transaction data. Research into distributed knowledge distillation
frameworks for fraud detection emphasizes the importance of comprehensive feature engineering that captures both
transaction specific attributes and broader contextual information [8]. This research demonstrates how transformer-
based models leverage rich feature representations to identify complex fraud patterns across diverse transaction types
and channels.

Table 5 Feature Categories for Fraud Detection [8]

Feature Type Example Features Relative Predictive Power

Transaction Attributes Amount, merchant category, transaction type Medium

Temporal Patterns Transaction velocity, time patterns, seasonality High

Network Relationships Shared instruments, linked accounts, merchant networks Very High

Behavioral Biometrics Device interaction, navigation patterns High

Contextual Information Device info, geolocation, network data Medium High

Time based feature transformations are particularly valuable for fraud detection, enabling identification of velocity
patterns such as rapid successive transactions across multiple merchants within short time windows. Research into
transformer-based fraud detection models highlight the effectiveness of specialized temporal features for identifying
certain fraud types, with features capturing transaction velocity across merchant categories showing notable
improvements for card not present fraud detection compared to static feature sets [8]. The distributed knowledge
distillation framework enables efficient deployment of these sophisticated models across multiple processing nodes
while maintaining consistent detection capabilities.

Feature drift monitoring systems ensure the ongoing effectiveness of fraud detection models by identifying changes in
feature distributions that may indicate either evolving fraud patterns or changes in legitimate user behavior. Research
into distributed fraud detection frameworks emphasizes the importance of continuous monitoring and adaptation to
maintain model effectiveness in the face of evolving fraud tactics [8]. Transformer based architectures provide inherent
advantages for handling sequential transaction data, with attention mechanisms effectively capturing temporal
dependencies across transaction sequences. The distributed framework enables knowledge sharing across model
instances while maintaining privacy boundaries, providing an effective approach for financial institutions that must
balance fraud detection effectiveness with data protection requirements.

6.3. Real time Feature Engineering

The ability to compute and serve features in real time represents a critical capability for effective fraud detection,
enabling models to leverage the most current information about users, transactions, and behavioral patterns.

6.3.1. Streaming Feature Computation

Advanced streaming frameworks enable continuous feature computation as transaction events flow through the
pipeline

• Stateful Stream Processing: Platforms such as Flink provide sophisticated windowing and state management
capabilities that enable computation of time-based features (e.g., transaction velocity, session patterns) directly
within the stream processing layer.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 1088-1098

1095

• Feature Pipelines as Code: Frameworks such as Tecton and Feast enable the definition of feature
transformation logic as code, ensuring consistent computation across both batch (training) and streaming
(serving) environments.

• Incremental Feature Updates: Optimized algorithms enable efficient recomputation of aggregate features
(e.g., average transaction amount by merchant category) as new transactions occur, without requiring
reprocessing of historical data.

6.3.2. Training Serving Consistency

Maintaining consistent feature computation between training and serving environments represents a critical challenge
for fraud detection systems

• Point in Time Correctness: Feature stores implement time travel capabilities that ensure training datasets
include only features that would have been available at the time of prediction, preventing data leakage.

• Feature Versioning: Explicit versioning of feature definitions enables controlled transitions between feature
implementations, with simultaneous serving of multiple versions during model migration periods.

• Transformation Monitoring: Automated monitoring systems continuously compare feature distributions
between training and serving environments, alerting on drift that might indicate computational
inconsistencies.

6.4. Explainability and Interpretability for Fraud Detection Models

As fraud detection models grow in complexity, the ability to explain model decisions becomes increasingly important
for both operational and regulatory purposes.

6.4.1. Model Specific Explainability Techniques

Different model architectures require specific approaches to explainability:

• Tree Based Models: SHAP (SHapley Additive explanations) values provide consistent, theoretically sound
explanations for tree ensemble models commonly used in fraud detection.

• Neural Networks: Integrated Gradients and Layer wise Relevance Propagation techniques illuminate decision
paths within deep learning models.

• Graph Neural Networks: Explanation techniques such as GNNExplainer identify subgraphs and node features
most responsible for classifications, particularly valuable for understanding relationship-based fraud
determinations.

6.5. Operational Applications of Explainability

Explainable fraud detection models provide significant operational advantages

• Alert Prioritization: Explanation metrics enable intelligent prioritization of fraud alerts based on both
prediction confidence and underlying rationale.

• Investigation Acceleration: Feature importance visualizations guide investigators toward relevant data, with
research indicating 20-40% reductions in case resolution time when comprehensive explanations accompany
fraud alerts.

• Model Debugging: Systematic analysis of explanation patterns across false positives enables targeted model
improvements.

6.5.1. Regulatory Compliance and Governance

Explainability capabilities directly support regulatory requirements for transparent, accountable AI systems:

• Model Documentation: Explanation techniques provide empirical evidence of model behavior across diverse
scenarios, supporting comprehensive model documentation required by financial regulators.

• Fairness Analysis: Feature attribution methods enable detailed analysis of model behavior across
demographic groups, supporting proactive identification and mitigation of potential disparate impact.

• Decision Appeals: Explanation capabilities support efficient handling of customer disputes by providing clear
rationale for fraud determinations.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 1088-1098

1096

7. Cloud Specific Services for Fraud Detection Pipelines

While cloud native principles apply across providers, specific cloud services offer unique capabilities that can enhance
fraud detection pipelines. Understanding these provider specific offerings enables architects to leverage the full
potential of cloud environments for fraud prevention. Amazon Web Services provides specialized capabilities for
building real time fraud detection systems through services like AWS Kinesis Data Streams, which offers the foundation
for real time transaction ingestion with up to 2MB/second write capacity per share and automatic scaling. Amazon
Fraud Detector combines rules and ML based fraud detection with specialized capabilities for account takeover
protection and transaction fraud identification. AWS Lambda with Provisioned Concurrency enables consistent sub
100ms processing latencies for fraud detection functions by maintaining pre initialized execution environments.
Amazon Neptune ML enables sophisticated relationship analysis for fraud detection through its graph database service
with integrated machine learning capabilities. AWS Step Functions orchestrates complex fraud decision processes,
managing verification steps, risk assessments, and authorization decisions with built in error handling.

Microsoft Azure provides comprehensive services for fraud detection pipelines, including Azure Event Hubs, a managed
Kafka compatible event streaming service that handles millions of events per second with dynamic throughput scaling.
Azure Functions Premium Plan combines the flexibility of serverless with the consistency of dedicated infrastructure,
providing predictable performance for latency sensitive fraud detection components. Azure Synapse Analytics enables
seamless integration of batch and streaming fraud analysis with specialized connectors for combining real time signals
with historical patterns. Azure Cognitive Services Anomaly Detector identifies unusual patterns in time series data,
providing out of the box capabilities for detecting anomalous transaction behaviors without requiring custom model
development.

Google Cloud Platform offers specialized services that enhance fraud detection capabilities, such as Google Cloud
Dataflow, which simplifies implementation of complex fraud detection pipelines with automated resource scaling and
optimization for both streaming and batch processing modes. Google Cloud Functions with Cloud Run Integration
enables serverless components with precise control over execution environments, supporting deployment of
specialized fraud detection libraries. BigQuery ML enables development and deployment of fraud detection models
directly within the data warehouse, eliminating data movement for model training and simplifying feature engineering.
Google Cloud Bigtable delivers consistent single digit millisecond latency at scale, making it particularly suitable for
storing and serving customer risk profiles and transaction histories during fraud evaluation.

8. Evolving Fraud Detection Techniques

Fraud detection methodologies continue to evolve rapidly, driven by both advancing technology and shifting fraud
patterns. Modern data pipelines must accommodate these emerging techniques to maintain detection effectiveness
against sophisticated attacks. Graph neural networks (GNNs) represent a significant advancement for identifying
relationship-based fraud patterns. Their message passing architecture propagates information across transaction
graphs, enabling identification of suspicious patterns based on both direct and multi hop relationships between
accounts, devices, and transactions. Advanced GNN implementations model diverse relationship types within a single
framework, capturing complex interactions between entities within a unified detection approach. Temporal graph
networks incorporate time as an explicit dimension, capturing the evolution of relationship patterns and enabling
detection of coordinated fraud attacks that unfold across multiple transactions. Research demonstrates that properly
implemented GNN based fraud detection systems achieve 20-40% improvements in fraud capture rates compared to
traditional methods, with particular effectiveness for organized fraud rings.

Self-supervised learning approaches enable more effective anomaly detection with limited labeled fraud examples.
Contrastive learning techniques identify fraudulent transactions by measuring deviation from learned representations
of normal behavior, reducing dependency on labeled fraud examples that quickly become outdated as attack patterns
evolve. Reconstruction based detection models trained to reconstruct normal transaction patterns identify fraud
through reconstruction errors, providing an effective mechanism for detecting novel fraud patterns not present in
historical training data. Specialized transformer architectures learn normal sequence patterns across customer
interactions, identifying anomalous behavior without requiring explicit definition of suspicious patterns. Research
indicates that self-supervised approaches can identify 15-25% of fraudulent transactions missed by supervised models,
particularly for novel fraud patterns with limited representation in labeled training data.

Modern fraud detection increasingly employs continuous learning approaches that adapt to evolving patterns. Online
learning frameworks incrementally update model parameters as new transactions are processed, incorporating

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 1088-1098

1097

emerging patterns without requiring complete retraining cycles. Adversarial training systematically generates
challenging examples that mimic evolving fraud tactics, developing more robust detection capabilities that anticipate
rather than merely react to new fraud patterns. Multi armed bandit systems dynamically allocate transactions to
different detection models based on observed performance, automatically shifting emphasis to the most effective
approaches for current fraud patterns. Research demonstrates that adaptive learning systems maintain detection
effectiveness over significantly longer periods compared to static models, with 30-50% reductions in model retraining
frequency while maintaining consistent detection performance.

9. Monitoring and Observability

Comprehensive monitoring and observability represent critical capabilities for maintaining effective fraud detection
pipelines in production environments. These systems provide visibility into pipeline health, data quality, and model
performance, enabling proactive identification and resolution of issues before they impact fraud detection effectiveness.
Modern observability frameworks provide detailed insights into the operational status of fraud detection pipelines
through distributed tracing capabilities that track individual transactions as they flow through pipeline components,
enabling precise identification of latency bottlenecks and processing failures within complex fraud detection workflows.
Detailed performance metrics for individual pipeline components enable proactive identification of degradation before
it impacts overall pipeline performance. Automated service dependency discovery creates comprehensive maps of
pipeline component relationships, simplifying root cause analysis when issues occur and enabling impact assessment
for planned changes. Research indicates that organizations implementing comprehensive pipeline observability
experience 40-60% reductions in mean time to resolution for production incidents, with corresponding improvements
in overall pipeline reliability.

Table 6 Observability Components for Fraud Detection Pipelines

Component Focus Area Key Metrics Integration Points Critical for

Distributed
Tracing

Request flow Latency, error rates,
dependency mapping

Service mesh, API
gateways

End to end transaction
visibility

Metric Collection Component
health

Throughput, resource
utilization, queue depths

Infrastructure,
application code

System performance
monitoring

Log Aggregation Error
detection

Error frequency, pattern
detection

Application logs,
middleware

Troubleshooting, audit
trails

Data Quality
Monitoring

Input
validation

Schema compliance, null
rates, distribution shifts

Ingestion points,
feature computation

Model input quality

Model
Monitoring

Prediction
quality

Drift metrics, performance
by segment

Model servers,
feedback loops

Detection effectiveness

Automated data quality monitoring ensures that fraud detection models receive reliable inputs. Continuous monitoring
of data structure identifies schema drift that could impact feature computation, with automated alerts when transaction
formats deviate from expected patterns. Statistical analysis of feature distributions identifies shifts in underlying data
patterns that might indicate either data quality issues or emerging fraud trends requiring investigation. Automated
tracking of null values and default substitutions throughout the pipeline ensures visibility into data completeness issues
that might compromise detection effectiveness. Organizations implementing comprehensive data quality monitoring
report 25-40% reductions in model related production incidents, with the majority of potential issues identified and
resolved before impacting fraud detection performance.

Specialized monitoring systems track the ongoing effectiveness of deployed fraud detection models. Automated
comparison of production prediction distributions against expected patterns identifies subtle shifts in model behavior
that might indicate emerging performance issues. Advanced monitoring systems identify changes in the relationship
between input features and fraud outcomes, detecting situations where previously effective features lose predictive
power due to evolving fraud tactics. Detailed analysis of model performance across customer segments, transaction
types, and merchants identifies targeted performance degradation that might be masked in aggregate metrics. Tracking
of feature importance and explanation patterns over time provides early warning of changes in model decision
processes that might indicate underlying data or model issues. Research demonstrates that organizations implementing

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 1088-1098

1098

comprehensive model monitoring identify 70-85% of model degradation issues before they significantly impact fraud
detection effectiveness, enabling proactive model updates rather than reactive responses to detection failures.

10. Conclusion

This article has presented a comprehensive architectural framework for real time data pipelines that power AI driven
fraud detection systems. Through the integration of complementary technologies including stream processing
frameworks, cloud native architectures, graph databases, event sourcing patterns, and feature stores, financial
institutions can implement detection systems capable of identifying fraudulent activities with minimal latency. The
architectural patterns discussed address critical requirements for fraud detection systems, including high throughput,
low latency, data integrity, and model adaptability. The framework demonstrates how specialized components work
together to overcome traditional limitations of batch-oriented fraud detection approaches. Stream processing
technologies provide the foundation for real time data ingestion and processing, while graph databases enable
sophisticated relationship analysis critical for detecting complex fraud patterns. Event sourcing ensures data integrity
and auditability, while feature stores streamline machine learning operations for fraud detection models. As financial
fraud continues to evolve in sophistication, the integration of these architectural patterns will remain essential for
effective prevention. Organizations implementing these approaches can substantially reduce their vulnerability
window while maintaining compliance with regulatory requirements across multiple jurisdictions. Future research
should explore emerging technologies that further enhance real time capabilities while addressing the growing
challenges of privacy preservation and explainability in AI driven fraud detection systems.

References

[1] Fatima Adel Nama, Ahmed J. Obaid, “Financial Fraud Identification Using Deep Learning Techniques,” January
2024, Al Salam Journal for Engineering and Technology, Available:
https://www.researchgate.net/publication/378865690_Financial_Fraud_Identification_Using_Deep_Learning_
Techniques

[2] Mohammad Amini, Mohammad Rabiei, “Ensemble Learning for Fraud Detection in E commerce Transactions: A
Comparative Study,” December 2022, JOURNAL OF APPLIED INTELLIGENT SYSTEMS & INFORMATION
SCIENCES, Available:
https://www.researchgate.net/publication/366697663_Ensemble_Learning_for_Fraud_Detection_in_E
commerce_Transactions_A_Comparative_Study

[3] Aiswarya Raj Munappy, et al, “Data management for production quality deep learning models: Challenges and
solutions,” Journal of Systems and Software, Volume 191, September 2022, Available:
https://www.sciencedirect.com/science/article/pii/S0164121222000905

[4] Wissen Team, “Introduction to Privacy Preserving Techniques in Financial AI,” Blog, February 3, 2025, Available:
https://www.wissen.com/blog/introduction to privacy preserving techniques in financial ai

[5] Tahereh Pourhabibi, et al, “Fraud detection: A systematic literature review of graph based anomaly detection
approaches,” Decision Support Systems, Volume 133, June 2020, Available:
https://www.sciencedirect.com/science/article/pii/S0167923620300580

[6] Mia Platform Team, “Understanding Event Sourcing and CQRS Pattern,” 10 April 2025, Blog, Available:
https://mia platform.eu/blog/understanding event sourcing and cqrs pattern/

[7] Hanae Abbassi, et al, “End to End Real time Architecture for Fraud Detection in Online Digital Transactions,”
January 2023, International Journal of Advanced Computer Science and Applications, Available:
https://www.researchgate.net/publication/371970277_End to End_Real
time_Architecture_for_Fraud_Detection_in_Online_Digital_Transactions

[8] Yuxuan Tang, Zhanjun Liu, “A Distributed Knowledge Distillation Framework for Financial Fraud Detection Based
on Transformer,” January 2024, IEEE Access, Available:
https://www.researchgate.net/publication/379761148_A_Distributed_Knowledge_Distillation_Framework_for
_Financial_Fraud_Detection_based_on_Transformer

