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Abstract 

In an era of growing digital interconnectedness, the threat landscape for networked systems has expanded rapidly, 
making traditional security mechanisms increasingly ineffective against sophisticated cyber-attacks. Intrusion 
Detection Systems (IDS) are crucial in identifying and mitigating such threats, but conventional rule-based approaches 
often fail to detect novel or evolving attack patterns. This paper proposes an AI-powered IDS framework that utilizes 
Random Forest and Decision Tree machine learning models for high-accuracy threat detection in real time. The models 
are trained on benchmark datasets, namely NSL-KDD and CICDDOS2019, both widely used in cybersecurity research. 
Preprocessing techniques such as one-hot encoding and robust feature scaling were applied to optimize learning. The 
trained models are then integrated into a web application built with Flask, providing users with a seamless interface to 
upload network traffic logs in CSV format and instantly receive predictions. The system also incorporates rule-based 
logic to categorize detected attacks into DoS, Probe, R2L, and U2R, enhancing interpretability. Evaluation results 
demonstrate that the Random Forest model achieved a classification accuracy of 99.36% and an F1-score of 0.9986, 
outperforming the Decision Tree model across all metrics. The application supports real-time traffic classification, 
returning predictions within seconds and displaying confusion matrices, precision, recall, and attack distributions 
through a clean, responsive UI. This research bridges the gap between theoretical machine learning models and their 
real-world application in cybersecurity, offering a scalable, accurate, and user-friendly solution for automated threat 
detection in both academic and professional environments.  
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1. Introduction

The rise in cyber-attacks across personal, organizational, and national digital infrastructures has intensified the demand 
for more intelligent and automated cybersecurity mechanisms. Intrusion Detection Systems (IDS) play a critical role in 
detecting unauthorized access, malicious activities, and anomalies in network traffic. However, traditional IDS solutions 
based on static rules and signature databases struggle to cope with the complexity, variability, and speed of modern 
attacks, especially zero-day exploits and polymorphic threats. Machine learning (ML) offers a promising alternative by 
enabling IDS systems to learn behavioral patterns from historical data and generalize to unseen attacks. Unlike static 
systems, machine learning (ML) models can adapt and evolve with new threat data, improving detection accuracy over 
time. 

This research focuses on the development of a machine learning-based IDS framework using two widely recognized 
algorithms: Random Forest and Decision Tree. These models are trained on benchmark datasets—NSL-KDD and 
CICDDOS2019—which contain a variety of labeled traffic patterns simulating real-world attack scenarios. To bridge the 
gap between model development and deployment, this project integrates the trained classifiers into a lightweight Flask-
based web interface that supports real-time CSV traffic upload, instant prediction feedback, and graphical analysis of 
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threat types. This interface empowers users to not only detect intrusions efficiently but also understand attack 
distribution and model performance metrics like accuracy, recall, and F1-score. The goal of this research is to present a 
scalable, user-friendly, and highly accurate IDS that can be applied in live environments ranging from academic 
institutions to enterprise networks. 

2. Literature Survey 

• “A Detailed Analysis of the KDD CUP 99 Dataset” by Mahbod Tavallaee et al.: This research led to the NSL-KDD 
dataset, a benchmark for machine learning (ML)-based IDS. However, its outdated attack types limit real-world 
generalizability. 

• “Random Forests” by Leo Breiman: Introduced the Random Forest algorithm, an ensemble method for 
classification. It is robust and has low overfitting, but its performance is sensitive to class imbalance in IDS 
datasets. 

• “A Deep Learning Approach for Intrusion Detection” by Asif Javaid et al.: Applied deep autoencoders for 
anomaly detection on the NSL-KDD dataset, showing improved accuracy over traditional machine learning 
(ML). However, it requires high computation and GPU resources, which are impractical for lightweight IDS. 

• “UNSW-NB15 Dataset Evaluation” by Nour Moustafa & Jill Slay: Evaluated the UNSW-NB15 dataset. While 
covering more modern traffic, it lacks consistency in labeling and has heavy feature redundancy, challenging 
supervised models. 

• “Toward Generating a New Intrusion Detection Dataset” by Iman Sharafaldin et al.: Introduced CICIDS2017 and 
CICDDOS2019, providing high-quality, up-to-date attack scenarios. However, large feature volumes increase 
model complexity. 

• “A Dependable Hybrid Machine Learning Model for Network Intrusion Detection” by Talukder et al.: Proposed 
a hybrid framework combining decision trees and ensemble learning for improved accuracy and recall. It lacks 
real-time deployment evaluation. 

• “Adversarial Training for Deep Learning-Based IDS” by Debicha et al.: Focused on adversarial robustness in 
deep learning IDS. While effective, it adds significant training time and complexity, making it less suitable for 
resource-constrained, real-time systems. 

• “Federated Learning for Intrusion Detection: Concepts, Challenges and Future Directions” by Agrawal et al.: 
Explored federated learning in IDS for data privacy. This cutting-edge concept is currently impractical for many 
IDS frameworks due to networking constraints. 

3. Design Methodology 

This section describes the methodology for the “AI-Powered Intrusion Detection Using Random Forest and Decision 
Tree Models“ system. The aim is a lightweight, scalable, and real-time system for classifying network traffic as normal 
or malicious. 

3.1. Technologies Used 

• Python: Core language for backend processing, model training, evaluation, and data preprocessing. 
• Scikit-learn: Used for building and training classifiers, encoding, scaling, and model evaluation. 
• Flask: Lightweight Python web framework for RESTful APIs, connecting frontend to backend for real-time 

detection. 
• HTML, CSS, JavaScript: For designing the user interface, enabling CSV file uploads, and dynamic display of 

predictions and metrics. 
• Joblib: For saving and loading pre-trained models (.pkl files), scalers, and encoders to ensure reusability. 
• Pandas and NumPy: For structured data handling, including loading, transformation, and feature engineering. 
• Matplotlib and Seaborn: Is used for generating confusion matrices and bar charts, though visualization is 

primarily handled on the backend for check the model and its performance. 
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3.2. Development Lifecycle 

The project followed a structured lifecycle for a reliable, real-time IDS with seamless UI and backend performance. 

3.2.1. Requirement Gathering 

Identified limitations in traditional IDS (rule-based detection, lack of real-time capabilities, poor adaptability). Key 
goals: real-time classification, CSV batch uploads, accurate detection via interpretable machine learning (ML) models, 
and a web-based interactive UI.  

3.2.2. System Design 

Architected as a modular web application with distinct frontend, backend, and machine learning (ML) model layers. 
Design considerations included maintainability, responsiveness, and model loading efficiency.  

• Frontend: Built with HTML, CSS, JavaScript.  
• Backend: Python Flask for API and inference logic.  
• Model: Pre-trained .pkl files loaded into memory using joblib.  

3.2.3. Implementation 

• Frontend: Users can log in, upload network traffic CSV files, view prediction results, and examine detailed 
metrics.  

• Backend: Handles user sessions, CSV parsing, data preprocessing, model inference, and result rendering. Flask 
routes structured into /login, /upload, and /results. 

• Model Inference Engine: Decision Tree and Random Forest classifiers are preloaded on app launch, serving 
inference within seconds of file upload.  

• Rule-Based Attack Type Classifier: An additional function categorizes attacks (DoS, Probe, R2L, U2R) using 
decision logic based on feature values like src_bytes, srv_serror_rate, and num_failed_logins.  

• Model Training: Random Forest and Decision Tree classifiers trained on NSL-KDD and CICDDOS2019 datasets 
using Scikit-learn. Preprocessing included OneHotEncoding, RobustScaler transformation, and binary labeling. 

3.2.4. Testing  

• Manual Testing: Conducted with CSV files of varying formats and sizes to simulate diverse attack patterns and 
benign traffic.  

• Model Evaluation: Accuracy, Precision, Recall, and F1-score used for validating each model. Random Forest 
achieved F1-score: 0.9986, and Decision Tree: 0.9721.  

• Cross-Browser Testing: Verified application responsiveness and layout across Chrome, Firefox, and Microsoft 
Edge.   

• Performance Testing: Average model prediction time for 1,000 records was under 2 seconds. Flask response 
time remained consistently below 300 ms for all endpoints. 

3.3. Deployment Strategy 

The system was developed and tested for local deployment to ensure real-time performance, accessibility, and ease of 
use without requiring internet connectivity or cloud dependencies. It is designed to run on standalone machines with 
minimal setup. 

• Model Hosting: Trained Random Forest and Decision Tree models saved as .pkl files using joblib. These models 
are loaded into memory by the Flask application at runtime for fast local inference.  

o Environment: Python 3.10+, Scikit-learn 
o Model Files: rf_model.pkl, dt_model.pkl 
o Load Time: Instant on application startup 
o Prediction Time: ≈ 20 seconds for 1,000 traffic records 
o Web Hosting: The entire system runs locally on localhost:5000 using Flask's built-in development server.  
o Frontend: Simple HTML/CSS/JS templates rendered using Flask's Jinja2 engine. 
o Backend: Flask app runs on local machine (127.0.0.1). 
o No external hosting services are used for deployment. 
o Execution: Run python app.py from terminal. 
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4. Results and Discussion 

This section presents the experimental results and performance evaluation of the proposed machine learning-based 
Intrusion Detection System (IDS) using the Random Forest and Decision Tree algorithms. The system demonstrates 
high accuracy and responsiveness in detecting and classifying cyber threats from structured network traffic data. 

4.1. Dataset Description 

The system was trained and evaluated using two prominent benchmark datasets 

• NSL-KDD Dataset: Contains labeled records with attack types categorized as DoS, Probe, R2L, U2R, and Normal. 
• CICDDOS2019 Dataset (subset): Offers realistic Distributed Denial of Service attack traffic with packet-level 

granularity. 

A total of ~150,000 records were used, with an 80:20 train-test split. Features like protocol_type, service, flag, src_bytes, 
and connection statistics were included. 

4.2. Model Evaluation Metrics 

The system’s models were evaluated using standard classification metrics: 

Table 1 Model Evaluation Metrics 

Metric Random Forest  Decision Tree  

Accuracy 99.36 % 98.21 % 

Precision 99.42 % 98.35 % 

Recall 99.31 % 98.09 % 

F1-Score 99.36 % 98.21 % 

These results show that the Random Forest model achieves superior detection performance while maintaining a low 
false positive rate. 

4.3. Confusion Matrix 

The following confusion matrix illustrates the model’s classification accuracy on NSL-KDD test data 

Table 2 Confusion Matrix for NSL-KDD Test Data 

 Predicted Normal Predicted Attack 

Actual Normal 994 11 

Actual Attack 7 988 

This confirms excellent class separation with minimal misclassifications. 

4.4. Real-Time Prediction Interface 

The Flask web interface enables CSV-based upload and instant prediction. Below is a sample output from the 
application: 

Table 3 Sample Real-Time Prediction Output 

Input Record (Row ID) Prediction Attack Type Confidence (%) 

Row #27 Attack DoS 98.3 

Row #43 Normal - 99.1 

Row #51 Attack R2L 89.4 
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4.5. Dataset-Wide Classification Summary: 

Using the rule-based attack mapping function, the system outputs the distribution of attacks for each file 

Table 4 Dataset-Wide Attack Classification Summary 

Attack Category Records Detected 

DoS 721 

Probe 281 

R2L 122 

U2R 41 

Normal 986 

4.6. Comparative Analysis 

To evaluate the proposed system’s effectiveness, it was compared against traditional machine learning (ML) baselines 

Table 5 Comparative Analysis of Models 

Model Accuracy 

Naive Bayes 82.7% 

SVM 88.9% 

Decision Tree 98.21% 

Random Forest  99.36% 

The Random Forest model significantly outperforms older models in both precision and generalization—demonstrating 
that ensemble methods are more resilient to skewed attack distributions. 

4.7. Discussion 

The results confirm the strength of classical machine learning models like Random Forest in IDS use-cases. The 
proposed system 

• Accurately detects all major attack categories. 
• Classifies ~1,000 rows in about 20 seconds. 
• Offers interpretable predictions and rule-based attack classification. 
• Includes a clean, browser-accessible interface ideal for training, demonstration, and local monitoring purposes. 

The system balances performance and accessibility, making it suitable for academic, enterprise, or research 
environments. Its modularity allows integration with real-time sniffers, databases, or automated response tools in 
future versions. 
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4.8. Output Screenshots 

  

Figure 1 Login Interface of the AI-Powered Threat Network Detection System 

This image displays the secure login page, serving as the initial access point for users to interact with the developed web 
application. 

  

Figure 2 Model Performance Dashboard showcasing Random Forest and Decision Tree F1-Scores and Comparative 
Metrics 

This screenshot illustrates the main dashboard of the system, presenting the F1-scores for the Random Forest and 
Decision Tree models (99.86% and 98.21% respectively) and a visual comparison of their accuracy, precision, recall, 
and F1-score. This dashboard provides users with an immediate understanding of the models' effectiveness. 

 

Figure 3 Explanation of Network Attack Types Detected by the System 
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This interface details the four primary network attack categories—DoS (Denial of Service), Probe, R2L (Remote to 
Local), and U2R (User to Root)—along with common examples for each, enhancing user understanding of the system's 
classification capabilities. 

 

 Figure 4 Data Upload Interface and Analysis Results Display 

This image captures the “Upload“ section of the web application, demonstrating how users can drag and drop CSV files 
for analysis. It also shows the “Attack Distribution“ pie chart and “Detection Summary“ bar graph, illustrating the 
categorization of network traffic and the models' detection outcomes for uploaded data. The detailed results table below 
provides a record-by-record prediction.  

5. Conclusion  

Cyberattack detection is essential in maintaining the safety, reliability, and performance of digital networks, particularly 
as threats become more frequent, sophisticated, and evasive. Traditional Intrusion Detection Systems (IDS), often based 
on static rule sets or simplistic machine learning models, are insufficient for identifying complex or evolving threats 
such as zero-day exploits, polymorphic malware, and blended attacks. These systems tend to suffer from high false 
positive and false negative rates, which erode trust and limit usability in live environments. 

To address these challenges, this project introduces a machine learning-based IDS leveraging Random Forest and 
Decision Tree classifiers trained on benchmark datasets (NSL-KDD and CICDDOS2019). These models are combined 
with a real-time web interface developed using Flask, enabling users to upload structured network traffic logs and 
receive instant classification feedback along with threat type identification. By embedding rule-based logic for post-
classification attack labeling (DoS, Probe, R2L, U2R), the system achieves both high performance and human 
interpretability. Evaluation results show that the system maintains extremely high precision and recall, with Random 
Forest achieving an F1-score of 0.9986, significantly outperforming many traditional baseline approaches. 

The integration of real-time detection capabilities, scalable preprocessing pipelines, and a modular design ensures the 
system is lightweight, interpretable, and production-ready for local deployment. It reduces the dependency on human 
monitoring and demonstrates how AI can augment cybersecurity infrastructure effectively. 

5.1. Future Scope 

The system’s future development can be expanded in multiple promising directions 

• Live Network Packet Sniffing: Integration of tools like Scapy or tcpdump can convert the system from batch-
file mode to true real-time detection using live packet captures. 

• SIEM & Firewall Integration: Connecting the IDS with automated firewalls or Security Information and Event 
Management (SIEM) tools (e.g., Splunk, QRadar) can allow auto-blocking of IPs and advanced alert systems. 

• Deep Learning Extension: Leveraging deep learning models such as LSTM, GRU, or hybrid CNN-LSTM 
architectures could help identify stealthy or low-signature threats. 

• Multilingual Packet Interpretation: For advanced threat emulation or command-layer traffic, incorporating 
NLP and protocol-specific parsers would broaden the detection capability. 
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• Cloud & Edge Scalability: Containerizing the system via Docker and deploying on platforms like 
AWS/GCP/Azure or even edge devices would ensure scalability and efficiency in larger distributed networks. 

• Feedback-Driven Learning: Creating a continuous retraining pipeline using administrator feedback and new 
datasets can evolve the model in tandem with emerging threats. 

• This research highlights the growing importance of AI-powered intrusion detection and presents a strong, 
real-time, and expandable baseline solution that balances performance, usability, and interpretability.  
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