
 Corresponding author: Chakra Dhari Gadige

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0.

Building the adaptable enterprise: Trends in composable and event-driven salesforce
architectures

Chakra Dhari Gadige *

Independent Researcher, USA.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 501–507

Publication history: Received on 27 April 2025; revised on 01 June 2025; accepted on 04 June 2025

Article DOI: https://doi.org/10.30574/wjaets.2025.15.3.0944

Abstract

This article examines the paradigm shift within the Salesforce ecosystem from monolithic implementations to
composable architectures. As organizations face increasing pressure to adapt to rapidly changing business
requirements, traditional monolithic systems have revealed significant limitations in flexibility and scalability. The
transition toward composable architectures enables businesses to assemble solutions from independent,
interchangeable components rather than relying on tightly integrated systems. By leveraging platform capabilities such
as Platform Events, MuleSoft APIs, Salesforce Functions, and Lightning Web Components, organizations can create more
adaptable enterprise solutions. Event-driven design principles form the foundation of these architectures, facilitating
loose coupling between components while supporting real-time responsiveness. The article analyzes architectural
patterns, implementation strategies, and performance considerations that organizations should evaluate when
adopting composable approaches, highlighting the balance between business agility and technical complexity.

Keywords: Composable architecture; Event-driven design; Microservices decomposition; Platform events; API-led
integration

1. Introduction

The CRM ecosystem has evolved significantly from its origins as a customer management solution to a comprehensive
platform supporting diverse business functions. This transformation reflects broader digital acceleration trends, with
organizations increasingly recognizing the value of cloud-based solutions for managing customer relationships and
business processes [1]. As organizations face mounting pressure to adapt quickly to market changes and customer
expectations, traditional monolithic implementations have revealed limitations in flexibility and scalability. Recent
industry research indicates that organizations achieving higher digital maturity typically implement more modular
approaches to their CRM architecture, enabling them to respond more effectively to changing market conditions [1].
This recognition has catalyzed a shift toward more modular, composable architectures that enable businesses to rapidly
reconfigure their digital capabilities.

Composable architecture represents an approach where business solutions are assembled from independent,
interchangeable components rather than built as single, tightly integrated systems. Within the context of modern CRM
platforms, this translates to leveraging platform features such as event-driven mechanisms, integration APIs, serverless
functions, and web component frameworks to create solutions from discrete, reusable modules often referred to as
"Packaged Business Capabilities" (PBCs) [2]. Event-driven architectures in particular have gained significant traction as
they enable real-time responsiveness while maintaining loose coupling between system components, a pattern that
aligns well with the increasing demand for agile business operations [2].

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2025.15.3.0944
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2025.15.3.0944&domain=pdf

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 501–507

502

This architectural evolution enables organizations to accelerate time-to-market for new capabilities while
simultaneously reducing technical debt through modular design. The ability to scale specific components independently
creates more resilient systems through loose coupling between services, allowing for greater adaptation to changing
business requirements [1]. Industry analysts have observed that organizations implementing composable architectures
demonstrate greater resilience during market disruptions, with the ability to pivot business models and introduce new
capabilities significantly faster than those constrained by monolithic systems [1]. The transition toward event-driven
patterns further enhances this adaptability by enabling real-time processing of business events across distributed
components [2].

The purpose of this article is to examine the current state and future trajectory of composable architectures within
modern enterprise platforms, with particular attention to the role of event-driven design in enabling flexible, responsive
systems. Event-driven patterns create publish-subscribe relationships between system components, allowing them to
communicate asynchronously without direct dependencies [2]. This approach supports both system resilience and
scalability by preventing cascading failures and enabling independent scaling of components. The article seeks to
provide organizations with insights into architectural patterns, implementation strategies, and performance
considerations for leveraging platform capabilities to build adaptable enterprise solutions in an increasingly dynamic
business environment.

2. The Evolution Toward Composable Salesforce Architectures

2.1. Limitations of Monolithic Implementations

Monolithic implementations, while providing comprehensive functionality, have increasingly shown limitations in
adapting to rapidly changing business requirements. These implementations typically feature tightly coupled
components, making modifications and updates challenging without affecting the entire system. As business needs
evolve, even minor changes can trigger extensive regression testing cycles and increase the risk of system-wide
disruptions [3]. Traditional architectures create significant barriers to innovation as organizations face increasing
competition from digital-first challengers with more adaptable technology foundations. Research indicates that
organizations with rigid technology infrastructures struggle to capitalize on emerging opportunities, with innovation
cycles constrained by the velocity at which their core systems can evolve [3]. The resulting technical debt and
complexity often hinder innovation and responsiveness to market changes, with modifications becoming increasingly
cumbersome as systems mature.

2.2. Defining Composable Architecture in the Salesforce Context

Composability in enterprise platforms refers to the ability to assemble business solutions from discrete,
interchangeable functional components. This architectural approach treats applications as collections of business
capabilities that can be reconfigured to address evolving requirements without comprehensive rebuilds [4]. Unlike
purely "headless" approaches that completely decouple front-end experiences from back-end functionality, composable
architecture provides a structured framework within which modular components operate. Industry analysis suggests
that composability represents a more comprehensive approach than simply adopting APIs or microservices in isolation,
as it encompasses both technical architecture and organizational alignment around modular business capabilities [3].
This balanced approach enables organizations to leverage existing platform capabilities while gaining the flexibility to
innovate and adapt specific components as needed. By establishing clear contracts between components, organizations
can implement, update, and replace individual modules without cascading impacts across the entire platform, creating
sustainable paths for evolution over time [4].

2.3. Key Drivers of the Shift to Composability

The transition to composable architectures is driven by several interconnected factors reflecting both business
imperatives and technological evolution. Business agility has become essential in contemporary markets, with
organizations seeking to rapidly respond to changing conditions without technology constraints. This imperative has
intensified as digital disruption accelerates across industries, requiring faster adaptation cycles than traditional
architectures can support [3]. The acceleration of digital transformation initiatives has further highlighted the
limitations of monolithic systems, as organizations recognize that competitive differentiation increasingly depends on
technology adaptability rather than stable but inflexible infrastructure [4]. The desire to reduce technical debt
represents another significant driver, as organizations recognize that modular architectures can substantially minimize
long-term maintenance challenges by localizing complexity and enabling targeted updates. Innovation enablement
continues to influence architectural decisions, as composable approaches allow organizations to adopt new
technologies without complete system overhauls, preserving existing investments while incorporating emerging

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 501–507

503

capabilities [3]. The increasing demand for specialized user experiences across different channels has also contributed
significantly to this architectural evolution, as contemporary customers expect tailored interactions reflecting their
specific contexts and needs, requiring flexible technology foundations that can support personalization without
sacrificing consistency [4].

Table 1 Characteristics and Drivers of Architectural Transition [3,4]

Key Aspects Description

Limitations of Monolithic
Implementations

Tightly coupled components; Extensive regression testing required; Increased
technical debt; Hindered innovation

Composable Architecture
Definition

Discrete, interchangeable components; Structured modular framework; Clear
component contracts; Sustainable evolution path

Business Agility
Rapid response to market changes; Faster adaptation cycles; Support for digital
disruption challenges

Technical Debt Reduction Localized complexity, Targeted updates, Preserved existing investments

User Experience Specialization
Multi-channel support; Context-specific interactions; Personalization with
consistency

3. Salesforce Platform Capabilities Enabling Composability

3.1. Platform Events and Event-Driven Architecture

Platform events provide the foundation for event-driven architectures, enabling real-time communication between
system components. These events implement the publish-subscribe pattern where event producers emit notifications
without knowledge of which consumers will process them, creating a foundation for loose coupling throughout the
system [5]. This architectural approach fundamentally transforms how applications communicate, moving from direct
dependencies to an asynchronous model where components can evolve independently. Event-driven architectures
promote fault isolation as services are designed to continue operating even when dependent services experience
downtime, significantly improving overall system resilience [5]. Platform events support both synchronous and
asynchronous processing models, providing flexibility in how components interact while enabling organizations to
optimize for either consistency or performance based on specific business requirements.

3.2. MuleSoft API Integration

API-led connectivity approaches complement composable architectures by providing structured integration patterns
that align with business capabilities. Modern integration strategies leverage APIs as the primary mechanism for
communication between components, enabling modular functionality that can be updated independently [6]. By
establishing system, process, and experience APIs, organizations create a layered integration strategy that supports
modular development while maintaining clear relationships between components. This multi-layered approach shields
consumers from implementation details, allowing underlying systems to evolve independently while maintaining
consistent interfaces. API management capabilities further enhance governance and reusability across the enterprise,
establishing consistent patterns that simplify development while enabling innovation through well-defined contracts
between services [6].

3.3. Salesforce Functions

Functions extend platform capabilities by allowing developers to execute custom code in response to events. This
elastically scalable compute service enables organizations to implement complex business logic while maintaining the
composable nature of the overall architecture. Event-driven systems frequently leverage serverless functions to process
events without maintaining constantly running infrastructure, improving resource utilization while reducing
operational overhead [5]. By decoupling processing-intensive operations from core platform services, functions enable
selective scaling of specific capabilities without impacting overall system performance. The event-driven nature of
functions aligns with composable architecture principles, as they can be triggered by events from any system
component, creating flexible processing chains that adapt to changing business requirements.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 501–507

504

3.4. Lightning Web Components (LWC)

Modern web component frameworks provide the foundation for building user interface components that can be reused
across experiences. The component-based development model aligns with composable architecture principles, enabling
the creation of consistent yet adaptable user experiences through encapsulation and clear component boundaries. In
composable systems, frontend components are designed as modular, interchangeable elements that can be assembled
in different combinations to support various business needs [6]. These frameworks leverage web standards to ensure
interoperability while providing performance optimizations that enhance the user experience. The shadow DOM
capabilities of modern component frameworks further support composability by preventing style and functionality
conflicts between components, enabling true modularity in the presentation layer.

3.5. Salesforce Composable Commerce

Composable commerce represents a concrete implementation of composability principles in the B2C and B2B
commerce domain. This architectural approach enables businesses to build flexible storefronts by assembling pre-built
and custom commerce capabilities according to specific business requirements. Composable architecture principles
empower organizations to select best-of-breed components rather than accepting the limitations of monolithic
platforms, creating more adaptable systems that can incorporate new capabilities as they emerge [6]. By separating the
presentation layer from business logic and data services, this approach allows organizations to rapidly adapt their
digital commerce experiences while maintaining enterprise-grade reliability. The modular nature of composable
commerce enables businesses to implement new capabilities incrementally without disrupting existing functionality,
creating more resilient customer experiences that can evolve with changing market conditions [5].

Table 2 Platform Capabilities Supporting Composable Architecture [5,6]

Platform Capability Primary Advantage

Platform Events Loose coupling via publish-subscribe model

API Integration Layered integration strategy

Functions Elastically scalable compute services

Web Components Reusable, encapsulated UI elements

Composable Commerce Modular assembly of business capabilities

4. Architectural Patterns for Composable Salesforce Solutions

4.1. Event-Driven Design Principles

Event-driven architecture (EDA) forms the foundation of effective composable systems within enterprise platforms.
This architectural approach centers on the production, detection, and consumption of events that represent significant
state changes across the system. In event-driven systems, events are transmitted between loosely coupled components
and services, allowing them to react to changes without direct dependencies on event sources [7]. Event-first thinking
shifts system design toward identifying and modeling meaningful business events rather than structuring around direct
service interactions. Event sourcing extends this concept by maintaining entity state through an immutable log of events
rather than just current snapshots, enabling comprehensive audit trails and historical state reconstruction. Command
Query Responsibility Segregation (CQRS) complements event sourcing by formally separating state-modifying
operations from read operations, allowing each path to be optimized independently for specific performance
characteristics. The event-driven approach is particularly well-suited for distributed systems that need to scale
independently and maintain resilience during component failures [7].

4.2. Service-Oriented Architecture Integration

While event-driven patterns excel at supporting asynchronous communication, many business processes require direct
service interactions for operations demanding immediate responses. Integrating service-oriented architecture (SOA)
principles with event-driven design creates a comprehensive approach that leverages the strengths of both paradigms.
SOA contributes structured service contracts and governance models that help maintain consistency across distributed
components, while event-driven patterns provide the loose coupling needed for independent scalability [8]. Service
boundaries align with business capabilities rather than technical considerations, creating clearer relationships between
technical implementations and the business functions they support. The integration of orchestration patterns for

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 501–507

505

complex workflows and choreography patterns for decentralized coordination provides flexibility for handling various
business scenarios, allowing architects to select appropriate interaction models based on specific requirements for
consistency, performance, and fault tolerance [8].

4.3. Microservices Decomposition Strategies

Effective decomposition of platform functionality into microservices requires strategic planning to balance modularity
benefits against distributed system challenges. The strangler pattern provides a gradual approach to breaking down
monolithic systems by incrementally replacing specific functions with microservices while maintaining system integrity
during the transition [8]. Domain-Driven Design offers frameworks for aligning service boundaries with bounded
contexts in the business domain, creating more stable interfaces that reflect natural business divisions. Capability-based
decomposition organizes services around business capabilities rather than technical functions, ensuring services
encapsulate complete business processes. The database-per-service pattern supports this approach by giving each
microservice exclusive access to its data, reducing coupling between services and allowing them to evolve
independently [8]. Implementing these strategies requires careful consideration of service granularity to avoid both the
excessive complexity of too many fine-grained services and the limited flexibility of too few coarse-grained services.

4.4. Data Synchronization and Consistency Patterns

Maintaining data consistency across distributed components presents significant challenges requiring careful
architectural consideration. Eventual consistency models acknowledge that in distributed systems, particularly those
spanning multiple geographic regions, temporary inconsistencies must be accepted to achieve reasonable performance
and availability [7]. Rather than enforcing immediate consistency, these models ensure all system components
eventually reach a consistent state following changes. The materialized view pattern addresses performance challenges
by creating purpose-specific data projections optimized for particular query patterns, reducing complex joins across
service boundaries. For scenarios requiring transactional semantics across service boundaries, the saga pattern
provides frameworks for managing distributed transactions through sequences of local transactions with compensating
actions for failure scenarios [8]. These patterns enable organizations to implement composable architectures that
balance consistency requirements against performance and availability objectives while maintaining system integrity
across distributed components with different consistency guarantees [7].

Table 3 Architectural Patterns for Composable Solutions [7,8]

Architectural Pattern Primary Benefit

Event-Driven Architecture Loosely coupled component interaction

Service-Oriented Architecture Structured service contracts and governance

Domain-Driven Design Business-aligned service boundaries

Strangler Pattern Gradual monolith decomposition

Eventual Consistency Improved performance and availability

5. Implementation Challenges and Optimization Strategies

5.1. Managing Complexity in Distributed Systems

Composable architectures introduce complexity through their distributed nature, requiring deliberate strategies to
maintain system reliability. Comprehensive monitoring provides end-to-end visibility across distributed components
through the collection of logs, metrics, and traces—the three pillars of observability that together create a complete
picture of system behavior [9]. Centralized logging aggregates information from distributed components, enabling
correlation of events across service boundaries while providing searchable records of system activity. Metrics
complement logs by providing quantitative measures of system performance and health, allowing teams to establish
baselines and detect anomalies through statistical analysis rather than manual log inspection. Distributed tracing, the
third observability pillar, tracks requests as they flow through multiple services, providing critical context for
understanding system interactions and identifying performance bottlenecks [9]. Resilience patterns such as circuit
breakers and bulkheads prevent cascading failures by isolating problematic components, allowing systems to degrade
gracefully rather than fail completely when individual services experience issues. Service mesh technologies manage

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 501–507

506

communication between services by providing a dedicated infrastructure layer that handles cross-cutting concerns like
security, observability, and routing.

5.2. Ensuring Interoperability Between Components

Interoperability is essential for truly composable systems, allowing components to work together effectively regardless
of their implementation details. API standardization establishes consistent design practices across all components
through well-defined governance frameworks that address naming conventions, versioning approaches, error handling
patterns, and documentation requirements [10]. These frameworks typically include standard templates for API
specifications, ensuring consistent structure while reducing the effort required to create new interfaces. Schema
management maintains clear definitions of data structures and formats, providing explicit contracts that component
developers can rely on when producing or consuming data. Versioning strategies support backward compatibility,
allowing components to evolve independently without breaking existing integrations. Contract testing validates that
components adhere to their published interfaces, providing automated verification that changes to one component
won't unexpectedly break integrations with others [10]. Semantic modeling creates shared understanding of business
concepts across components, ensuring consistent interpretation of domain entities regardless of technical
implementation details.

5.3. Performance Optimization in Event-Driven Salesforce Environments

Performance considerations are particularly important in distributed, event-driven systems where interactions
between components can create complex performance profiles. Event payload optimization minimizes event size while
maintaining necessary context, reducing network overhead and processing time without sacrificing information
integrity [9]. This optimization often involves structuring events with essential information in the main payload while
providing references to related data that can be retrieved only when needed. Event filtering and routing ensure events
reach only relevant consumers, preventing unnecessary processing and reducing system load. Asynchronous
processing patterns implement background handling for non-critical operations, allowing systems to maintain
responsiveness even during high-volume periods [10]. Caching strategies reduce latency through appropriate data
caching at various system layers, from application-level caches for frequent queries to distributed caches for cross-
service data sharing. Queue management configurations optimize event throughput and reliability, balancing resource
utilization against processing guarantees by configuring appropriate batch sizes, retry policies, and dead-letter handling
mechanisms [9].

5.4. Governance and Change Management

Effective governance becomes increasingly important as architectures become more distributed, requiring structured
approaches to maintain system integrity while enabling innovation. A comprehensive governance model typically
includes organizational structures, such as API review boards or architecture councils, along with technical controls
that enforce standards throughout the development lifecycle [10]. Component registries maintain visibility of all
available components and their capabilities, creating a central inventory that architects and developers can consult
when designing solutions or planning changes. Dependency tracking understands relationships between components
to assess change impacts, providing visibility into how modifications to one component might affect others. Deployment
coordination manages release cycles across interdependent components, ensuring that changes are sequenced
appropriately to maintain system integrity during transitions [9]. Policy enforcement ensures components adhere to
organizational standards through automated validation during the continuous integration process, preventing non-
compliant components from reaching production environments. Lifecycle management governs the entire component
journey from creation to retirement, establishing clear processes for proposing, approving, developing, operating, and
eventually decommissioning components [10].

Table 4 Implementation Challenges in Composable Architectures [9,10]

Implementation Challenge Key Optimization Strategy

Distributed System Complexity Three-pillar observability (logs, metrics, traces)

Component Interoperability API standardization and governance

Event-Driven Performance Event payload optimization

Cross-Component Consistency Asynchronous processing patterns

System Evolution Comprehensive lifecycle management

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(03), 501–507

507

6. Conclusion

The evolution toward composable architectures represents a significant shift in how organizations design and
implement enterprise solutions. By leveraging platform capabilities—Platform Events, MuleSoft APIs, Functions, and
Web Components—businesses can create flexible, adaptable systems that respond quickly to changing requirements
while maintaining enterprise-grade reliability. Event-driven design principles provide the foundation for these
composable architectures, enabling loose coupling between components while supporting real-time responsiveness.
However, successful implementation requires careful attention to complexity management, interoperability,
performance optimization, and governance. Looking ahead, emerging trends like AI-enhanced composition,
autonomous operations, edge computing integration, cross-cloud composability, and blockchain for trust will likely
shape the continued evolution of composable architectures. Organizations that establish strong foundations in event-
driven design patterns, service orientation, and effective governance will be best positioned to achieve the promise of
truly adaptable enterprise systems in an increasingly dynamic business environment.

References

[1] IBM Institute for Business Value, "The State of Salesforce 2024–2025," IBM.com. [Online]. Available:
https://www.ibm.com/thought-leadership/institute-business-value/en-us/report/state-of-salesforce-2024.

[2] ApexHours, "Event-Driven Development in Salesforce," ApexHours.com, 2023. [Online]. Available:
https://www.apexhours.com/event-driven-development-in-salesforce/.

[3] Yefim Natis et al, "Predicts 2023: Composable Applications Accelerate Business Innovation," Gartner, 2023.
[Online]. Available:
https://go.capacity.com/hubfs/04%20LumenVox%20Collateral/Gartner%20Predicts%202023-
%20Composable%20Applications%20Accelerate%20Business%20Innovation.pdf

[4] Rich Waldron, "The Composable Enterprise: A Flexible Approach To Digital Transformation," Forbes, 2021.
[Online]. Available: https://www.forbes.com/councils/forbestechcouncil/2021/11/18/the-composable-
enterprise-a-flexible-approach-to-digital-transformation/

[5] Bahadir Tasdemir, "Event-Driven Microservice Architecture," Medium, 2019. [Online]. Available:
https://medium.com/trendyol-tech/event-driven-microservice-architecture-91f80ceaa21e

[6] Sage IT, "What is Composable Enterprise? The Definitive Guide," sageitinc.com, 2023. [Online]. Available:
https://sageitinc.com/reference-center/what-is-composable-enterprise.

[7] Azure, "Event-driven architecture style," Learn.microsoft.com. [Online]. Available:
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven

[8] Angela Davis, "An In-Depth Guide to Microservices Design Patterns," OpenLegacy, 2023. [Online]. Available:
https://www.openlegacy.com/blog/microservices-architecture-patterns/

[9] Sruthi Sree Kumar, "Observability in Distributed Systems: Logs, Metrics, and Traces," Medium, 2022. [Online].
Available: https://medium.com/big-data-processing/observability-in-distributed-systems-logs-metrics-and-
traces-ee260c60d697

[10] Roman Glushach, "Microservices Governance: Establishing Standards and Best Practices for Microservices
Development," Medium, 2023. [Online]. Available: https://romanglushach.medium.com/microservices-
governance-establishing-standards-and-best-practices-for-microservices-development-e609c139fb70

https://www.ibm.com/thought-leadership/institute-business-value/en-us/report/state-of-salesforce-2024
https://www.apexhours.com/event-driven-development-in-salesforce/
https://go.capacity.com/hubfs/04%20LumenVox%20Collateral/Gartner%20Predicts%202023-%20Composable%20Applications%20Accelerate%20Business%20Innovation.pdf
https://go.capacity.com/hubfs/04%20LumenVox%20Collateral/Gartner%20Predicts%202023-%20Composable%20Applications%20Accelerate%20Business%20Innovation.pdf
https://www.forbes.com/councils/forbestechcouncil/2021/11/18/the-composable-enterprise-a-flexible-approach-to-digital-transformation/
https://www.forbes.com/councils/forbestechcouncil/2021/11/18/the-composable-enterprise-a-flexible-approach-to-digital-transformation/
https://medium.com/trendyol-tech/event-driven-microservice-architecture-91f80ceaa21e
https://sageitinc.com/reference-center/what-is-composable-enterprise
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://www.openlegacy.com/blog/microservices-architecture-patterns/
https://medium.com/big-data-processing/observability-in-distributed-systems-logs-metrics-and-traces-ee260c60d697
https://medium.com/big-data-processing/observability-in-distributed-systems-logs-metrics-and-traces-ee260c60d697
https://romanglushach.medium.com/microservices-governance-establishing-standards-and-best-practices-for-microservices-development-e609c139fb70
https://romanglushach.medium.com/microservices-governance-establishing-standards-and-best-practices-for-microservices-development-e609c139fb70

