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Abstract 

Dynamic power allocation strategies for heterogeneous computing systems have emerged as a crucial advancement in 
optimizing AI workload performance while managing energy consumption. This article explores the fundamental 
challenges posed by static power allocation in CPU-GPU systems and presents AI-driven solutions that enable intelligent 
redistribution of power resources based on real-time computational demands. The integration of machine learning 
techniques for workload characterization and power prediction allows these systems to anticipate phase-dependent 
behavior and proactively adjust power distribution, significantly improving both energy efficiency and computational 
throughput. Various implementation approaches are examined, from hardware-level composable architectures to 
operating system facilitation mechanisms, highlighting the tangible benefits observed across diverse computing 
environments from data centers to edge devices. Despite impressive advancements, several challenges persist, 
including prediction accuracy limitations, implementation complexity, and privacy concerns. Future directions point 
toward deeper hardware integration of AI capabilities, increasingly granular power control mechanisms, and 
standardized interfaces across heterogeneous components to further enhance the effectiveness of dynamic power 
allocation in next-generation computing systems.  

Keywords:  Dynamic Power Allocation; Heterogeneous Computing; AI Workloads; Energy Efficiency; CPU-GPU 
Optimization 

1. Introduction

The computational landscape for artificial intelligence (AI) applications has evolved dramatically, with heterogeneous 
computing architectures, specifically systems integrating central processing units (CPUs) and graphics processing units 
(GPUs) emerging as the dominant paradigm. These hybrid systems capitalize on the complementary strengths of both 
processor types: CPUs excel at sequential processing with sophisticated branch prediction and deep cache hierarchies, 
while GPUs offer massive parallelism ideal for the matrix operations fundamental to modern AI algorithms [1]. As 
organizations increasingly deploy sophisticated AI models, the power demands and distribution challenges of these 
heterogeneous systems have become critical concerns for both performance optimization and operational 
sustainability. 

AI workloads present unique power utilization patterns characterized by extreme dynamism and high intensity. Recent 
research has documented that large-scale AI training clusters now operate at megawatt scales with power density 
exceeding 35 kW per rack [1]. More significantly, these workloads exhibit distinctive temporal characteristics, with 
power draw fluctuations that can span from microseconds to hours. At the microsecond level, modern GPUs 
demonstrate remarkable power transients, with slew rates exceeding 1000 A/μs during phase transitions between 
compute-intensive and memory-intensive operations [1]. These rapid fluctuations present substantial challenges for 

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2025.15.2.0841
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2025.15.2.0841&domain=pdf


World Journal of Advanced Engineering Technology and Sciences, 2025, 15(02), 2801–2815 

2802 

conventional power delivery architectures that were designed for more predictable, gradual changes in computational 
load. 

The performance implications of these power constraints are substantial. Under static power allocation schemes, where 
fixed power budgets are assigned to CPUs and GPUs, system efficiency suffers significantly. When multiple applications 
run concurrently on integrated CPU-GPU platforms constrained by a total power budget, traditional approaches fail to 
adapt to the changing resource needs of diverse workloads [2]. This rigid allocation frequently results in scenarios 
where one processing unit becomes power-starved while the other operates below its potential, creating artificial 
performance bottlenecks that compromise overall system throughput. 

Power management challenges extend beyond individual server units to data center infrastructure. The temporal 
diversity of AI workloads spanning microsecond voltage regulator dynamics to daily load patterns requires multi-
layered power management solutions [1]. Conventional data centers typically provide for peak power demand plus a 
safety margin, resulting in substantial unutilized capacity during average operation. This overprovisioning represents 
both capital inefficiency and operational waste, particularly problematic as AI deployments scale globally. 

Research into co-run scheduling techniques with dynamic power capping has demonstrated potential efficiency gains 
of 20-40% compared to static allocation approaches [2]. These techniques continuously monitor application behavior 
and workload characteristics across both CPU and GPU subsystems, redistributing power allocations in real-time based 
on resource sensitivity and utilization patterns. Such adaptive approaches can identify when certain applications would 
benefit more from additional power allocation to either the CPU or GPU component, optimizing the performance-per-
watt metric crucial for sustainable AI deployment. 

The intersecting challenges of power delivery, thermal management, and performance optimization in heterogeneous 
computing systems call for sophisticated solutions that transcend traditional static approaches. Dynamic power 
management frameworks that leverage workload characterization, predictive modeling, and adaptive allocation 
represent a promising direction for addressing the unique demands of AI applications [1, 2]. As AI continues its rapid 
integration across industries, the effectiveness of these power management strategies will increasingly determine not 
only computational efficiency but also the economic and environmental sustainability of large-scale AI deployments. 

2. Background: Heterogeneous Architectures and Power Challenges 

Heterogeneous computing architectures represent a paradigm shift in computational system design, fundamentally 
altering how processing resources are organized and utilized. These architectures intentionally integrate disparate 
processing units primarily CPUs and GPUs to capitalize on their complementary strengths across varied computational 
tasks. This approach has gained significant traction as traditional homogeneous systems have struggled to maintain 
performance scaling under power constraints [3]. 

CPUs and GPUs exhibit fundamentally different architectural philosophies. Modern CPUs typically incorporate between 
4-64 sophisticated cores designed for versatile instruction handling, branch prediction, and speculative execution, with 
each core capable of independent task management. These cores operate at high frequencies (typically 3-5 GHz) and 
incorporate substantial cache hierarchies (up to 128MB in high-end server CPUs) to minimize memory latency [3]. This 
design prioritizes single-threaded performance and instruction-level parallelism, making CPUs exceptionally efficient 
for serial processing, complex decision-making algorithms, and tasks with unpredictable memory access patterns. 

In stark contrast, GPU architectures embrace massive parallelism, with contemporary devices featuring thousands of 
relatively simple processing cores (up to 10,752 CUDA cores in high-end models) organized into streaming 
multiprocessors [3]. These cores operate at more modest frequencies (typically 1-2 GHz) but achieve extraordinary 
aggregate throughput for suitable workloads. The GPU memory subsystem is likewise optimized for bandwidth rather 
than latency, with contemporary HBM2e interfaces delivering up to 3.2 TB/s of memory bandwidth [3]. This 
architectural approach makes GPUs supremely efficient for data-parallel operations where the same instruction 
sequence executes across large datasets precisely the computational pattern dominant in deep learning, scientific 
simulation, and graphical rendering. 

The integration of these processing units introduces complex power management challenges. Research has documented 
distinctive power consumption profiles between CPUs and GPUs, particularly under AI workloads. Comprehensive 
benchmarking of GPU behavior under various computational loads has revealed that power consumption can fluctuate 
by 30-45% when transitioning between compute-bound and memory-bound operations, even when executing the same 
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application [4]. These power fluctuations occur at millisecond timescales, presenting significant challenges for 
traditional power delivery and management systems designed for more gradual load transitions. 

The efficiency implications of static power allocation in these heterogeneous systems are substantial. Experimental 
analysis of fixed power budgets in integrated CPU-GPU systems reveals performance inefficiencies of up to 27% 
compared to theoretical optimums [4]. In typical scenarios, static allocation results in either power starvation during 
peak computational periods or significant power wastage during phases where either the CPU or GPU experiences 
reduced utilization. The performance impact is particularly pronounced in applications with phase-dependent 
processing requirements, where computational demands shift between CPU and GPU resources throughout execution. 

Dynamic Voltage and Frequency Scaling (DVFS) techniques have emerged as essential tools for managing these 
challenges. Comprehensive evaluations of DVFS implementations on NVIDIA K20 GPUs demonstrate energy savings of 
10-25% across benchmark suites, with minimal performance degradation when correctly tuned [4]. These savings are 
achieved by dynamically adjusting GPU core voltages from 0.7V to 1.0V and frequencies from 324 MHz to 758 MHz in 
response to application characteristics. The performance-per-watt improvements are particularly significant in 
memory-bound applications, where reducing core frequencies has minimal impact on execution time while 
substantially decreasing power consumption. 

The problem is further complicated in multi-application environments where diverse workloads compete for shared 
power resources. Analysis of concurrent GPU applications indicates that without intelligent power management, 
performance variations of up to 35% can occur depending on co-scheduled workloads [3, 4]. This variability stems from 
both resource contention and thermal interactions, where power-intensive applications can induce thermal constraints 
that affect all concurrently running tasks. 

As AI applications continue to scale in computational intensity and deployment scope, addressing these heterogeneous 
power management challenges has become essential for sustainable computing. Dynamic power allocation frameworks 
that intelligently distribute power resources based on workload characteristics represent a promising approach to 
maximizing computational efficiency within fixed power constraints. 

In stark contrast, GPU architectures embrace massive parallelism, with contemporary devices featuring thousands of 
relatively simple processing cores (up to 10,752 CUDA cores in high-end models) organized into streaming 
multiprocessors [3]. These cores operate at more modest frequencies (typically 1-2 GHz) but achieve extraordinary 
aggregate throughput for suitable workloads. The GPU memory subsystem is likewise optimized for bandwidth rather 
than latency, with contemporary HBM2e interfaces delivering up to 3.2 TB/s of memory bandwidth [3]. This 
architectural approach makes GPUs supremely efficient for data-parallel operations where the same instruction 
sequence executes across large datasets precisely the computational pattern dominant in deep learning, scientific 
simulation, and graphical rendering. The NVIDIA Blackwell architecture exemplifies these design principles, featuring 
5th generation CUDA cores and advanced power management capabilities specifically optimized for AI workloads. 
Blackwell-based GPUs implement sophisticated power monitoring and control mechanisms that operate at multiple 
granularities, from individual tensor cores to streaming multiprocessors, with transition latencies as low as 20-30μs 
between power states. Additionally, the memory hierarchy incorporates independent power states for different 
partitions that can be dynamically adjusted based on access patterns, allowing precise matching of power allocation to 
computational demands throughout varying execution phases [5]. 

Table 1 Heterogeneous Architecture Characteristics [3, 4] 

Component Specification 

CPU Core Count 4-64 cores 

CPU Frequency Range 3-5 GHz 

GPU Core Count Up to 10,752 CUDA cores 

GPU Frequency Range 1-2 GHz 

HBM2e Memory Bandwidth Up to 3.2 TB/s 

GPU Power Fluctuation Range 30-45% 

Performance Inefficiency with Static Allocation Up to 27% 
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3. AI-Driven Workload Characterization and Power Prediction 

The effective implementation of dynamic power allocation strategies in heterogeneous computing systems necessitates 
sophisticated methods for workload characterization and power consumption prediction. Artificial intelligence 
techniques, particularly machine learning algorithms, have emerged as powerful tools for analyzing the complex, non-
linear relationships between application characteristics and their corresponding power requirements. These AI-driven 
approaches enable systems to anticipate power demands and optimize resource allocation with unprecedented 
precision. 
Machine learning models excel at identifying subtle patterns in multivariate data that would be impractical to detect 
through traditional heuristic approaches. Research has demonstrated that supervised learning algorithms can predict 
GPU performance metrics with remarkable accuracy, achieving mean absolute percentage errors as low as 7.3% for 
execution time and 6.8% for energy consumption across diverse benchmark suites [6]. These predictive capabilities are 
especially valuable in heterogeneous systems, where determining optimal workload distribution between CPU and GPU 
resources requires accurate forecasting of performance and power characteristics on both processing units. 

The feature selection process for these predictive models represents a critical design consideration. Comprehensive 
studies have identified that CPU performance counters readily accessible hardware metrics that track 
microarchitectural events like cache misses, branch mispredictions, and instruction throughput can serve as highly 
informative proxies for estimating GPU behavior [6]. This approach offers significant advantages in production 
environments, as it enables systems to make preliminary power allocation decisions based on CPU-only execution 
profiles before committing to specific resource distribution strategies. Experimental validation across 224 distinct 
kernels from 55 applications demonstrated that models trained on just 10 carefully selected CPU performance counter 
features could achieve 91.2% prediction accuracy for GPU execution characteristics [6]. 

The temporal dimension of power prediction introduces additional complexity, as AI workloads frequently exhibit 
phase-dependent behavior with distinct power profiles at different execution stages. Advanced modeling approaches 
address this challenge through statistical characterization of temporal power variations. Time-series analysis of GPU 
power consumption during deep learning training has revealed that power fluctuations follow distinctive patterns, with 
standard deviations ranging from 18W to 47W depending on the specific neural network architecture and batch size 
configuration [7]. These fluctuations occur at multiple time scales, from millisecond-level variations during kernel 
execution to longer periodic patterns across training epochs [7]. 

Table 2 AI Power Prediction Performance [6, 7] 

Metric Accuracy/Value 

ML Prediction Error (Execution Time) 7.30% 

ML Prediction Error (Energy) 6.80% 

CPU Feature to GPU Prediction Accuracy 91.20% 

GPU Power Standard Deviation Range 18-47W 

Component-Specific Prediction Accuracy 85-97% 

Performance Variance Reduction Up to 37% 

Microarchitecture-aware power modeling provides further insights for fine-grained power prediction. Detailed analysis 
of GPU pipeline stages has enabled the development of component-specific power models that account for the unique 
contributions of shader cores, memory controllers, and interconnect networks [7]. These disaggregated models achieve 
per-component prediction accuracies between 85-97%, allowing systems to identify specific power bottlenecks and 
optimize accordingly. For example, transformer-based models have been observed to stress memory subsystems 
differently than convolutional architectures, with up to 32% higher power consumption in memory controllers despite 
similar overall power envelopes [7]. 

The integration of multiple prediction granularities from application-level characterization to component-specific 
modeling enables comprehensive power forecasting across diverse operating conditions. Ensemble methods that 
combine predictions from multiple specialized models have demonstrated robust performance across varied 
workloads, achieving average prediction errors below 8.5% even for previously unseen applications [6]. This 
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generalization capability is crucial for practical deployment, as systems must adapt to continuously evolving AI software 
frameworks and model architectures. 

Beyond steady-state prediction, capturing transient power behavior represents a frontier challenge for AI-driven 
workload characterization. Research has identified distinct power signatures during phase transitions in GPU 
workloads, with initial power ramps exhibiting slopes of 40-120W/ms depending on the specific transition type [6]. 
These transients can trigger protective throttling mechanisms if not properly anticipated, highlighting the importance 
of predictive models that capture not just average power consumption but also temporal dynamics. 

The practical implementation of these AI-driven prediction techniques enables proactive power management strategies 
that significantly outperform reactive approaches. By forecasting workload power requirements before execution, 
systems can pre-allocate appropriate power budgets, reducing performance variance by up to 37% compared to 
reactive allocation methods [6, 7]. This predictive capability is particularly valuable in multi-tenant GPU environments, 
where workload interference can amplify power fluctuations and exacerbate allocation challenges. 

As AI workloads continue to grow in complexity and scale, the sophistication of power prediction methodologies must 
evolve accordingly. Emerging research directions include transfer learning approaches that adapt power models across 
different hardware generations, reinforcement learning techniques that optimize prediction accuracy for specific 
operational contexts, and federated learning methods that leverage distributed power telemetry to improve global 
prediction performance while preserving privacy and security [6, 7]. 

3.1. Dynamic Power Allocation Techniques 

The ever-increasing computational demands of modern AI workloads have catalyzed the development of sophisticated 
power management techniques that dynamically redistribute power resources between CPU and GPU components. 
These approaches leverage both hardware and software innovations to maximize system efficiency while maintaining 
performance targets within overall power constraints. Dynamic allocation techniques operate across multiple levels of 
abstraction, from hardware-level resource composition to software-driven workload optimization. 

Composable infrastructure represents a paradigm shift in hardware resource management, particularly for GPU-
accelerated AI workloads. Traditional static hardware configurations often result in significant resource 
underutilization, with studies indicating that GPU utilization in enterprise environments averages only 15-30% across 
deployments [8]. Composable GPU architectures address this inefficiency by disaggregating physical GPUs from server 
chassis and placing them in resource pools that can be dynamically allocated based on application requirements. This 
approach enables unprecedented flexibility in resource scaling, allowing systems to provision precisely tailored GPU 
configurations for specific AI workloads. 

The implementation of composable GPU architectures yields substantial efficiency improvements across diverse AI 
applications. Benchmark testing across large language model deployments has demonstrated that dynamic GPU 
allocation can improve throughput by 47-83% compared to static configurations while simultaneously reducing power 
consumption by 21-35% [8]. These gains stem from the ability to precisely match GPU resources to specific model 
requirements, avoiding both over-provisioning (which wastes power) and under-provisioning (which degrades 
performance). For instance, transformer-based models with high parameter counts benefit from configurations 
emphasizing GPU memory capacity, while CNN-based applications typically extract greater benefit from raw 
computational throughput. 

PCIe fabric-based composable systems enable this flexibility by creating a dynamic interconnect between CPUs and GPU 
resources with near-native performance characteristics. Advanced implementations achieve latency penalties below 
3.8μs compared to direct-attached configurations while maintaining 94-97% of native bandwidth [8]. This performance 
preservation is critical for latency-sensitive AI inference applications, where responsiveness requirements may dictate 
strict service-level agreements. 

The efficiency benefits of composable GPU architectures extend beyond individual workloads to multi-tenant 
environments. In production deployments supporting multiple concurrent AI applications, dynamic GPU allocation has 
demonstrated the ability to support 2.3-3.1× higher workload density compared to static provisioning approaches [8]. 
This consolidation directly translates to power efficiency gains at the data center level, with typical implementations 
reducing overall power consumption by 22-38% while maintaining equivalent computational output. 
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At a more granular level, dynamic power sharing technologies enable fine-grained power redistribution between CPU 
and GPU components within a single system. Intel's Dynamic Power Share technology exemplifies this approach, 
implementing sophisticated power monitoring and allocation mechanisms that continuously balance resources 
between CPU and integrated or discrete GPU components [9]. This technology operates through a coordinated power 
management framework that monitors real-time workload characteristics and dynamically adjusts the power budget 
allocation based on application needs. 

Table 3 Dynamic Allocation Techniques Performance [8, 9] 

Technique Impact 

Dynamic GPU Allocation Throughput Improvement 47-83% 

Dynamic GPU Allocation Power Reduction 21-35% 

Composable GPU System Latency Penalty <3.8μs 

Composable GPU Bandwidth Preservation 94-97% 

Workload Density Improvement 2.3-3.1× 

Dynamic Power Sharing Performance Improvement (Integrated) 14-23% 

Dynamic Power Sharing Performance Improvement (Discrete) 7-18% 

Mobile Sustained Performance Improvement 15-28% 

The underlying power sharing architecture incorporates thermal and power sensing capabilities that monitor 
conditions across more than 1,000 on-die sensors with sampling rates of 1ms or better [9]. These measurements feed 
into predictive models that forecast workload power requirements across both CPU and GPU domains. Based on these 
predictions, the power management controller dynamically adjusts the power distribution between components, with 
transition times as low as 50-100μs to accommodate rapidly changing workload characteristics [9]. 

The efficiency gains from dynamic power sharing are particularly pronounced in mixed workloads that alternate 
between CPU-intensive and GPU-intensive phases. Benchmark testing across representative AI workflows has 
demonstrated performance improvements of 14-23% for integrated graphics configurations and 7-18% for discrete 
GPU setups compared to static power allocation approaches [9]. These improvements stem from the system's ability to 
shift power resources to the component currently experiencing the highest computational demand, rather than 
maintaining fixed power allocations that may be suboptimal for the current workload phase. 

The implementation of dynamic power sharing requires sophisticated coordination between hardware and software 
components. At the hardware level, voltage regulators must support rapid adjustment capabilities with slew rates 
sufficient to accommodate millisecond-scale power transitions without introducing voltage instability. Software control 
mechanisms leverage operating system power management frameworks to implement policies that balance 
performance requirements against power consumption targets. Advanced implementations incorporate workload-
aware optimization that recognizes specific application signatures and applies pre-optimized power distribution 
templates tailored to their characteristic requirements [9]. 

Real-world validation of these dynamic allocation approaches demonstrates their practical benefits across diverse 
computing scenarios. In mobile environments with strict thermal constraints, dynamic power sharing enables systems 
to maintain 15-28% higher sustained performance under extended workloads by intelligently redistributing thermal 
headroom between CPU and GPU components as application requirements evolve [9]. In data center environments, 
similar techniques applied at rack scale have demonstrated the ability to support 42% higher computational density 
within the same power envelope, significantly improving the performance-per-watt metric critical for sustainable AI 
deployments [8]. 

As AI workloads continue to evolve in complexity and scale, these dynamic power allocation techniques will play an 
increasingly critical role in managing the tension between computational performance and energy efficiency. The 
integration of these approaches with AI-driven predictive models presents particularly promising opportunities, 
enabling systems to anticipate workload shifts before they occur and proactively adjust power allocations to optimize 
both performance and efficiency. 
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3.2. Operating System and System Software Facilitation 

The successful implementation of AI-driven dynamic power allocation strategies fundamentally depends on 
sophisticated operating system and system software support. These software layers serve as the critical intermediaries 
between hardware capabilities and application requirements, creating the infrastructure necessary for intelligent 
power management across heterogeneous computing resources. As computing architectures evolve toward 
increasingly heterogeneous designs, operating systems must adapt to effectively orchestrate these diverse 
computational resources while optimizing for both performance and energy efficiency. 

Modern operating systems face unique challenges in supporting dynamic processors and power allocation mechanisms. 
Traditional OS designs were developed with relatively static hardware configurations in mind, where processor 
capabilities remained largely consistent throughout execution. Contemporary heterogeneous systems, however, can 
dynamically reconfigure their computational resources in response to workload characteristics, requiring 
fundamentally different OS approaches [10]. These challenges are magnified in AI workloads, where computational 
demands can shift rapidly between sequential and parallel execution phases, each with distinct power profiles and 
resource requirements. 

The Chameleon project represents a significant advancement in operating system support for dynamic processors. This 
Linux-based framework enables rapid hardware reconfiguration to optimize both performance and energy efficiency 
across diverse workload types. Experimental evaluations have demonstrated that Chameleon can improve energy 
efficiency by 35-55% compared to static configurations while maintaining comparable performance levels across 
benchmark suites [10]. These efficiency gains stem from the system's ability to adapt processor resources to match 
application characteristics dynamically, rather than maintaining fixed configurations optimized for specific workload 
types. 

The core architecture of Chameleon introduces several innovations critical for dynamic resource management. Its 
modular design incorporates specialized components for hardware monitoring, workload characterization, and 
reconfiguration decision-making. The monitoring subsystem collects over 32 distinct performance metrics at 
microsecond intervals, providing high-resolution visibility into application behavior [10]. This telemetry feeds into 
sophisticated classification algorithms that identify execution phases and predict upcoming resource requirements with 
91-96% accuracy across tested benchmarks. 

Particularly relevant for AI workloads is Chameleon's support for heterogeneous core management, which enables 
intelligent task distribution between CPU and GPU resources. The system implements a combination of static analysis 
and runtime monitoring to identify code regions suitable for GPU execution, achieving speedups of 2.1-4.7× for 
applicable portions while maintaining energy efficiency [10]. This capability is essential for AI applications that exhibit 
phase-dependent behavior, where certain algorithmic components may benefit from GPU acceleration while others run 
more efficiently on CPUs. 

The reconfiguration mechanisms in Chameleon support both coarse-grained (core allocation) and fine-grained 
(voltage/frequency scaling) adjustments, with transition latencies as low as 2-5μs for frequency changes and 10-15μs 
for power gating operations [10]. These rapid transition capabilities are crucial for adapting to the dynamic nature of 
AI workloads, which can exhibit significant variations in computational intensity over millisecond timescales. The 
system's decision engine incorporates both rule-based heuristics and machine learning models to determine optimal 
configurations, with the latter demonstrating 15-23% better energy efficiency compared to static allocation approaches. 

At a more accessible level, commercial operating systems are increasingly incorporating dynamic power management 
capabilities specifically designed for heterogeneous computing systems. Ubuntu Linux 25.04 exemplifies this trend with 
its integration of NVIDIA Dynamic Boost technology, a sophisticated power-sharing mechanism that dynamically 
redistributes power between CPU and GPU components based on workload demands [11]. This implementation 
showcases how modern operating systems are evolving to accommodate hardware-level power management 
techniques within standardized, user-friendly environments. 

The Ubuntu implementation of Dynamic Boost operates through a specialized system daemon (nvidia-powerd) that 
continually monitors the power consumption and utilization patterns of both CPU and GPU components. This daemon 
samples hardware performance counters at intervals of 10-50ms, providing near-real-time visibility into system 
behavior [11]. Based on these measurements, the daemon dynamically adjusts power allocation between components, 
with adjustments as large as 15-35W shifting between CPU and GPU resources depending on the specific workload 
characteristics. 
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Benchmark testing on Ubuntu systems with Dynamic Boost enabled has demonstrated performance improvements of 
8-17% in graphics-intensive applications and 4-7% in general computational workloads compared to systems without 
dynamic power allocation [11]. These gains are particularly pronounced in applications that alternate between CPU-
intensive and GPU-intensive phases, as the system can redistribute power resources to the component currently 
experiencing the highest computational demand. 

The integration of these capabilities into mainstream operating systems represents a significant step toward 
democratizing advanced power management techniques. While early implementations of dynamic power allocation 
required specialized hardware and proprietary software stacks, their incorporation into widely used operating systems 
like Ubuntu makes these efficiency benefits accessible to a broader range of users and applications [11]. This 
accessibility is crucial for the widespread adoption of energy-efficient computing practices, particularly as AI 
applications continue to proliferate across diverse computing environments. 

Looking forward, operating system support for dynamic processors and power allocation is likely to evolve in several 
key directions. First, the integration of more sophisticated AI-driven prediction models within the OS kernel will enable 
increasingly proactive resource management, anticipating workload shifts before they occur rather than reacting to 
already-changed conditions. Second, improved coordination between application-level hints and system-level decisions 
will allow for more targeted optimization, with applications providing explicit guidance about their upcoming resource 
requirements. Finally, enhanced telemetry and visualization tools will give both developers and system administrators 
deeper insights into power consumption patterns, enabling more informed decision-making about application design 
and infrastructure provisioning [10, 11]. 

3.3. Benefits of Dynamic Power Allocation 

The implementation of AI-driven dynamic power allocation between CPU and GPU components yields transformative 
benefits across computing ecosystems, from data centers to edge devices. These benefits manifest in several critical 
dimensions: energy efficiency, performance optimization, thermal management, and system longevity. Understanding 
these advantages quantitatively demonstrates why dynamic power allocation represents a crucial advancement in 
sustainable computing for AI applications. 

Energy efficiency improvements constitute perhaps the most immediate and measurable benefit of dynamic power 
allocation. In AI-focused computing systems, power consumption represents both a significant operational expense and 
an environmental concern. Quantitative analysis of dynamic power allocation in edge computing environments has 
demonstrated energy savings of 32-47% compared to static allocation approaches across diverse AI workloads [13]. 
These savings are particularly pronounced in environments with varying computational demands, where traditional 
static allocation methods frequently result in substantial power wastage during low-utilization periods. For large-scale 
deployments, these efficiency improvements translate to meaningful operational cost reductions, with studies 
indicating potential annual savings of $378-$512 per computing node in typical data center environments [13]. 

The emergence of AI-focused personal computing devices has further emphasized the importance of efficient power 
allocation. In AI PCs, specialized memory subsystems designed for heterogeneous computing demonstrate the tangible 
benefits of dynamic resource management. LPDDR5X memory configured with dynamic power allocation capabilities 
has shown power consumption reductions of up to 83% compared to standard DDR5 configurations while maintaining 
comparable performance for AI workloads [12]. Similarly, LPCAMM2 memory modules with intelligent power 
distribution between CPU and neural processing units (NPUs) achieve power efficiency improvements of 5.8-7.1× 
compared to traditional architectures [12]. These advancements are critical for extending battery life in mobile AI 
systems, with test results showing runtime extensions of 2.1-3.4 hours for typical mixed-workload scenarios [12]. 

Performance optimization represents another significant benefit of dynamic power allocation. By intelligently 
redistributing power resources based on real-time workload characteristics, these systems can ensure that critical 
computational bottlenecks receive priority access to available power budgets. Benchmark testing across representative 
AI applications has demonstrated performance improvements of 17-29% for inference tasks and 11-23% for training 
operations compared to static allocation approaches [13]. These gains stem from the system's ability to allocate 
additional power to either CPU or GPU components based on the specific requirements of different execution phases 
within AI workloads. 

The performance benefits of dynamic allocation are particularly evident in multi-tenant environments where diverse 
applications compete for shared resources. In edge computing scenarios supporting multiple concurrent AI services, 
dynamic allocation has demonstrated the ability to improve aggregate throughput by 28-42% compared to static 
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approaches, while simultaneously reducing energy consumption by 23-35% [13]. This dual optimization of both 
performance and efficiency underscores the fundamental advantage of intelligent power management in heterogeneous 
systems. 

Memory subsystem innovations play a crucial role in realizing these performance benefits. Modern AI workloads exhibit 
distinctive memory access patterns that differ significantly from traditional computing tasks, with characteristic data 
movement requirements that can dominate overall system power consumption. Memory technologies specifically 
designed for heterogeneous AI systems incorporate dynamic power allocation capabilities that adapt to these unique 
requirements. For instance, LPDDR5X configurations with dynamic bandwidth allocation can shift power resources 
between GPU and CPU memory controllers based on workload demands, achieving throughput improvements of 22-
31% for memory-intensive AI operations compared to static configurations [12]. 

Thermal management advantages constitute another significant benefit of dynamic power allocation. By intelligently 
distributing power resources, these systems can avoid localized thermal hotspots that might otherwise trigger 
performance throttling. Experimental measurements in edge computing environments have demonstrated that 
dynamic allocation approaches maintain peak temperatures 7-12°C lower than static allocation methods under 
equivalent workloads [13]. This improved thermal distribution enables sustained performance for extended durations, 
particularly beneficial for long-running AI training operations that might otherwise experience thermally-induced 
performance degradation over time. 

The reliability and longevity implications of these thermal improvements are substantial. Component aging mechanisms 
in semiconductor devices are strongly temperature-dependent, with typical acceleration factors of 1.3-2.5× for every 
10°C increase in operating temperature [12]. By maintaining lower and more consistent thermal profiles, dynamic 
power allocation can extend the operational lifespan of computing systems. Reliability modeling based on field data 
suggests potential lifetime extensions of 15-30% for systems employing adaptive power management compared to 
traditional fixed allocation approaches [12]. 

Beyond these primary benefits, dynamic power allocation enables several secondary advantages. For instance, these 
techniques facilitate more efficient provisioning of computing infrastructure by reducing the need for worst-case power 
capacity planning. Data centers employing dynamic allocation can support 18-27% higher computational density within 
the same power envelope, significantly improving capital efficiency [13]. Similarly, the ability to adapt to varying 
environmental conditions enables more resilient operation in challenging deployment scenarios, with systems 
demonstrating performance stability improvements of 8-14% under fluctuating ambient temperature conditions [13]. 

4. Challenges and Limitations of AI-Based Dynamic Power Management 

While AI-driven dynamic power allocation offers compelling benefits for heterogeneous computing systems, its 
implementation faces numerous technical, operational, and ethical challenges that must be addressed to achieve 
widespread adoption. These challenges span multiple domains, from algorithmic complexity to hardware integration, 
and vary significantly across deployment environments from data centers to edge devices. 

The fundamental challenge of developing accurate power prediction models stems from the inherent complexity of 
modern computing workloads, particularly in AI applications. Research on edge AI deployments has documented 
prediction error rates of 12-27% when standard machine learning approaches are applied to power forecasting without 
domain-specific optimizations [14]. These errors primarily result from the dynamic, phase-dependent nature of AI 
workloads, which can exhibit power fluctuations of 35-78W within milliseconds as execution transitions between 
different algorithmic components. Conventional prediction models struggle to capture these rapid transitions, 
particularly when operating with limited historical data or facing previously unseen workload patterns. 

Resource constraints represent another significant challenge, particularly in edge computing environments. The 
implementation of sophisticated AI-based power management introduces computational overhead that must be 
carefully balanced against its benefits. Measurements across representative edge devices indicate that naive 
implementations can consume 4-7% of system resources for monitoring and prediction, potentially negating a 
substantial portion of the energy efficiency gains [14]. This overhead becomes particularly problematic in resource-
constrained environments such as IoT devices or mobile platforms, where available compute capacity and memory are 
severely limited. 

The reliability challenges of AI-based power management are magnified in environments with unstable power sources. 
Edge AI systems powered by renewable energy face unique difficulties, as they must adapt not only to workload 
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variations but also to fluctuating energy availability. Field studies of solar-powered edge AI deployments have 
documented energy availability variations of 65-92% depending on weather conditions and time of day [14]. In these 
scenarios, power management algorithms must make complex trade-offs between immediate performance, long-term 
sustainability, and application quality of service. Experimental implementations have demonstrated the difficulty of 
these trade-offs, with even sophisticated adaptive algorithms experiencing service degradation periods of 8-14% during 
extended low-power conditions [14]. 

Spatial multitasking GPUs present particularly complex challenges for dynamic power management due to their highly 
parallel architecture and shared resources. When multiple applications execute concurrently on partitioned GPU 
resources, complex interference patterns emerge that conventional power management approaches fail to address 
effectively. Research has documented performance variations of 18-42% for identical workloads depending on co-
location patterns and resource allocation decisions [15]. These variations stem from shared resource contention across 
multiple dimensions, including computational cores, memory bandwidth, cache capacity, and power delivery 
infrastructure. 

The time-sensitive nature of many AI applications further complicates dynamic power allocation. In real-time systems 
such as autonomous vehicles or industrial control applications, power management decisions must respect strict 
latency constraints while maximizing energy efficiency. Experimental evaluations have shown that naive power 
allocation strategies can introduce latency variations of 15-38ms in critical processing paths, potentially exceeding 
acceptable thresholds for safety-critical applications [15]. Addressing these constraints requires sophisticated QoS-
aware power management frameworks that can provide statistical guarantees on worst-case execution times while still 
capturing efficiency opportunities. 

From an implementation perspective, the diversity of hardware architectures across heterogeneous computing systems 
presents substantial integration challenges. Modern GPUs implement proprietary power management interfaces with 
varying capabilities, from simplified DVFS controls to sophisticated hardware-level power capping mechanisms. This 
heterogeneity complicates the development of generalized power management solutions, with compatibility testing 
across representative GPU platforms revealing implementation differences that necessitate architecture-specific 
optimizations for 53-78% of power management operations [15]. These differences extend beyond interface variations 
to fundamental behavioral characteristics, including power state transition latencies that range from microseconds to 
milliseconds depending on the specific hardware implementation. 

The scalability of dynamic power allocation presents another significant concern, particularly in large-scale systems 
with many processing elements. Current implementations have demonstrated effective resource management for 
systems with up to 8-16 concurrent applications, but experimental evaluations reveal scaling limitations as workload 
complexity increases [15]. Beyond certain thresholds typically around 24-32 concurrent processes the computational 
overhead of coordination and optimization can grow superlinearly, limiting practical applicability for highly 
multiplexed environments. These limitations stem from both algorithmic complexity and hardware constraints, as 
power delivery infrastructures in current systems are not designed for fine-grained, rapidly changing allocation 
patterns across many components. 

Data privacy and security considerations introduce additional complexities for AI-driven power management. Effective 
power prediction often requires detailed telemetry about application behavior, which may inadvertently expose 
sensitive information about workload characteristics or user activities. Analysis of power traces from representative 
workloads has demonstrated that sophisticated side-channel attacks can recover up to 37-62% of key information from 
cryptographic operations based solely on power consumption patterns [14]. These vulnerabilities necessitate careful 
consideration of privacy-preserving monitoring approaches that can provide sufficient information for power 
optimization while protecting sensitive workload characteristics. 

Despite these challenges, promising research directions are emerging. Self-adaptive approaches that combine rule-
based heuristics with learning components have demonstrated robust performance across diverse operating 
conditions, achieving 82-91% of theoretical optimal efficiency while maintaining adaptability to changing environments 
[14]. Similarly, hardware-software co-design approaches that integrate power management awareness across the 
entire system stack have shown the potential to address many current limitations, reducing coordination overhead by 
45-67% compared to purely software-based implementations [15]. 
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Table 4 Challenges in Dynamic Power Management [14, 15] 

Challenge Impact/Metric 

Edge AI Prediction Error Rates 12-27% 

Power Fluctuation Range 35-78W 

Monitoring System Overhead 4-7% 

Renewable Energy Availability Variation 65-92% 

Service Degradation Periods 8-14% 

GPU Multitasking Performance Variation 18-42% 

Latency Variation in Real-time Systems 15-38ms 

Architecture-Specific Optimization Requirement 53-78% 

Side-channel Attack Information Recovery 37-62% 

5. Case Studies and Existing Systems 

The practical implementation of AI-driven dynamic power allocation has progressed from theoretical research to 
deployed systems across diverse computing environments. These real-world implementations provide valuable 
insights into both the achievements and challenges associated with intelligent power management in heterogeneous 
CPU-GPU systems. Examining these case studies reveals the tangible benefits already being realized and illuminates 
promising directions for future development. 

Large-scale AI data centers represent perhaps the most compelling demonstration of dynamic power management's 
impact. The power demands of modern AI infrastructure have reached unprecedented levels, with hyperscale facilities 
now routinely operating at power densities of 35-50 kW per rack for AI-optimized servers [16]. These extreme power 
requirements have catalyzed the development of sophisticated power management solutions that dynamically optimize 
resource allocation across heterogeneous computing elements. Micron's implementation in their AI validation clusters 
demonstrates how memory-aware power management can yield significant efficiency improvements. By implementing 
dynamic power allocation between CPU, GPU, and memory subsystems, their engineering team achieved energy 
efficiency improvements of 23-31% across representative large language model workloads [16]. 

The architecture of these optimized systems incorporates multiple power management domains with independent 
control capabilities. Power distribution units with per-outlet monitoring and control functions enable dynamic 
reallocation at rack scale, with measurement resolution of ±0.5% and adjustment capabilities at 50W increments [16]. 
This granular control extends to the server level, where platform management controllers implement model-specific 
power policies that continuously rebalance resources between processing elements. In production environments, these 
systems have demonstrated the ability to operate consistently at 92-97% of theoretical peak efficiency across diverse 
AI workloads, substantially outperforming traditional static allocation approaches [16]. 

The memory subsystem plays a particularly critical role in these optimized architectures. Modern AI models, especially 
large language models and diffusion models, exhibit extreme memory bandwidth sensitivity that significantly impacts 
power consumption patterns. Measurements across representative transformer-based architectures indicate that 
memory operations can account for 28-42% of total system power consumption during inference and 18-27% during 
training [16]. Dynamic power management systems address this challenge through intelligent memory configuration 
that adapts to workload characteristics. For instance, HBM3E memory operating in dynamically adjusted power states 
has demonstrated energy efficiency improvements of 4.7× for bandwidth-intensive operations and 2.8× for capacity-
bound operations compared to fixed-configuration DDR5 implementations [16]. 

At a more granular level, research implementations have explored sophisticated algorithmic approaches to GPU power 
management. The GAMESS (General Atomic and Molecular Electronic Structure System) project represents a 
particularly illustrative case study in scientific computing applications. This quantum chemistry application leverages 
multiple GPUs for computationally intensive tensor operations, creating a complex power management challenge due 
to its phase-dependent execution patterns [17]. Researchers implemented a dynamic power allocation system that 
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continuously monitors GPU utilization metrics and redistributes power budgets accordingly, achieving energy efficiency 
improvements of 17-24% compared to static allocation approaches [17]. 

The GAMESS implementation is particularly noteworthy for its integration of application-specific knowledge into the 
power management framework. By instrumenting key computational kernels with power management hooks, the 
system can anticipate upcoming phase transitions and proactively adjust power allocations before execution patterns 
change. This predictive capability enables power state transitions to complete before new computational phases begin, 
eliminating performance penalties that would otherwise occur from reactive management approaches. Benchmark 
results demonstrate that this proactive approach reduces execution time variability by 62-78% compared to reactive 
methods, while maintaining equivalent energy efficiency improvements [17]. 

The implementation details of the GAMESS power management system reveal the practical challenges of dynamic 
allocation in production environments. The system operates within a global power cap that constrains total 
consumption across all GPUs, typically set 15-20% below the theoretical maximum to accommodate power supply 
inefficiencies and system-level overhead [17]. Within this constraint, the allocation algorithm continuously monitors 12 
distinct GPU performance metrics sampled at 50ms intervals, using these measurements to compute utilization scores 
that guide power distribution decisions. The allocation algorithm implements a proportional-integral-derivative (PID) 
control approach that has demonstrated stability across diverse workloads, with convergence times of 150-350ms 
following major phase transitions [17]. 

The performance impact of this dynamic allocation is substantial. For a representative dataset involving molecular 
dynamics simulations, the system achieved execution time improvements of 12-18% compared to static allocation 
approaches with equivalent total power consumption [17]. These improvements were particularly pronounced for 
complex simulations involving transition metals and large orbital basis sets, where computational phases exhibit highly 
variable power efficiency characteristics. The system's ability to identify these efficiency differences and redistribute 
power accordingly represents a significant advancement over conventional approaches that maintain fixed allocations 
regardless of workload characteristics. 

Edge computing environments present different but equally compelling case studies of dynamic power allocation. 
Micron's AI PC solutions demonstrate how these techniques can be adapted to resource-constrained environments 
where battery life and thermal management are primary concerns. Their implementation combines hardware-level 
power management capabilities with software-driven workload characterization, continuously redistributing power 
between CPU, GPU, and NPU components based on application requirements [16]. Field testing across representative 
usage scenarios has demonstrated battery life extensions of 2.1-3.8 hours compared to systems without dynamic 
allocation, while maintaining equivalent application performance [16]. 

6. Future Directions and Research Opportunities 

The landscape of AI-driven dynamic power allocation in heterogeneous computing systems is poised for transformative 
advancement as emerging technologies and research initiatives converge to address current limitations. These future 
directions span hardware architectures, software frameworks, and algorithmic approaches, collectively promising 
substantial improvements in both performance and energy efficiency for next-generation computing systems. 

The integration of AI capabilities directly into processor hardware represents perhaps the most significant architectural 
trend. Rather than treating power management as an external function, next-generation CPUs and GPUs are 
incorporating dedicated neural network accelerators optimized specifically for power-related decision making. These 
specialized circuits, occupying just 2-3% of total die area, can process telemetry data and implement sophisticated 
allocation policies with minimal latency and energy overhead [18]. Preliminary implementations have demonstrated 
response times of 1-2μs for power state transitions, compared to 25-40μs in conventional software-driven approaches, 
enabling much finer-grained adaptation to workload variations [18]. 

The sophistication of these integrated AI systems extends beyond simple reactive policies to incorporate predictive 
capabilities. On-chip neural networks trained on extensive workload traces can anticipate computational demands 10-
50ms before they occur, enabling proactive power allocation that eliminates performance penalties associated with 
reactive approaches [18]. This predictive capability is particularly valuable for applications with phase-dependent 
behavior, where performance can improve by 12-18% compared to reactive management techniques while 
simultaneously reducing energy consumption by 7-14% [18]. 
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Beyond integration into existing architectures, AI is fundamentally reshaping processor design methodologies. 
Traditional design approaches relied heavily on human expertise and heuristic optimization, limiting exploration of the 
vast design space for power-efficient architectures. AI-driven design automation tools are dramatically expanding this 
exploration capability, evaluating thousands of potential microarchitectural configurations to identify optimal power-
performance trade-offs [18]. These tools have already influenced commercial processor designs, with AI-optimized 
floor plans demonstrating power delivery efficiency improvements of 8-15% compared to conventional human-
designed layouts [18]. 

The memory subsystem represents another critical frontier for AI-driven optimization. Future architectures will likely 
implement fine-grained, content-aware memory power management that adapts not just to access patterns but to the 
specific data being processed. Research prototypes have demonstrated techniques that can identify computational 
patterns associated with specific AI operations (convolution, attention mechanisms, etc.) and dynamically reconfigure 
memory power states to match these requirements, achieving energy savings of 22-37% compared to current 
approaches [19]. 

The emergence of specialized AI accelerators within heterogeneous systems introduces new coordination challenges 
and opportunities. Future research directions include the development of hierarchical power management frameworks 
that can effectively coordinate allocation decisions across increasingly diverse computational elements. These 
frameworks must balance local optimization (within each accelerator) against global efficiency objectives, a complex 
challenge that conventional approaches struggle to address [19]. AI-driven techniques show particular promise for this 
coordination role, with reinforcement learning approaches demonstrating the ability to navigate complex trade-offs 
across multiple objective functions while adapting to changing environmental conditions. 

GPU architectures are evolving to incorporate increasingly granular power management capabilities. Future GPUs will 
likely implement tensor-level power gating, allowing individual tensor processing units to be selectively powered down 
when not needed for specific computational phases [19]. This approach represents a significant advancement over 
current core-level or SM-level power management, potentially reducing idle power consumption by 65-78% during 
sparse computation phases according to simulation studies [19]. Combined with dynamic voltage and frequency scaling 
at similar granularity, these techniques could enable unprecedented matching of power allocation to computational 
requirements. 

Compiler and runtime system innovations represent another promising research direction. Future systems will likely 
implement sophisticated power-aware compilation techniques that generate multiple code variants optimized for 
different power-performance trade-offs [19]. At runtime, dynamic selection mechanisms can choose the appropriate 
variant based on current system conditions and power availability. Preliminary implementations have demonstrated 
energy efficiency improvements of 14-26% across diverse benchmark suites compared to conventional approaches that 
optimize code for a single operating point [19]. 

The standardization of power management interfaces across heterogeneous components remains a significant 
challenge and opportunity. Current systems implement vendor-specific interfaces with varying capabilities and control 
granularity, complicating the development of unified management approaches [18]. Industry initiatives to establish 
common power management frameworks could substantially accelerate progress by enabling more consistent 
optimization approaches across diverse hardware platforms. 

Looking further ahead, quantum-classical hybrid systems present unique power management challenges that will 
require novel approaches. The extreme cooling requirements of quantum processing units create energy consumption 
profiles fundamentally different from conventional electronics, necessitating innovative allocation strategies that 
consider both computational efficiency and cooling overhead [18]. Research in this direction remains nascent but 
represents a critical frontier as quantum computing capabilities continue to advance.   

7. Conclusion 

The integration of AI-driven dynamic power allocation in heterogeneous CPU-GPU computing environments represents 
a significant advancement in addressing the escalating energy demands of modern computational workloads. Through 
sophisticated workload characterization and predictive modeling, these systems achieve remarkable improvements in 
both performance and energy efficiency across diverse deployment scenarios. The demonstrated benefits include 
substantial energy savings ranging from 20-47%, performance enhancements of 12-83%, and significant improvements 
in thermal management leading to extended system longevity. The implementation of these technologies’ spans 
multiple abstraction levels, from hardware-level resource composition to operating system facilitation mechanisms, 
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each contributing unique capabilities to the overall power management framework. Despite impressive progress, 
challenges persist in prediction accuracy, implementation complexity, and cross-vendor standardization. Future 
directions point toward deeper hardware integration of AI capabilities, increasingly granular control mechanisms, and 
comprehensive frameworks that coordinate power allocation across increasingly diverse computational elements. As 
AI applications continue to proliferate and scale, effective dynamic power allocation will become increasingly critical 
for sustainable computing, driving continued innovation at the intersection of machine learning and power 
management technologies. The evolution of these approaches will play a decisive role in determining not only the 
computational efficiency but also the economic and environmental sustainability of AI deployments worldwide.  

References 

[1] Yuzhuo Li, and Yunwei Li, "AI Load Dynamics–A Power Electronics Perspective," arXiv, 2025. 
https://arxiv.org/html/2502.01647v2 

[2] Qi Zhu, et al., "Co-Run Scheduling with Power Cap on Integrated CPU-GPU Systems," Research, 
https://research.csc.ncsu.edu/picture/publications/papers/ipdps17.pdf 

[3] Hyperstack, "Rent NVIDIA DGX B200 GPU – Boost Your AI Workloads," Hyperstack, 
https://www.hyperstack.cloud/nvidia-blackwell-b200#:~:text=Interconnect-
,5th%20Generation%20NVLink%3A%201.8TB%2Fs%2C%20PCIe%20Gen6%3A,FP8%2FFP6%20Tensor%20
Core 

[4] Rong Ge, et al., "Effects of Dynamic Voltage and Frequency Scaling on a K20 GPU," Science - Texas State University, 
accessed March 23, 2025, https://userweb.cs.txstate.edu/~mb92/papers/pasa13.pdf 

[5] PNY, NVIDIA RTX PRO 6000 Blackwell Server Edition, PNY. https://www.pny.com/nvidia-rtx-pro-6000-
blackwell#:~:text=NVIDIA%20Blackwell%20Architecture-
,CUDA%20Parallel%20Processing%20Cores,752%20(5th%20Gen) 

[6] Ioana Baldini, et al., "Predicting GPU Performance from CPU Runs Using Machine Learning," ResearchGate, 2014. 
https://www.researchgate.net/publication/292845940_Predicting_GPU_Performance_from_CPU_Runs_Using_
Machine_Learning 

[7] Gene Wu, et al., "GPGPU Performance and Power Estimation Using Machine Learning" 
https://users.ece.utexas.edu/~derek/Papers/HPCA2015_GPUPowerModel.pdf 

[8] Sumit Puri, "Optimizing AI Model Performance Through Dynamic GPU Allocation," Liqid, 2024. 
https://www.liqid.com/blog/optimizing-ai-model-performance-through-dynamic-gpu-allocation 

[9] Intel, "What is Intel® Dynamic Power Share for Intel® Graphics?," 2024. Intel, 
https://www.intel.com/content/www/us/en/support/articles/000090047/graphics/intel-arc-dedicated-
graphics-family.html 

[10] Sankaralingam Panneerselvam and Michael M. Swift, "Chameleon: Operating System Support for Dynamic 
Processors," https://pages.cs.wisc.edu/~swift/papers/asplos12_chameleon.pdf 

[11] Arol Wright, "Ubuntu Linux 25.04 Will Be a Great Upgrade for Games," How to Geek, 2025. 
https://www.howtogeek.com/ubuntu-25-04-nvidia-dynamic-boost/ 

[12] Micron, "The Role of the Memory Subsystem in Achieving AI PC Efficiency," Micron Technology, 
https://www.micron.com/content/dam/micron/global/public/products/white-paper/ai-pc-white-paper.pdf 

[13] Lavanya Shanmugam, et al., "Dynamic Resource Allocation in Edge Computing for AI/ML Applications: 
Architectural Framework and Optimization Techniques," Journal of Knowledge Learning and Science 
Technology, 2023.  https://jklst.org/index.php/home/article/download/173/146/494 

[14] Julia Oberauner, "Dynamic Power Management for Edge AI: A Sustainable Self-Adaptive Approach," netidee, 
2024, https://www.netidee.at/dynamic-power-management-edge-ai-sustainable-self-adaptive-approach 

[15] Hoda Sedighi, et al., "Efficient Dynamic Resource Management for Spatial Multitasking GPUs," IEEE Transactions 
on Cloud Computing, 2025. https://www.computer.org/csdl/journal/cc/5555/01/10778657/22qSX1nspqw 

[16] Larry Hart, "AI drives power consumption, Micron drives power efficiency," Micron, 2024, 
https://www.micron.com/about/blog/storage/ai/ai-drives-power-consumption-micron-drives-power-
efficiency 



World Journal of Advanced Engineering Technology and Sciences, 2025, 15(02), 2801–2815 

2815 

[17] Masha Sosonkina, et al., "Runtime Power Allocation Based on Multi-GPU Utilization in GAMESS," Scientific 
Research Publishing, 2022. https://www.scirp.org/journal/paperinformation?paperid=119960 

[18] The Social Media Monthly, "The Role of AI in CPU and GPU Design: How AI is Shaping Future Processors," The 
Social Media Monthly, 2025, https://thesocialmediamonthly.com/the-role-of-ai-in-cpu-and-gpu-design-how-ai-
is-shaping-future-processors/ 

[19] Adrien Payong, "Future Trends in GPU Technology," DigitalOcean, 2024, 
https://www.digitalocean.com/community/conceptual-articles/future-trends-in-gpu-technology  

https://thesocialmediamonthly.com/the-role-of-ai-in-cpu-and-gpu-design-how-ai-is-shaping-future-processors/
https://thesocialmediamonthly.com/the-role-of-ai-in-cpu-and-gpu-design-how-ai-is-shaping-future-processors/

