
 Corresponding author: Aniruddha Zalani

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

Designing Recommender Systems at Scale: Multi-Stage Architecture and Cold-Start
Optimization

Aniruddha Zalani *

Indian Institute of Technology, Kanpur, India.

World Journal of Advanced Research and Reviews, 2025, 26(03), 1097-1102

Publication history: Received on 31 March 2025; revised on 08 June 2025; accepted on 10 June 2025

Article DOI: https://doi.org/10.30574/wjarr.2025.26.3.2050

Abstract

Recommender systems form the backbone of digital platforms, facilitating content discovery in increasingly crowded
online ecosystems. Large social media platforms face the dual challenge of processing vast data volumes while
maintaining relevance across diverse user preferences. The cold-start problem—effectively recommending content
with minimal historical data—remains a persistent challenge in these environments. This article examines major
platforms' architecture and optimization techniques to address these challenges. The multi-stage recommendation
architecture combines diverse candidate generation methods with deep neural ranking, supported by sophisticated
caching and feature retrieval systems. For cold-start scenarios, specialized techniques, including exploration pipelines,
freshness boosting, and contextual matching, have significantly improved engagement. Real-world implementations
show that properly designed recommender systems can improve relevance metrics while reducing computational
latency. Integrating robust system design with cold-start optimization provides a blueprint for recommendation
systems that maintain high relevance from a user's first interaction onward, balancing the competing demands of scale,
speed, and personalization quality.

Keywords: Recommender Systems; Cold-Start Problem; Multi-Stage Architecture; Real-Time Feature Engineering;
Personalization Acceleration; Content Exploration

1. Introduction

Recommender systems have become central to digital platforms, facilitating the discovery of relevant content in an
increasingly crowded online ecosystem. For large social media platforms serving hundreds of millions of users daily,
these systems face dual challenges: They must efficiently process massive amounts of data while maintaining high
relevance across diverse user preferences and content types. One particularly persistent challenge is the "cold-start
problem"—effectively recommending new items or serving new users with minimal historical interaction data.

Reels recommendation system demonstrates the immense scale of modern content discovery platforms, processing
over 95 billion Reels daily while serving more than 2 billion monthly active users, as Ayushi Jain (2023) reported. The
platform's multi-layered recommendation architecture implements a sophisticated candidate generation system that
evaluates thousands of potential videos per user session, with the initial retrieval phase narrowing approximately
70,000 candidates to around 500 for deeper evaluation before final presentation to users [1]. This approach has enabled
achieving a reported 44% year-over-year increase in time spent on Reels while maintaining recommendation
generation times under 150 milliseconds.

The cold-start problem represents a significant barrier to recommendation performance in platforms of this scale.
According to Pasrija and Pasrija (2024), new users typically require 8-10 meaningful interactions before personalized

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjarr.com/
https://doi.org/10.30574/wjarr.2025.26.3.2050
https://crossmark.crossref.org/dialog/?doi=10.30574/wjarr.2025.26.3.2050&domain=pdf

World Journal of Advanced Research and Reviews, 2025, 26(03), 1097-1102

1098

recommendations begin showing substantial relevance improvements, with standard collaborative filtering approaches
suffering from a 37% reduction in recommendation precision for users with fewer than 5 interactions [2]. Their analysis
of e-commerce platforms revealed that new products experience an average of 43% fewer impressions during their first
24 hours despite potentially high relevance to user interests, creating a significant barrier to content discovery.

Drawing from implementations across major platforms, including Instagram Reels, it demonstrates how specialized
cold-start techniques improved overall engagement by 15% across core metrics. Instagram's approach leverages a
sophisticated embedding-based ranking system that utilizes over 50 signals, including content consumption patterns,
creator relationships, and visual similarity features, to overcome initial data sparsity for new content [1]. Similarly,
techniques analyzed by Pasrija and Pasrija (2024) show that hybrid content-based filtering solutions incorporating
demographic data can reduce new user recommendation error rates by up to 18.7% compared to pure collaborative
approaches [2].

Our approach provides actionable insights for practitioners seeking to build recommendation systems that maintain
high relevance from a user's first interaction onwards, balancing the competing demands of scale, speed, and
personalization quality.

2. Multi-Stage Recommender Architecture

The foundation of scalable recommendation systems is a multi-stage architecture designed to handle the computational
challenges of serving over 100 million daily users. This architecture follows a progressive filtering approach, beginning
with broad candidate generation and culminating in precise personalized ranking.

The first stage employs diverse candidate generation methods, including collaborative filtering-based factorization
machines, graph neural networks for user-item embeddings, and sequence models capturing temporal patterns in user
behavior. According to Covington et al. from Google, their American video-sharing company recommendation system
initially retrieves between 10,000 and 50,000 video candidates from various sources, with collaborative filtering
approaches alone generating approximately 15,000 potential recommendations [3]. Their multi-stage architecture
handles more than 400 hours of video uploaded every minute while serving recommendations to over 2 billion monthly
active users. Similarly, Smith and Linden documented that Amazon's product recommendation engine processes 66.5
billion observations daily while maintaining latency requirements below 100 milliseconds [4].

The second stage implements a lightweight scoring mechanism that rapidly narrows this candidate pool to several
hundred items. This intermediate filtering uses simplified versions of ranking models, primarily focused on user-item
affinity signals and basic content quality metrics. According to Smith and Linden, an American e-commerce company's
second-stage filtering typically reduces an initial pool of 20,000 candidate products to approximately 500, using a
simplified model with only 50-100 features that can be computed in under 10 milliseconds per request [4]. An American
video-sharing company recommendation system similarly narrows candidates to "hundreds" using what they term
"lightweight scoring functions" that achieve 95% of full model accuracy while requiring only 1/100th of the
computational resources [3].

The final ranking stage applies deep neural networks to score the remaining candidates comprehensively. Production
models incorporate over 1,000 features spanning user demographics, historical engagement patterns, content
characteristics, and contextual factors. An American video-sharing company recommendation system employs a deep
neural network with three hidden layers containing 256, 512, and 1024 nodes, processing approximately 200 features
per video-user pair [3]. This architecture is supported by specialized feature retrieval and caching layers that
dramatically reduce latency.

Performance measurements indicate that this architecture improved overall engagement by 15% while reducing
recommendation latency by 30% compared to previous monolithic approaches. Google's implementation achieved a
40% increase in watch time metrics through its multi-stage architecture. Smith and Linden report that Amazon's tiered
approach reduced average recommendation generation time from 150ms to 35ms while improving purchase
conversion rates by 29% [4].

World Journal of Advanced Research and Reviews, 2025, 26(03), 1097-1102

1099

Table 1 Multi-Stage Recommender Architecture Components [3, 4]

Component Function Implementation Examples

Candidate
Generation

Creates an initial pool of potential
recommendations using diverse
methods

American video-sharing company (collaborative filtering,
embedding models), Amazon (factorization machines)

Intermediate
Filtering

Narrows candidate pool using
lightweight scoring

Amazon (simplified models with focused features), American
video-sharing company (lightweight scoring functions)

Deep Ranking Comprehensive scoring of
remaining candidates

American video-sharing company (neural network with three
hidden layers), Amazon (tiered ranking approach)

Feature
Retrieval

Supports ranking with cached and
computed features

Chinese internet company (multi-tiered caching), Amazon
(feature service infrastructure)

3. Real-Time Feature Engineering and Serving Infrastructure

Supporting the multi-stage architecture is a sophisticated feature engineering and serving infrastructure designed to
handle real-time recommendations at scale. This infrastructure addresses the critical challenge of retrieving and
processing features with millisecond-level latency requirements while serving millions of concurrent requests.

The feature service layer implements a three-tiered caching strategy: an in-memory cache for frequently accessed
features, a distributed Redis cluster for medium-access features, and a fallback to the primary database for rare feature
lookups. According to Chen et al., their recommendation platform at a Chinese internet company implements a similar
multi-tiered caching strategy that handles over 10 billion user requests daily with an average latency of 30 milliseconds
[5]. Their system employs a distributed in-memory cache spanning 200 machines with 256GB RAM, achieving a 97.2%
hit rate for high-frequency features. A Redis cluster containing 500 nodes provides secondary caching with 2.3% of
requests for medium-frequency features, while only 0.5% require database access. This architecture helped them
reduce feature retrieval latencies from an average of 120ms to just 30ms, representing a 75% improvement critical for
maintaining user engagement on their platform, which serves over 600 million daily active users [5].

For real-time features based on recent user actions, a stream processing pipeline using Apache Kafka and Flink
processes user interactions as they occur. Agarwal et al. detail an American service provider company's LASER platform,
which ingests approximately 1 terabyte of event data daily through a Kafka cluster capable of processing over 100,000
events per second [6]. This system updates user-item affinity scores within 10-30 seconds of user actions, incorporating
these fresh signals into recommendation generations. Their platform maintains a continuous processing pipeline that
handles 120 million daily user interactions, generating real-time updates to a feature space containing over 100 million
items and 259 million users. This low-latency processing proved crucial for American service provider companies'
advertising response prediction models, where incorporating fresh user activity signals improved click-through rates
by 5.92% compared to models using only batch-computed features [6].

To accommodate the resource-intensive nature of deep learning models in the final ranking stage, an adaptive batching
mechanism dynamically adjusts inference batch sizes based on the current system load. Chen et al. describe a Chinese
internet company's implementation that varies batch sizes between 8 and 512 requests depending on traffic conditions,
achieving 4.2x higher throughput during peak periods while keeping latencies within acceptable bounds [5]. Their
system dynamically provisions between 80 and 320 GPU servers during different traffic conditions, with each NVIDIA
V100 GPU handling approximately 300 requests per second at optimal batch sizes of 128 inference requests.

The resulting infrastructure supports over 1 million recommendation requests per second during peak hours with 99th
percentile latency under 100ms. American service provider company's LASER system maintains p95 latencies of 65ms
when serving 35,000 queries per second, achieved through a distributed architecture of 20 serving nodes with request-
level parallelization. This enables American service provider companies to meet strict service level agreements for their
advertising customers [6].

World Journal of Advanced Research and Reviews, 2025, 26(03), 1097-1102

1100

Table 2 Real-Time Feature Engineering Infrastructure [5, 6]

Component Function Implementation Examples

Multi-Tiered
Caching

Optimizes feature retrieval latency Chinese internet company (in-memory cache, Redis cluster,
database fallback)

Stream Processing Enables real-time feature updates American service provider company LASER (Kafka/Flink
pipeline)

Adaptive Batching Optimizes inference throughput Chinese Internet company (dynamic batch size adjustment)

Distributed Serving Supports high request volume American service provider company (request-level
parallelization)

4. Cold-Start Optimization for New Content

A critical challenge in recommender systems is providing adequate visibility for new content with minimal historical
engagement data—the "cold-start problem." To address this, specialized techniques for content-side cold-start
optimization have been developed.

The approach begins with a dedicated exploration pipeline that selectively exposes new content to a small, diverse
subset of users. According to Bressan et al., from an American video streaming platform, their production system
implements an exploration strategy that initially exposes new titles to approximately 1-2% of their user base, carefully
selected to represent diverse viewing preferences [7]. Their exploration algorithm dynamically adjusts exposure rates
based on early performance signals, with exploration pools ranging from 450,000 to 1.2 million users depending on the
content category and predicted popularity. This controlled exposure strategy allows an American video streaming
platform to gather statistically significant engagement data within 24-48 hours of content release while minimizing
potential negative impacts on overall user experience. Their implementation leverages a Thompson sampling multi-
armed bandit framework that balances exploration with exploitation. It incorporates 84 content features extracted
using deep neural networks that predict engagement potential from visual, textual, and audio signals [7].

Table 3 Cold-Start Content Optimization Techniques [7, 8]

Technique Function Implementation Examples

Exploration
Pipeline

Selectively exposes new content An American video streaming platform (controlled exposure
strategy)

Freshness Boost Temporarily increases ranking
scores

American social media service (time-aware boosting factor)

Content Quality
Prediction

Estimates engagement potential An American video streaming platform (neural networks for
engagement prediction)

Real-Time
Monitoring

Tracks early performance signals American social media service (multi-metric evaluation)

A "freshness boost" re-ranking strategy within the recommendation pipeline has proven effective for social media video
content. As detailed by Eksombatchai et al. from an American social media service, their "PinnerSage" recommendation
system implements a time-aware boosting factor that temporarily increases ranking scores for new content [8]. This
boost factor begins at 2.7x for newly uploaded content and decays logarithmically over a 72-hour period, with a half-
life typically set at 24 hours. The boost magnitude also varies based on creator authority metrics—with established
creators receiving an additional 15-30% initial boost—and projected content quality as determined by a specialized
"cold-start quality classifier" that analyzes 128 content features. This approach smooths from cold-start to normal
recommendation patterns while ensuring new content receives adequate exposure.

Real-time monitoring tools track the performance of new content across key engagement dimensions. American social
media service system evaluates early signals across six core engagement metrics: click-through rate, save rate, and
session duration impact [8]. When content demonstrates unusually positive early signals (exceeding category
benchmarks by 1.8 standard deviations), their system automatically increases exploration rates from the default 1.5%
to up to 4.5% of eligible users.

World Journal of Advanced Research and Reviews, 2025, 26(03), 1097-1102

1101

Implementing these techniques on social media platforms has yielded measurable improvements: American social
media service reported a 0.5% increase in content saves, a 0.8% increase in click-through rates, and a 0.3% increase in
session durations for fresh content [8]. These seemingly modest percentage improvements translate to millions of
additional daily interactions platform-wide, significantly enhancing content creator satisfaction and platform
engagement metrics.

5. User Cold-Start and Personalization Acceleration

While content cold-start represents one dimension of the challenge, the user cold-start problem—providing relevant
recommendations to new users—presents another critical area for optimization. Techniques to rapidly build
personalized user models from minimal interaction data have shown significant promise in production environments.

For new users, modern recommendation systems leverage a combination of contextual signals and demographic
similarities to existing users. According to Volkovs et al. from Koho Financial and the University of Toronto, their cold-
start recommendation system analyzes multiple contextual features, including geographic location, device type, and
referral source, to create initial user profiles. Their approach, implemented in a commercial recommendation system
serving millions of users, demonstrated that properly constructed content-based neighbor models can achieve up to
90% of the performance of fully developed collaborative filtering models for new users [9]. Their implementation
extracted 1,024-dimensional embeddings from content metadata to build feature vectors, allowing for effective user-
item matching even without explicit interaction history. This novel technique leveraged an attentional neural network
architecture (CBNN-a) trained on a dataset of 7.08 million users with 478 million interactions, which outperformed
traditional matrix factorization methods by 12% for completely new users and 7.2% for users with very limited history
[9].

As users interact with content, an incremental learning approach heavily weights these first interactions. Aharon et al.
from Yahoo Research describe an "OFF-Set" algorithm designed for the persistent cold-start problem in online
recommendation systems [10]. Their approach employs a factorization technique that processes feature sets in a single
pass, making it particularly well-suited for environments where new users and items constantly enter the system. Their
model processes approximately 100,000 new features daily while maintaining a vocabulary of 100 million features in
production. For new users, they implement specialized feature integration that can generate effective user
representations after as few as 3-5 interactions, compared to the significantly larger interaction histories typically
required by standard factorization approaches. Their approach showed a 13.7% improvement in recommendation
accuracy compared to baseline methods when tested on a dataset containing 234 million events from Yahoo's front
page [10].

Table 4 User Cold-Start Techniques [9, 10]

Technique Function Implementation Examples

Contextual Matching Creates initial user profiles Koho/University of Toronto (content-based
neighbor models)

Fast Embedding Generates provisional user representations Yahoo (OFF-Set algorithm)

Progressive
Introduction

Balances exploration and exploitation Koho/University of Toronto (diversity-aware
exploration)

Incremental Learning Heavily weights initial interactions Yahoo (specialized feature integration)

To further enhance cold-start performance, progressive introduction strategies have proven effective. Volkovs et al.
demonstrate a diversity-aware exploration approach that presents users with recommendations spanning multiple
content categories [9]. Their system strategically samples from different content clusters while maintaining
recommendation quality, gradually shifting from exploration to exploitation as user preferences become clearer. This
approach effectively balances immediate engagement with long-term preference learning, particularly important for
the critical first session, where user retention decisions are often made.

These techniques significantly reduce the "cold-start gap"—the performance difference between recommendations for
new versus established users. Aharon et al. reported that their approach reduced this gap by approximately 30% in
production environments at Yahoo, with particularly strong improvements in user engagement metrics during the first

World Journal of Advanced Research and Reviews, 2025, 26(03), 1097-1102

1102

24 hours after sign-up [10]. This improvement addressed one of the most challenging periods in the user lifecycle, where
abandonment rates are typically highest due to less personalized experiences.

6. Conclusion

The design and implementation of large-scale recommender systems require balancing multiple competing objectives:
computational efficiency, personalization quality, and effective handling of cold-start scenarios. The multi-stage
architecture described throughout this article demonstrates how major platforms have successfully addressed these
challenges through tiered processing pipelines that progressively narrow recommendation candidates while increasing
scoring sophistication. This approach, implemented by companies, yielded substantial improvements in
recommendation quality and system performance. The sophisticated feature engineering infrastructure supporting
these architectures, incorporating multi-tiered caching, stream processing, and adaptive inference optimization,
enables real-time personalization at an unprecedented scale. Perhaps most significantly, the specialized techniques for
cold-start optimization provide pathways to overcome one of recommendation systems' most persistent challenges. For
content cold-start, controlled exploration strategies and dynamic boosting mechanisms create visibility opportunities
for new items, while user cold-start techniques leverage contextual signals and accelerated embedding generation to
rapidly personalize experiences. These approaches, demonstrated through implementations at an American video
streaming platform, American social media service, and other platforms, significantly reduce the quality gap between
new and established entities in the recommendation ecosystem. These architectural patterns and optimization
techniques form a comprehensive blueprint for building recommendation systems that maintain high relevance from
the first interaction onward while scaling to serve hundreds of millions of users.

References

[1] Ayushi Jain, "Decoding Instagram System Design & Architecture (And How Reels Recommendation Works?),"
TechAhead, Nov 26, 2024. [Online]. Available: https://www.techaheadcorp.com/blog/decoding-instagram-
system-design-architecture-and-how-reels-recommendation-works/

[2] Vatesh Pasrija, Supriya Pasrija, "The Cold-Start Problem In Recommender Systems: Challenges And Mitigation
Techniques," International Research Journal of Modernization in Engineering Technology and Science,
Volume:06/Issue:05/May-2024. [Online]. Available:
https://www.irjmets.com/uploadedfiles/paper//issue_5_may_2024/55701/final/fin_irjmets1715656884.pdf

[3] Paul Covington et al., "Deep Neural Networks for YouTube Recommendations," RecSys '16: Proceedings of the
10th ACM Conference on Recommender Systems, Pages 191 - 198, 2016. [Online]. Available:
https://dl.acm.org/doi/10.1145/2959100.2959190

[4] Brent Smith and Greg Linden, "Two Decades of Recommender Systems at Amazon.com," IEEE Internet
Computing (Volume: 21, Issue: 3, May-June 2017), 2017. [Online]. Available:
https://ieeexplore.ieee.org/document/7927889

[5] Hao Chen et al., "Macro Graph Neural Networks for Online Billion-Scale Recommender Systems,"
arXiv:2401.14939v2 [cs.IR] 8 May 2024. [Online]. Available: https://arxiv.org/pdf/2401.14939

[6] Deepak Agarwal et al., "LASER: A Scalable Response Prediction Platform for Online Advertising," WSDM '14:
Proceedings of the 7th ACM international conference on Web search and data mining, Pages 173 - 182, 2014.
[Online]. Available: https://dl.acm.org/doi/10.1145/2556195.2556252

[7] Marco Bressan et al., "The Limits of Popularity-Based Recommendations, and the Role of Social Ties," KDD '16:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Pages
745 - 754, 2016. [Online]. Available: https://dl.acm.org/doi/10.1145/2939672.2939797

[8] Chantat Eksombatchai et al., "Pixie: A System for Recommending 3+ Billion Items to 200+ Million Users in Real-
Time," WWW '18: Proceedings of the 2018 World Wide Web Conference, Pages 1775 - 1784, 2018. [Online].
Available: https://dl.acm.org/doi/10.1145/3178876.3186183

[9] Maksims Volkovs et al., "Content-based Neighbor Models for Cold Start in Recommender Systems," RecSys
Challenge '17: Proceedings of the Recommender Systems Challenge 2017, Article No.: 7, Pages 1 - 6, 2017.
[Online]. Available: https://dl.acm.org/doi/10.1145/3124791.3124792

[10] Michal Aharon et al., "OFF-set: one-pass factorization of feature sets for online recommendation in persistent
cold start settings," RecSys '13: Proceedings of the 7th ACM conference on Recommender systems, Pages 375 -
378, 2013. [Online]. Available: https://dl.acm.org/doi/10.1145/2507157.2507221

https://www.techaheadcorp.com/blog/decoding-instagram-system-design-architecture-and-how-reels-recommendation-works/
https://www.techaheadcorp.com/blog/decoding-instagram-system-design-architecture-and-how-reels-recommendation-works/
https://www.irjmets.com/uploadedfiles/paper/issue_5_may_2024/55701/final/fin_irjmets1715656884.pdf
https://dl.acm.org/doi/10.1145/2959100.2959190
https://ieeexplore.ieee.org/document/7927889
https://arxiv.org/pdf/2401.14939
https://dl.acm.org/doi/10.1145/2556195.2556252
https://dl.acm.org/doi/10.1145/2939672.2939797
https://dl.acm.org/doi/10.1145/3178876.3186183
https://dl.acm.org/doi/10.1145/3124791.3124792
https://dl.acm.org/doi/10.1145/2507157.2507221

