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Abstract 

The healthcare sector's digital transformation has catalyzed an unprecedented surge in data production, creating both 
challenges and opportunities for improving patient care and operational efficiency. This technical review explores how 
data engineering serves as the foundational infrastructure for converting raw healthcare information into actionable 
clinical and administrative insights. Beginning with the architectural components necessary for effective data 
management—including ingestion frameworks, storage paradigms, and scalable processing pipelines—the article 
demonstrates how these technical foundations enable sophisticated analytics capabilities. Advanced business 
intelligence ecosystems, machine learning pipeline integration, and real-time analytics architectures are examined 
through the lens of healthcare-specific requirements and outcomes. Case studies illustrate successful implementations 
of predictive readmission models, resource optimization systems, and clinical decision support platforms, highlighting 
the technical innovations that drive measurable improvements. Looking forward, emerging technologies such as edge 
computing, federated learning, enhanced interoperability standards, and automated governance controls promise to 
further transform healthcare's data landscape while addressing privacy concerns and regulatory requirements. 
Throughout, the article emphasizes how robust data engineering directly translates to improved clinical outcomes, 
enhanced operational efficiency, and more informed decision-making across all levels of healthcare delivery.  

Keywords: Healthcare data engineering; Real-time analytics; Federated learning; Interoperability standards; Clinical 
decision support 

1. Introduction

In the era of digital healthcare, vast amounts of data are generated daily—from electronic health records (EHRs) to real-
time patient monitoring systems. This unprecedented volume of healthcare information presents both a challenge and 
an opportunity. The healthcare industry now produces nearly 30% of the world's total data volume, with a single patient 
typically generating close to 80 megabytes of data annually in imaging and EMR data alone [1]. This massive influx 
creates a complex data ecosystem where traditional management approaches are increasingly inadequate. 

Without effective data engineering, this wealth of data remains an untapped resource, unable to drive meaningful 
improvements in patient care or operational efficiency. Healthcare organizations face significant challenges in data 
integration, with interoperability issues affecting approximately 75% of healthcare systems attempting to consolidate 
information from disparate sources [1]. The technical difficulties in standardizing data from legacy systems, modern 
applications, and various healthcare devices create significant barriers to comprehensive analysis. Additionally, 
healthcare providers are increasingly concerned with data quality issues, as studies indicate that up to 30% of 
healthcare data may contain inaccuracies or inconsistencies that can undermine analytical efforts [1]. 

Data engineering serves as the critical foundation for transforming raw healthcare data into actionable insights. By 
implementing robust data pipelines and analytics frameworks, healthcare organizations can harness the full potential 
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of their data assets to enhance clinical decision-making, optimize resource allocation, and improve overall patient 
outcomes. Systematic analysis of implementations across multiple health systems demonstrates that advanced data 
engineering can contribute to significant improvements in clinical outcomes, including reducing hospital readmissions 
by up to 16% through more accurate prediction models [2]. 

The impact extends beyond direct patient care, with healthcare institutions documenting substantial operational 
benefits. Organizations leveraging comprehensive data engineering infrastructure report improvements in resource 
utilization efficiency by approximately 22%, while administrative costs decrease by 17% through automation and data-
driven process optimization [2]. Furthermore, healthcare systems implementing real-time data processing capabilities 
have demonstrated a 25% reduction in average emergency department wait times through improved patient flow 
management [2]. 

This technical review explores the essential components of healthcare data engineering, from ingestion to analysis, and 
demonstrates how these technical processes directly enable more informed decision-making across all levels of 
healthcare delivery. We examine the architectural foundations necessary to process the large volumes of structured and 
unstructured healthcare data, the analytical frameworks that transform this information into actionable insights, and 
the technical challenges that must be overcome to realize the full potential of data-driven healthcare. 

2. Architectural Foundations of Healthcare Data Engineering 

2.1. Data Ingestion and Integration Frameworks 

Healthcare data originates from numerous disparate sources, each with unique formats, schemas, and generation 
patterns. A typical regional health system must integrate data from over two dozen distinct clinical applications, 
encompassing both legacy systems and modern platforms that collectively generate terabytes of data daily [3]. Modern 
data engineering solutions must implement sophisticated ingestion mechanisms to handle both batch and streaming 
data flows from EHRs, laboratory information systems, medical devices, and administrative databases. 

The complexity of healthcare data integration is further amplified by the heterogeneity of data formats. Recent studies 
examining integration challenges across multiple healthcare institutions found that approximately three-quarters of 
clinical data exchange still occurs through non-standardized formats, despite ongoing interoperability initiatives [3]. 
This diversity necessitates robust transformation layers capable of normalizing varied data structures while preserving 
semantic meaning across different clinical coding systems. 

Real-time data streaming has become increasingly critical in modern healthcare environments, particularly in intensive 
care settings where continuous patient monitoring generates substantial data volumes that must be processed with 
minimal latency [4]. This evolution has driven the development of specialized streaming architectures that can handle 
high-throughput clinical data while maintaining strict reliability requirements. Implementation studies across multiple 
hospital systems demonstrate that modern stream processing frameworks can significantly reduce the time-to-insight 
for critical care applications while maintaining the strict data integrity requirements essential for clinical decision 
support [3]. 

2.2. Storage Paradigms and Schema Design 

The selection of appropriate storage technologies—from relational databases to data lakes—significantly impacts 
accessibility and analysis capabilities. Multi-institution analyses have revealed that healthcare organizations managing 
large-scale data repositories are increasingly adopting hybrid storage architectures to optimize different access 
patterns across clinical, operational, and research domains [3]. Healthcare data engineering requires special 
consideration for handling structured and unstructured data while maintaining compliance with regulations like HIPAA 
and GDPR. 

Recent implementations of integrated healthcare data lakes have demonstrated substantial improvements in data 
accessibility and query performance compared to traditional siloed approaches [4]. These modern architectures 
typically employ a layered design that separates raw data ingestion zones from curated analytical layers, enabling both 
preservation of source data fidelity and optimization for specific analytical workloads. Comparative assessments of 
different schema designs show that healthcare organizations implementing flexible schema evolution strategies can 
better accommodate the rapidly changing data requirements driven by emerging clinical practices and regulatory 
updates [3]. 
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2.3. Scalable Processing Pipelines 

As healthcare datasets grow exponentially, scalable processing frameworks become essential. Comparative analyses of 
computational requirements for population health analytics reveal that traditional processing approaches often become 
prohibitively resource-intensive when scaled to cover large patient populations or longitudinal datasets spanning 
multiple years [3]. Distributed computing architectures like Apache Spark and cloud-native services enable efficient 
processing of massive datasets while maintaining performance and reliability. 

Research into healthcare analytics implementations demonstrates that organizations adopting scalable processing 
frameworks achieve substantial improvements in computational efficiency for resource-intensive workloads such as 
cohort identification and predictive modeling [4]. The increasing adoption of containerized architectures for healthcare 
data processing enables more granular resource allocation and improved workload isolation, which is particularly 
valuable in multi-tenant research environments where different analytical tasks have varying resource requirements 
and priority levels [3]. 

Performance evaluations across multiple healthcare systems show that implementation of properly designed data 
pipelines with appropriate partitioning strategies and caching mechanisms can dramatically reduce processing times 
for common analytical workflows, enabling more responsive decision support and expanded analytical capabilities 
without proportional infrastructure expansion [4]. 

 

Figure 1 Healthcare Data Engineering Architecture and Workflows [3, 4] 

3. Analytics Enablement Through Advanced Data Engineering 

3.1. Building Robust Business Intelligence Ecosystems 

Data engineering facilitates the creation of comprehensive BI dashboards and reporting tools that provide healthcare 
administrators with crucial operational metrics. Longitudinal studies of healthcare analytics implementations across 
multiple institutions reveal significant performance disparities between organizations with mature versus ad-hoc data 
engineering practices [5]. These systems depend on well-designed data models and optimized query layers to deliver 
timely insights. 

The technical foundation for effective healthcare BI begins with semantic data modeling, which establishes consistent 
dimensional representations of clinical and operational concepts across the analytics ecosystem. Performance analyses 
of enterprise healthcare deployments demonstrate substantial improvements in dashboard rendering times through 
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properly optimized query layers, particularly for complex operational metrics that integrate data from multiple source 
systems [5]. This optimization is especially critical in healthcare environments where decision-makers require rapid 
access to integrated views that combine clinical quality measures, financial performance indicators, and operational 
efficiency metrics. 

The economic impact of robust BI implementations extends beyond direct technological benefits, with healthcare 
systems documenting substantial returns on analytics investments built on solid data engineering foundations [6]. This 
return manifests through multiple mechanisms, including reduced report development costs, improved data 
governance efficiency, and measurable clinical and operational improvements resulting from more timely and accurate 
decision support. Healthcare organizations implementing standardized data models report significantly higher 
satisfaction scores among clinical leadership regarding the reliability and consistency of analytics outputs [5]. 

3.2. Machine Learning Pipeline Integration 

Implementing effective ML workflows requires specialized data engineering to handle feature engineering, model 
training, and inference at scale. Comparative analyses of healthcare ML implementations confirm that data preparation 
and engineering typically account for a substantial majority of total project effort in successful clinical prediction 
initiatives [5]. This section examines the technical infrastructure needed to support predictive analytics in healthcare 
settings. 

Modern healthcare ML pipelines process increasingly complex data volumes, integrating numerous distinct data 
sources and processing thousands of potential features per patient [6]. Organizations implementing containerized, 
reproducible ML pipelines document dramatic reductions in model deployment time, significantly decreasing the 
interval between model development and production implementation [5]. This efficiency gain addresses one of the 
primary challenges in healthcare analytics: ensuring that predictive models can be rapidly deployed and updated in 
response to evolving clinical practices and patient populations. 

The clinical impact of properly engineered ML pipelines is demonstrated through multi-center evaluations showing that 
models deployed through robust, automated pipelines maintain performance characteristics much more effectively 
than manually deployed alternatives over extended production use [6]. This stability is particularly critical in healthcare 
applications, where model drift can directly impact patient outcomes and provider trust in algorithmic 
recommendations. Implementations with comprehensive data lineage tracking and automated retraining capabilities 
demonstrate superior performance sustainability in production environments [5]. 

3.3. Real-time Analytics Architectures 

Time-sensitive healthcare decisions benefit from stream processing technologies that enable real-time data analysis. 
Technical assessments of critical care analytics implementations demonstrate that modern stream processing 
architectures can dramatically reduce the time-to-insight for crucial patient deterioration signals compared to 
traditional batch processing approaches [5]. We explore the technical requirements for implementing low-latency 
analytics systems in critical care and operational contexts. 

The technical architecture for effective real-time healthcare analytics typically involves multi-stage processing with 
distributed stream processors handling substantial event volumes from patient monitoring systems, laboratory 
interfaces, and clinical documentation platforms [6]. Performance evaluations across multiple implementations reveal 
that properly engineered real-time pipelines can achieve the sub-second end-to-end latencies necessary for true real-
time decision support in critical care settings [5]. These architectures typically incorporate specialized components for 
anomaly detection and alert management to minimize false positives while ensuring critical signals receive immediate 
attention. 

Implementation studies of advanced stream processing in emergency department operations have demonstrated 
substantial improvements in resource utilization, with facilities leveraging real-time analytics reporting significant 
reductions in average patient wait times and improvements in throughput without additional staffing resources [6]. The 
technical architecture underpinning these systems typically combines edge computing for initial data processing with 
centralized aggregation and analytics services, balancing the need for immediate operational feedback with 
comprehensive pattern recognition across broader patient populations [5]. 
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Figure 2 Healthcare Analytics Performance Metrics and Impact [5, 6] 

4. Technical Case Studies: From Implementation to Impact 

4.1. Predictive Readmission Risk Models 

This case study examines the end-to-end data engineering workflow supporting a machine learning system that predicts 
patient readmission risk, highlighting the technical challenges of integrating historical EHR data with real-time 
monitoring inputs. A multi-center implementation across major academic medical centers demonstrated that properly 
engineered data pipelines produced significant reductions in readmission rates for high-risk cardiac patients while 
simultaneously decreasing false positives compared to traditional risk stratification methods [7]. 

The technical architecture employed a three-tier data processing approach: a historical data integration layer that 
consolidated years of clinical data across disparate source systems, a feature engineering pipeline that generated 
thousands of potential predictive features through automated extraction and selection algorithms, and a real-time 
inference engine capable of scoring patients within milliseconds of new data availability [8]. Performance metrics 
revealed that a substantial portion of the system's development time was devoted to data engineering tasks, with 
particular challenges in standardizing inconsistent clinical terminologies and resolving temporal discrepancies across 
source systems [7]. 

Critical technical innovations included a custom-developed temporal abstraction framework that significantly reduced 
data dimensionality while preserving relationships between clinical events, and a distributed computing architecture 
that processed incoming data streams from connected medical devices with high reliability over the evaluation period 
[8]. The integration of real-time monitoring with historical data enhanced model performance significantly, with 
substantial improvements in predictive accuracy when incorporating physiological parameters and medication 
administration data compared to using historical data alone [7]. 
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4.2. Resource Optimization Through Operational Analytics 

The data pipeline architecture behind a successful healthcare resource allocation system, demonstrating how properly 
engineered data flows enable more efficient staffing, inventory management, and facility utilization. Implementation 
across an integrated delivery network documented substantial annual cost savings through optimized resource 
allocation, while simultaneously reducing emergency department wait times and operating room turnover times [7]. 

The technical foundation of this system centered on a unified data lake architecture ingesting dozens of distinct data 
streams, including EHR transactions, time-motion studies, RFID tracking data, and financial systems, collectively 
processing significant volumes of operational data daily [8]. The solution employed multi-objective optimization 
algorithms running on a distributed computing platform capable of generating new resource allocation 
recommendations at frequent intervals, with model training conducted regularly using accumulated historical patterns 
[7]. 

Key performance improvements were achieved through predictive capacity modeling that forecasted patient volume 
with high accuracy several days in advance, allowing proactive staffing adjustments that reduced both overstaffing costs 
and understaffing-related quality issues [8]. The technical implementation required solving significant data engineering 
challenges, particularly the development of a temporal-spatial data model that aligned facility layouts with staffing 
patterns and patient movement data to generate granular capacity utilization metrics across numerous distinct physical 
locations [7]. Post-implementation analysis revealed that the system achieved maximum adoption and impact several 
months after initial deployment, when data quality metrics consistently achieved high reliability scores and staff trust 
in system recommendations reached measurable thresholds [8]. 

4.3. Clinical Decision Support Systems 

This section details the technical implementation of a data engineering solution that powers evidence-based clinical 
decision support, focusing on the integration of medical knowledge bases with patient-specific data. A comprehensive 
implementation across primary care settings demonstrated significant quality improvements, including increases in 
appropriate screening test ordering, reductions in unnecessary antibiotic prescriptions, and improvements in guideline 
adherence for chronic disease management [7]. 

The data engineering foundation combined structured clinical data with natural language processing of unstructured 
clinical notes, processing thousands of patient encounters daily with minimal computational latency from data capture 
to recommendation presentation [8]. The knowledge integration layer synchronized with numerous evidence-based 
guidelines sources updated on varying schedules, employing semantic versioning to maintain consistent 
recommendation provenance while allowing for rapid incorporation of emerging clinical evidence [7]. 

Technical challenges addressed included the development of a probabilistic patient-guideline matching system that 
accommodated clinical uncertainty, achieving high specificity and sensitivity across diverse clinical presentations [8]. 
The architecture employed a microservices approach with specialized components handling specific aspects of the 
recommendation pipeline, from terminology normalization to contraindication detection, with interservice 
communication managed through a high-throughput message bus processing thousands of messages per second during 
peak utilization [7]. Performance analytics revealed that clinicians accepted a substantial majority of system 
recommendations, with acceptance rates increasing significantly for recommendations that included transparent 
explanations of the underlying clinical logic and evidence sources [8]. 
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Figure 3 Healthcare Data Engineering: Clinical and Operational Outcomes [7, 8] 

5. Future Directions and Technical Considerations 

5.1. Edge Computing and Distributed Processing 

As healthcare increasingly incorporates IoT devices and remote monitoring, data engineering must adapt to process 
information closer to the source. Current projections indicate a substantial growth in connected medical devices per 
hospital, generating terabytes of data daily that require processing [9]. Traditional centralized architectures struggle 
with this volume, particularly for time-sensitive applications where existing latency often exceeds clinical requirements 
for real-time monitoring. 

Edge computing architectures distribute computational resources across the data generation network, with 
implementations demonstrating significant reductions in both data transmission volumes and processing latency for 
critical patient monitoring applications [9]. Technical evaluations of distributed processing in multi-site healthcare 
deployments show that implementing tiered data processing substantially reduces bandwidth requirements while 
simultaneously improving alert response times from minutes to near-instantaneous intervals. 

The architectural implications extend beyond performance metrics, with healthcare organizations reporting notable 
reliability benefits. Comparative studies of edge-enabled versus cloud-dependent healthcare monitoring systems 
demonstrate superior uptime for edge-enabled architectures during network disruptions, a critical difference in life-
supporting applications [9]. These implementations typically employ a multi-tier architecture: device-level filtering that 
reduces raw data streams through local feature extraction, edge aggregation nodes performing preliminary analytics 
within clinical units, and centralized systems focusing on longitudinal analysis and cross-patient pattern recognition. 

5.2. Federated Learning and Privacy-Preserving Analytics 

Technical solutions for maintaining data privacy while enabling cross-institutional analytics are becoming crucial. 
Recent implementations of federated learning across multiple healthcare institutions demonstrated the ability to train 
machine learning models achieving comparable performance to centralized approaches while complying with data 
residency requirements and eliminating cross-boundary data transfers [9]. This section explores federated learning 
architectures and privacy-enhancing technologies in healthcare data engineering. 

The technical foundation for privacy-preserving analytics in healthcare combines multiple complementary approaches. 
Differential privacy implementations add calibrated noise to analytical outputs, with mathematical guarantees 
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preventing individual re-identification while preserving population-level insights. Benchmark evaluations show that 
properly configured systems can maintain privacy parameters within acceptable bounds while preserving model 
accuracy for common clinical prediction tasks [10]. Homomorphic encryption techniques allow computation directly 
on encrypted data, with recent optimizations reducing computational overhead significantly compared to unencrypted 
operations, making encrypted analysis increasingly practical for specific healthcare applications. 

Implementation studies of federated learning in healthcare indicate specific technical considerations for effective 
deployment. Heterogeneous data distributions across institutions require robust model architectures, with specialized 
techniques improving convergence in multi-institution settings [9]. Communication efficiency remains critical, with 
optimized protocols reducing parameter transfer requirements through techniques like model distillation and selective 
gradient updates. These approaches collectively enable previously impossible collaborations, such as multi-institution 
federated studies that train models on massive datasets without transferring any images between sites. 

5.3. Interoperability and Standards Evolution 

The technical challenges of healthcare data interoperability continue to evolve. According to industry surveys, 
healthcare organizations interact with numerous external entities for information exchange, with a majority reporting 
significant difficulties in semantic data integration despite growing standards adoption [10]. Reviews how modern data 
engineering practices incorporate FHIR, HL7, and other healthcare data standards to facilitate seamless information 
exchange. 

FHIR (Fast Healthcare Interoperability Resources) adoption has accelerated, with implementation benchmarks 
showing substantial reductions in interface development time compared to legacy approaches [10]. Technical 
evaluations of FHIR-based data pipelines demonstrate impressive throughput improvements in high-volume health 
information exchanges, with consistent low-latency performance. The architectural shift toward RESTful APIs has 
fundamentally changed healthcare integration patterns, with organizations reporting significant reductions in point-to-
point interfaces through API gateway implementations processing billions of healthcare transactions annually across 
monitored health systems. 

Beyond standard adoption, semantic interoperability remains technically challenging. Recent implementations of 
ontology-driven data harmonization have shown promise, with enhanced mapping techniques achieving high accuracy 
in automatically aligning proprietary terminologies with standard vocabularies like SNOMED CT and LOINC [10]. These 
approaches utilize graph-based knowledge representations that maintain millions of concept relationships across 
multiple clinical domains, enabling consistent interpretation of diverse healthcare datasets. 

5.4. Governance and Compliance Automation 

As regulatory requirements grow more complex, data engineering systems must incorporate automated governance 
controls. Healthcare organizations now manage compliance with numerous distinct data regulations, with technical 
teams reporting that manual compliance processes consume substantial data engineering resources [9]. Examines 
technical approaches to building compliance-aware data pipelines that maintain audit trails and enforce access controls. 

Automated data classification and tagging represents a crucial foundation for governance at scale. Advanced systems 
can identify sensitive data elements with high accuracy across structured and unstructured healthcare datasets, 
enabling appropriate protection controls based on data sensitivity [10]. These systems typically process new data assets 
rapidly, applying distinct classification tags that drive automated policy enforcement throughout the data lifecycle. 
Implementation statistics demonstrate that organizations employing automated classification detect significantly more 
compliance issues than manual approaches while reducing assessment time substantially. 

Dynamic access control frameworks enable more granular and appropriate data access patterns. Technical 
implementations utilizing attribute-based access control models support complex healthcare-specific authorization 
rules, with benchmark systems evaluating numerous attributes rapidly to make context-aware access decisions [9]. 
These systems integrate with existing identity management infrastructures while adding healthcare-specific 
dimensions such as treatment relationships, research approvals, and emergency access provisions. Comprehensive 
audit capabilities record data access events comprehensively, with advanced systems performing real-time anomaly 
detection demonstrating high accuracy in identifying potentially inappropriate access patterns across billions of audit 
events. 
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Figure 4 Healthcare Data Engineering: Future Performance and Implementation Metrics [9, 10] 

6. Conclusion 

Data engineering has emerged as the critical bridge connecting the vast repositories of healthcare information with 
meaningful clinical and operational action. By establishing robust architectural foundations for ingestion, storage, and 
processing of diverse healthcare data sources, organizations can overcome longstanding challenges of fragmentation 
and inaccessibility. The implementation of sophisticated analytics capabilities—from business intelligence dashboards 
to machine learning prediction models to real-time monitoring systems—demonstrates tangible benefits in patient 
outcomes, resource utilization, and administrative efficiency. Case studies across multiple domains illustrate how 
properly engineered data pipelines enable more accurate readmission predictions, optimized resource allocation, and 
evidence-based clinical decision support. Future directions in healthcare data engineering point toward increasingly 
distributed architectures with edge computing, privacy-preserving analytics through federated learning, enhanced 
semantic interoperability, and automated governance controls. As healthcare continues its digital evolution, the 
technical infrastructure provided by data engineering will remain essential for transforming information into insight 
and ultimately action. The journey from data to decision represents not merely a technical challenge but a fundamental 
transformation in how healthcare delivery is conceptualized, measured, and improved. Organizations that invest in 
developing mature data engineering capabilities position themselves to deliver more timely, efficient, and patient-
centered care in an increasingly data-rich ecosystem.  

References 

[1] Maxiom technology, "Healthcare Data Engineering Challenges: Overcoming Obstacles," 2025. [Online]. Available: 
https://www.maxiomtech.com/data-engineering-challenges/  

[2] Iman Akour and Said A. Salloum, "The Impact of Big Data Analytics on Health Care: A Systematic Review," 
ResearchGate, 2024. [Online]. Available: 
https://www.researchgate.net/publication/385126486_The_Impact_of_Big_Data_Analytics_on_Health_Care_A_
Systematic_Review  

[3] LAMYA OUKHOUYA, et al., "DLMF: AN INTEGRATED ARCHITECTURE FOR HEALTHCARE DATA MANAGEMENT 
AND ANALYSIS USING DATA LAKE, DATA MESH, AND DATA FABRIC," Journal of Theoretical and Applied 
Information Technology, 2024. [Online]. Available: https://jatit.org/volumes/Vol102No21/23Vol102No21.pdf  

https://www.maxiomtech.com/data-engineering-challenges/
https://www.researchgate.net/publication/385126486_The_Impact_of_Big_Data_Analytics_on_Health_Care_A_Systematic_Review
https://www.researchgate.net/publication/385126486_The_Impact_of_Big_Data_Analytics_on_Health_Care_A_Systematic_Review
https://jatit.org/volumes/Vol102No21/23Vol102No21.pdf


World Journal of Advanced Engineering Technology and Sciences, 2025, 15(02), 2158-2167 

2167 

[4] Charles James and Kartik Tiwari, "Scalable Data Integration Architectures for Multi-Source Healthcare Analytics," 
ResearchGate, 2025. [Online]. Available: 
https://www.researchgate.net/publication/390694572_Scalable_Data_Integration_Architectures_for_Multi-
Source_Healthcare_Analytics  

[5] Rawan Elragal, Ahmed Elragal and Abdolrasoul Habibipour, "Healthcare analytics—A literature review and 
proposed research agenda," Frontiers in Big Data, 2023. [Online]. Available: 
https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2023.1277976/full  

[6] Indium, "Real-Time Data Analysis and Its Impact on Healthcare," 2024. [Online]. Available: 
https://www.indium.tech/blog/real-time-data-analysis-and-its-impact-on-healthcare/  

[7] Jagan Mohana Rao Bonthu, "Innovations in Healthcare Big Data Engineering: From Clinical Decision Support to 
Federated Learning," ResearchGate, 2025. [Online]. Available: 
https://www.researchgate.net/publication/388139536_Innovations_in_Healthcare_Big_Data_Engineering_Fro
m_Clinical_Decision_Support_to_Federated_Learning  

[8] Tim O’Connell, "Creating a data pipeline for safe and effective healthcare AI | Viewpoint," Chief Healthcare 
Executive, 2025. [Online]. Available: https://www.chiefhealthcareexecutive.com/view/creating-a-data-
pipeline-for-safe-and-effective-healthcare-ai-viewpoint  

[9] Amir Mashmool, "Edge Computing in Healthcare Using Machine Learning: A Systematic Literature Review," 
ResearchGate, 2024. [Online]. Available: 
https://www.researchgate.net/publication/382881011_Edge_Computing_in_Healthcare_Using_Machine_Learni
ng_A_Systematic_Literature_Review  

[10] Medidata, "An Introduction to Interoperability in Healthcare," 2024. [Online]. Available: 
https://www.medidata.com/en/life-science-resources/medidata-blog/interoperability-in-healthcare/  

https://www.researchgate.net/publication/390694572_Scalable_Data_Integration_Architectures_for_Multi-Source_Healthcare_Analytics
https://www.researchgate.net/publication/390694572_Scalable_Data_Integration_Architectures_for_Multi-Source_Healthcare_Analytics
https://loop.frontiersin.org/people/2409637
https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2023.1277976/full
https://www.indium.tech/blog/real-time-data-analysis-and-its-impact-on-healthcare/
https://www.researchgate.net/publication/388139536_Innovations_in_Healthcare_Big_Data_Engineering_From_Clinical_Decision_Support_to_Federated_Learning
https://www.researchgate.net/publication/388139536_Innovations_in_Healthcare_Big_Data_Engineering_From_Clinical_Decision_Support_to_Federated_Learning
https://www.chiefhealthcareexecutive.com/view/creating-a-data-pipeline-for-safe-and-effective-healthcare-ai-viewpoint
https://www.chiefhealthcareexecutive.com/view/creating-a-data-pipeline-for-safe-and-effective-healthcare-ai-viewpoint
https://www.researchgate.net/publication/382881011_Edge_Computing_in_Healthcare_Using_Machine_Learning_A_Systematic_Literature_Review
https://www.researchgate.net/publication/382881011_Edge_Computing_in_Healthcare_Using_Machine_Learning_A_Systematic_Literature_Review
https://www.medidata.com/en/life-science-resources/medidata-blog/interoperability-in-healthcare/

