
 Corresponding author: Sai Yathin Manugula

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

Anomaly detection in network traffic using azure machine learning and log analytics

Sai Yathin Manugula *, Dheeraj Varma Kalidindi, Sindhu Sri Gogikari and Srinivas Rao Billakanti

Department of Computer Science and Engineering-Data Science, Guru Nanak Institutions Technical Campus, Hyderabad,
India.

World Journal of Advanced Research and Reviews, 2025, 26(03), 864-883

Publication history: Received on 25 April 2025; revised on 05 June 2025; accepted on 07 June 2025

Article DOI: https://doi.org/10.30574/wjarr.2025.26.3.2197

Abstract

This study presents a scalable and efficient solution for advanced anomaly detection in network traffic using Azure
Databricks and machine learning techniques. Modern networks generate massive volumes of traffic data, making
manual detection of anomalies or cyber threats challenging. Traditional tools, such as RDBMS and Hadoop, are slow and
not designed for real-time security monitoring. To address these challenges, the proposed system utilizes Azure
Databricks, a unified cloud platform for big data processing and machine learning. Network traffic logs were cleaned
and transformed using PySpark to extract features, such as IP addresses, session duration, data transfer, and packet
counts. K-means clustering was then applied to group similar traffic patterns and identify anomalies without the need
for labeled data. Model performance was evaluated using the Silhouette Score to ensure meaningful and well-separated
clusters. The objective of this study is to provide a comprehensive overview of recent advancements in abnormality
detection, focusing on emerging technologies and potential future opportunities. All stages, from data ingestion to
anomaly detection, were executed within a single databricks notebook, thus requiring a minimal setup. The system
performs efficiently even on low-cost Azure plans, making it accessible to small teams, students, and researchers. This
solution enables real-time threat detection, automatic scaling, and quick incident response, offering a faster, smarter,
and more cost-effective alternative to traditional network security methods.

Keywords: Network Traffic; Anomaly Detection; Azure Databricks; K-Means Clustering; Silhouette Score

1. Introduction

In today’s digitally connected world, the volume and complexity of network traffic have grown exponentially, posing
significant challenges to cybersecurity and operational efficiency. The detection of anomalies within network traffic,
which are indicative of cyber threats, system malfunctions, or unusual user behaviors, has become a critical component
of network management and security. Traditional rule-based monitoring systems often fail to identify novel or subtle
threats, necessitating the use of intelligent and adaptive solutions.

This research explores the integration of Azure Machine Learning and Azure Log Analytics for real-time and scalable
anomaly detection in network traffic. Azure Machine Learning offers robust tools for building, training, and deploying
predictive models, whereas Log Analytics, a component of Azure Monitor, enables the collection and analysis of large
volumes of telemetry data from various network sources.

By leveraging these technologies, this study aimed to develop a data-driven automated system capable of identifying
abnormal patterns in network behavior with high accuracy and minimal human intervention. The proposed approach
enhances proactive threat detection, supports rapid incident response, and provides valuable insights into network
health, ultimately contributing to a more secure and resilient IT infrastructure.

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjarr.com/
https://doi.org/10.30574/wjarr.2025.26.3.2197
https://crossmark.crossref.org/dialog/?doi=10.30574/wjarr.2025.26.3.2197&domain=pdf

World Journal of Advanced Research and Reviews, 2025, 26(03), 864-883

865

1.1. Overview of Network Analysis Challenges

Network traffic analysis plays a vital role in monitoring, managing, and securing the modern digital infrastructure.
However, the process of analyzing traffic is becoming increasingly complex because of a range of evolving challenges.
These challenges stem from the growing scale, speed, and sophistication of the network environment. This section
explores the key obstacles faced in contemporary network traffic analysis.

• Massive data volumes are overwhelming traditional analysis tools
• Increasing network speeds and complexity
• Encrypted traffic hinders visibility into packet contents
• Diverse and evolving network protocols
• Distinguishing between normal and malicious traffic patterns
• Real-time analysis requirements for timely threat detection

1.2. Importance of Anomaly Detection in Network Security

• Early identification of potential security threats and breaches
• Detection of zero-day attacks and previously unknown threats
• Reduction of false positives in intrusion detection systems
• Improved incident response times and mitigation of damages
• Compliance with regulatory requirements for data protection - Enhanced visibility into network behavior

and performance issues

1.3. Azure Databricks–Based Anomaly Detection Framework

In today’s hyperconnected environment, the volume and velocity of network traffic make manual monitoring infeasible.
Every second, devices exchange millions of data packets, and detecting anomalies—whether malicious attacks or
misconfigurations—poses a critical challenge. Traditional tools often demand deep security expertise and high-end
infrastructure, creating barriers for smaller teams or organizations with limited resources. This project confronts
obstacles by unifying data engineering and machine learning in a single native cloud platform.

Using Microsoft Azure Databricks, we ingested raw network traffic logs, completed with source/destination IPs, byte
counts, session durations, and packet totals, directly into a scalable PySpark environment. Data cleaning,
transformation, and feature vector assembly occur, eliminating the friction of moving large datasets across disparate
systems. By encoding each session as a multidimensional vector, we prepared a groundwork for unsupervised learning
at scale.

We applied k-means clustering to these feature vectors to discover natural groupings in the traffic. Sessions that fall
into very small clusters are flagged as potential anomalies, such as zero-day exploits, stealthy scans, or atypical usage
patterns that signature-based systems may miss. Model quality was assessed using the Silhouette Score, which
quantifies how distinctly the clusters are separated. A high score indicates a clear delineation between “normal”
behavior and outliers. It runs end-to-end in a single database notebook, ensuring reproducibility and ease of
maintenance.

This approach has several advantages.

• Scalability and Cost Efficiency: Azure’s elastic computation allows organizations to process massive logs
on pay-as-you-go or even free-tier clusters.

• Democratized Security Analytics: A streamlined notebook interface and intuitive API lower the barriers
for analysts without deep ML or DevOps knowledge.

• Real-Time Responsiveness: Near-instant model retraining and anomaly detection enable a faster
incident response and damage mitigation.

• Regulatory and Operational Compliance: Automated logging, audit trails, and continuous monitoring
support data-protection mandates while enhancing visibility into both security and performance issues
across the network.

By integrating cloud-native data processing with robust unsupervised learning, this framework empowers a broader
range of users to detect and respond to emerging threats without sacrificing their accuracy, speed, or ease of use.

World Journal of Advanced Research and Reviews, 2025, 26(03), 864-883

866

1.4. Significance of Anomaly Detection in Network Traffic

Anomaly detection is the cornerstone of network security and performance monitoring. This enabled the identification
of

• Intrusions or cyber-attacks (e.g., DDoS, port scanning)
• Misconfigurations and system errors
• Unusual user behavior or insider threats
• Performance bottlenecks or service outages

Traditional methods often rely on signature-based or rule-based systems that struggle with zero-day attacks and
evolving threats. Machine learning (ML) offers a dynamic alternative capable of learning from data and detecting novel
or unknown patterns.

1.5. Statement of the Problem

In today’s hyper-connected digital ecosystem, the network infrastructure is constantly exchanging vast amounts of data
in real time. As organizations scale, the volume, velocity, and variety of network traffic grow exponentially, making it
nearly impossible to manually monitor or use traditional systems. Detecting anomalies, such as sudden spikes,
suspicious connections, data exfiltration, or unauthorized access, requires intelligent, scalable, and real-time solutions.

Conventional approaches, such as RDBMS-based systems and Hadoop frameworks, have been designed for static, batch-
oriented environments and lack the responsiveness and agility required for modern cybersecurity operations. These
legacy systems involve fragmented pipelines, manual interventions, and high setup complexity, often falling short in
environments where real-time anomaly detection is mission-critical.

1.5.1. The problem is further amplified by

• Absence of labeled data for supervised learning.
• High false positive rates in rule-based systems.
• Complex deployment pipelines that require cross-tool integration.
• Inability to scale efficiently under surging data loads.

1.6. Objectives

1.6.1. General Objective

• To develop a scalable and automated anomaly detection system for large-scale network traffic using Azure
cloud services and machine learning techniques.

1.6.2. Specific Objective

• Handle large-scale network traffic data using Azure Databricks and PySpark.
• Useful features are built from raw data to help the models detect unusual activities.
• Use K-Means clustering to find outliers without needing labeled data.
• Measure how well the model performs using the Silhouette Score.
• Create a low-cost, scalable solution using Azure’s free or affordable services.
• Automate behavior tagging to classify traffic types like 'Downloader,’ 'Spammer,’ and 'Normal.’
• Calculate the risk scores and feature-level deviations from the cluster centers.

1.7. Why Do Azure Machine Learning and Log Analytics Perform Anomaly Detection?

The selection of Azure Machine Learning (Azure ML) and Azure Log Analytics for anomaly detection is driven by
their powerful, integrated capabilities tailored for handling large-scale, real-time network data analysis. Together, these
provide a scalable, intelligent, and cloud-native solution ideal for modern enterprise environments.

• Scalable and Cloud-Native Architecture

Azure offers a robust infrastructure that seamlessly scales with data volume and network size. This ensures that the
anomaly detection system remains efficient and responsive, even under high network load conditions.

World Journal of Advanced Research and Reviews, 2025, 26(03), 864-883

867

• Advanced Machine Learning Capabilities

Azure ML supports a wide array of machine-learning algorithms, including supervised, unsupervised, and deep-learning
models, which are suitable for detecting complex and previously unseen anomalies in network traffic. It also enables
the automation of model training, tuning, deployment, and monitoring, and reduces manual intervention and error.

• Real-Time and Historical Data Analysis

Azure Log Analytics, part of the Azure Monitor, provides deep insights into real-time and historical network data by
collecting logs from servers, firewalls, and other endpoints. This rich data source is essential for training accurate ML
models and continuous monitoring.

• Integration and Automation

Azure’s ecosystem allows for tight integration between Log Analytics and Azure ML. Anomalies detected via ML models
can trigger alerts, dashboards, or automated responses using Azure Logic Apps, streamlining incident management and
reducing response time.

• Security and Compliance

Azure complies with numerous international security standards (ISO, GDPR, and HIPAA), ensuring that data privacy
and protection are maintained throughout the anomaly detection process, which is an essential requirement for
network security operations.

• Cost-Effectiveness and Pay-as-You-Go Model

Organizations benefit from Azure’s flexible pricing, which supports both experimentation and production deployment,
without upfront infrastructure costs.

Using Azure Machine Learning in conjunction with Log Analytics enables the development of a robust, intelligent, and
adaptive anomaly detection system. This approach not only improves detection accuracy but also enhances visibility,
automates responses, and supports the ongoing evolution of cybersecurity strategies in dynamic network
environments.

2. Literature Review

The increasing volume and complexity of network traffic in today’s digital landscape have made anomaly detection a
critical area of cybersecurity. Anomalies, unusual patterns, or behaviors in network traffic often signal malicious
activities such as intrusions, data exfiltration, or distributed denial-of-service (DDoS) attacks (Chandola, Banerjee, &
Kumar, 2009). Traditional rule-based systems are often limited in their ability to detect novel or subtle threats,
prompting a shift toward machine learning-based approaches that can learn from data and adapt over time (Sommer &
Paxson, 2010). Anomaly detection in network traffic has evolved significantly over the past decade, driven by the
increasing sophistication of cyberattacks and sheer volume of data generated by modern networks. Chandola, Banerjee,
and Kumar (2009) provided a foundational survey of anomaly types—point, contextual, and collective—and highlighted
the limitations of traditional signature-based systems that often fail to identify novel threats. Sommer and Paxson
(2010) further argue that rule‐based intrusion detection systems struggle with high false‐positive rates, underscoring
the need for adaptive, data‐driven approaches such as machine learning (ML).

Machine learning (ML) has demonstrated strong potential for network anomaly detection owing to its ability to analyze
large datasets and identify patterns that deviate from normal behavior. Supervised learning methods, such as Support
Vector Machines (SVM) and Random Forests, have shown high accuracy when trained on labeled datasets (Bhuyan et
al., 2014). Unsupervised techniques such as k-means clustering and Isolation Forests are particularly useful when
labeled data are scarce, which is common in cybersecurity (Ahmed, Mahmood, & Hu, 2016). Cloud-based platforms such
as Microsoft Azure offer scalable and flexible environments for deploying ML models for anomaly detection. Azure
Machine Learning (Azure ML) provides a range of tools and services for building, training, and deploying models in a
production environment (Microsoft, 2022). Combined with Azure Log Analytics, which collects and processes data from
network sources in near real-time, it is possible to develop comprehensive systems for detecting anomalies across
distributed network infrastructure (Microsoft, 2023).

World Journal of Advanced Research and Reviews, 2025, 26(03), 864-883

868

Recent studies have explored the integration of cloud services with machine learning for security monitoring. Kumar et
al. (2021) implemented an ML-based intrusion detection system using cloud resources to demonstrate the scalability
and adaptability of such systems in dynamic environments. Similarly, Zuech, Khoshgoftaar, and Wald (2015)
emphasized the importance of big data analytics and cloud computing in efficiently handling vast volumes of network
traffic.

Despite the growing research interest, there is limited empirical work focusing specifically on the combination of Azure
ML and Log Analytics for anomaly detection. This gap highlights the need for further investigation of how these tools
can be used together to improve detection accuracy, reduce false positives, and automate threat response workflows.
Moreover, leveraging Azure’s native integration with other Microsoft security services (e.g., Sentinel and Defender)
offers additional opportunities for holistic threat detection. Thwaini’s (2022) comprehensive review examines ML
applications over the previous five years across diverse domains—Internet of Things (IoT), Wireless Sensor Networks
(WSN), Industrial Control Systems (ICS), and Software‐Defined Networks (SDN). He categorized anomalies into point
(isolated spikes), contextual (deviations relative to a situational norm), and collective (patterns only anomalous in
aggregation), and surveyed both supervised techniques (e.g., Support Vector Machines, Decision Trees, Naïve Bayes,
Neural Networks) and unsupervised approaches (e.g., k-means, Principal Component Analysis, Hidden Markov Models,
Gaussian Mixture Models). Thwaini (2022) highlighted that while simple methods, such as k-means clustering, offer low
computational overhead, they may miss evolving or complex threats, whereas ensemble methods, which combine
multiple algorithms, can improve the detection accuracy at the cost of increased resource demands. They concluded
that future systems must balance adaptability with efficiency in order to counteract dynamic attacker strategies
(Thwaini, 2022).

Building on this groundwork, Schummer et al. (2024) presented a practical ML system designed to achieve high
accuracy, scalability, and explainability in network anomaly detection. Their architecture integrates (1) change-point
detection to flag shifts in the baseline network behavior, (2) k-means clustering enhanced by Dynamic Time Warping
for temporal pattern grouping, and (3) supervised classifiers (Random Forest and SVM) trained on labeled telemetry
(bandwidth, latency, packet loss, and congestion). A notable strength of their work is the use of SHAP (Shapley Additive
exPlanations) values to render model predictions interpretable, facilitating trust and actionable insights. However, they
also acknowledge the system’s high computational cost, dependency on labeled datasets, and complex deployment
requirements relative to learner algorithms, such as vanilla k-means (Schummer et al., 2024).

2.1. Research Gap

Despite these advances, there remains a research gap in leveraging cloud-native platforms, such as Microsoft Azure, for
end-to-end anomaly detection workflows. Azure Machine Learning (Azure ML) and Log Analytics together offer
automated model management, scalable computing resources, integrated data ingestion pipelines, and seamless
alerting/response mechanisms. By situating ML pipelines directly within Azure’s secure and compliant environment, it
becomes possible to address the challenges identified by Thwaini (2022) and Schumer et al. (2024), providing both
adaptability to evolving threats and operational scalability, and explaining the ability required for enterprise-grade
deployments.

"The literature reveals several research gaps, including limited integration with cloud platforms, lack of real-time
analytics, and challenges with log data utilization."

2.1.1. Lack of Integration with Cloud-Native Platforms

While Thwaini (2022) and Schummer et al. (2024) extensively evaluated machine learning models and techniques for
anomaly detection, neither study explored the practical integration of these models with cloud-native platforms
such as Microsoft Azure. There is a research opportunity to evaluate how Azure Machine Learning and Log Analytics
can streamline data ingestion, model deployment, and automated alerting in real-world network environments.

2.1.2. Limited Focus on Real-Time Detection and Response

Most studies, including those by Thwaini et al. and Schummer et al., have primarily focused on model accuracy and
detection capabilities. However, real-time anomaly detection and automated threat response, which are critical for
mitigating fast-moving cyberattacks, remain underexplored. Azure’s capabilities for near-real-time analytics and
automation (e.g., through logic apps or Azure Sentiment) provide a promising area for research.

World Journal of Advanced Research and Reviews, 2025, 26(03), 864-883

869

2.1.3. Over-Reliance on Labeled Data

Both studies emphasized supervised learning methods (e.g., SVM, Random Forest), which require large volumes of high-
quality labeled data. Obtaining such data in real-world networks is challenging, particularly in the case of rare or novel
attacks. There is a gap in the exploration of semi-supervised or self-supervised learning methods within Azure ML
pipelines to reduce the dependency on labeled datasets.

2.1.4. Insufficient Work on Model Explainability in Operational Environments

Although Schummer et al. (2024) incorporated explainability using SHAP, most current research does not fully address
how to operationalize explainable AI (XAI) within production environments, where security analysts must quickly
understand and act on model outputs. Further research is required to integrate explainable ML features with Azure
dashboards and Log Analytics queries in order to improve analysts’ trust and interpretability.

2.1.5. Scalability and Cost Optimization Not Thoroughly Evaluated

While the reviewed literature recognizes the computational demands of advanced models, there is limited exploration
of cost-performance trade-offs in deploying ML models in a scalable, cloud-based setting. Azure provides autoscaling,
pricing tiers, and resource optimization tools, which remain underutilized in existing anomaly detection studies.

2.1.6. Lack of Domain-Specific Model Adaptation

Although Thwaini (2022) highlighted different domains, such as IoT and SDN, there is a lack of adaptive model
frameworks that tailor anomaly detection strategies to specific network environments. Research is required to evaluate
how Azure ML models can be dynamically adapted or retrained for various network types (e.g., enterprise, industrial,
and IoT).

2.1.7. Absence of End-to-End Automated Pipelines

Most studies have focused on isolated components, such as model training, detection, or evaluation, but lack end-to-
end system designs that include data ingestion, preprocessing, model inference, alerting, and dashboarding. Azure’s
ecosystem allows for complete automation and orchestration; however, current literature has not demonstrated such
holistic implementations.

2.2. Summary of Research Gaps

Although significant progress has been made in machine learning-based network anomaly detection, there are key gaps
in practical implementation, automation, and real-time deployment using cloud-native platforms such as Azure.
Addressing these gaps can lead to more intelligent, scalable, and effective cybersecurity solutions capable of evolving
with the modern threat landscapes.

3. Methodology

This study was designed to meet its objectives based on the experimental findings.

3.1. System Architecture / Conceptual Design

PySpark is a distributed computing framework that can efficiently process large datasets across a cluster of machines.
At the core of its architecture is the Driver Program, which acts as the brain of the Spark application. The driver breaks
the big job (e.g., analyzing data) into smaller tasks, manages them, and communicates with the Cluster Manager to
request resources such as CPU and memory.

The Cluster Manager coordinates with multiple machines, called Worker Nodes, where the actual work occurs. Each
worker node runs the executors, which execute the tasks and temporarily store data. Spark divides a job into stages,
which are further split into tasks that operate on smaller chunks of data called partitions. This division allows Spark to
process data in parallel, thus making it highly scalable and rapid.

Data and task flows between the Driver Program, Cluster Manager, and Worker Nodes enable an efficient execution.
Spark caches intermediate data in memory to optimize performance and avoid repetitive computations. This
combination of parallel processing and caching makes Spark powerful for large-scale data processing such as filtering,
aggregating, and analyzing datasets.

World Journal of Advanced Research and Reviews, 2025, 26(03), 864-883

870

Figure 1 PySpark Architecture

3.2. Azure Databricks Architecture

Azure Databricks is a cloud-based platform that blends Apache Spark with Azure’s scalability to offer a unified
workspace for data engineering, analytics, and machine learning. It supports collaborative development through
interactive notebooks, using Python, SQL, and R.

It is used to process large-scale data, build ETL pipelines, perform real-time analytics, and train machine learning
models. Deep integration into Azure services such as Data Lake, Synapse, Power BI, and ML enables faster insights and
smarter decision making across industries.

• An architectural overview of the Azure Databricks is as follows:

In the topmost layer, users interact through notebooks, APIs, or command-line interfaces. This represents the
collaborative and flexible user interface of Azure Databricks, where developers, data scientists, and analysts can build,
schedule, and monitor data pipelines and machine-learning models using familiar tools, such as Python, SQL, R, and
Scala.

Beneath the interface, the architecture is split into two main planes: the Control Plane and the Data Plane. The Control
Plane, managed entirely by databases, handles web applications, workspace configurations, job scheduling, notebook
versioning, and other metadata management. This plane ensures that administrative tasks are abstracted and
streamlined, thereby reducing operational overhead for the user.

World Journal of Advanced Research and Reviews, 2025, 26(03), 864-883

871

Figure 2 Azure DataBricks Architecture

The Data Plane resides within the azimuth subscription of the user. It is responsible for executing Spark jobs on clusters
provisioned within their Azure Virtual Network (VNet). This plane provides users with full control over data access,
security policies, and network configuration. Clusters here interact with storage services such as Azure Data Lake
Storage (ADLS) or Azure Blob Storage to read/write data during processing.

Users can integrate a variety of Azure-native services into the storage and data service layers. These include Azure Event
Hubs for real-time streaming data ingestion, Azure Synapse or Power BI for analytics and visualization, and Azure
Machine Learning for training and deploying models. At the heart of the data layer lies Delta Lake, an optimized storage
layer that provides ACID transaction support and schema enforcement on top of cloud object storage.

Finally, the architecture supports secure networking via options such as VNet injection, private links, and secure cluster
connectivity, ensuring that sensitive data do not traverse the public internet and remain compliant with enterprise-
grade security standards.

3.2.1. Explanation

A data flow diagram (DFD) is a graphical representation of the "flow" of data through an information system, modeling
its process aspects. Often, they are a preliminary step used to create an overview of the system, which will be elaborated
upon later. DFDs can also be used to visualize data processing (structured design).

A DFD shows the types of data that will be input into and output from the system, where the data will come from and
go to, and where the data will be stored. It does not provide information about the timing of processes or whether
processes operate in sequence or parallel.

3.3. Design Approach

This study adopts a hybrid Agile and Object-Oriented design methodology to implement an intelligent anomaly
detection system for network traffic in Azure. Agile enables rapid iteration and continuous feedback within Azure
Databricks notebooks, making the development both adaptive and incremental. Object-oriented principles were applied
in PySpark scripting to modularize components such as ingestion, transformation, clustering, and evaluation, ensuring
reusability and scalability.

3.3.1. Phase 1 Data Ingestion and Validation

The process begins with data acquisition from CSV logs stored in the Azure Blob Storage. These logs include IP,
Bytes_Sent, Duration, Packets, and Is_Anomaly. The data were loaded into Azure Databricks using PySpark’s DataFrame
API, which underwent schema validation to confirm the correct data types and completeness. If missing or malformed

World Journal of Advanced Research and Reviews, 2025, 26(03), 864-883

872

values were detected, the file was rejected to maintain data quality. This phase provides a reliable foundation for
downstream analyses and modeling.

3.3.2. Phase 2: Feature Engineering

In this phase, relevant features are extracted to construct the input vectors for machine learning. Specifically,
Bytes_Sent, Duration, and Packets were selected as the core indicators of network activity. These features were
combined into a single numerical vector per session using PySpark VectorAssembler. This transformation was critical
for making the data compatible with the clustering algorithms and for capturing the behavioral patterns of each traffic
instance.

3.3.3. Phase 3: Unsupervised Machine Learning with K-Means

The cleaned and transformed data were subjected to K-means clustering, an unsupervised algorithm that partitions
data into K distinct groups. The system was configured with k=2 to distinguish between the normal and anomalous
traffic patterns. The algorithm iteratively recalculates the cluster centroids to minimize the intracluster distance. After
clustering, the smaller cluster was identified as anomalous based on the logical assumption that unusual traffic occurs
less frequently than normal behavior.

3.3.4. Phase 4: Clustering Evaluation Using Silhouette Score

A Silhouette Score was computed to assess the quality of clustering. This score measures how similar an object is to its
own cluster relative to other clusters, indicating how well the clustering model separates the different groups. A higher
silhouette value reflects better-defined and well-separated clusters, thereby confirming the effectiveness of the model
in isolating anomalies from normal traffic.

3.3.5. Phase 5: Visualization of Anomalies

To improve the interpretability of the results, a 2D scatter plot was generated using Matplotlib and Seaborn. The
Bytes_Sent and Duration values were plotted with different colors representing different clusters. The anomalies are
highlighted in red with black borders, making them visually distinguishable from the normal traffic. This helped to
present complex data intuitively, allowing both technical and non-technical users to understand anomalies at a glance.

3.4. Design Constraints and Resolutions

3.4.1. Resource Scalability

Given the limited access to high-performance computing, the Azure Databricks distributed architecture is employed.
Apache Spark's parallel processing enabled the analysis of large datasets using standard hardware, without needing a
GPU or a large server.

3.4.2. Skill and Tool Simplicity

To reduce the learning curve and improve usability, Python and SQL-based APIs were used within the notebooks of the
databases. This offers a user-friendly development environment and ensures maintainability for developers with
varying skill levels.

3.4.3. Data Complexity

Raw logs often contain inconsistent format and missing data. These issues were mitigated through rigorous data
validation and schema enforcement in PySpark, ensuring that only clean and well-typed data were entered in the
pipeline.

3.4.4. Cost and Infrastructure

A major design constraint is cost efficiency, as the solution is aimed at students and researchers with limited resources.
This was addressed by leveraging Azure’s free-tier offerings, such as Databricks Community Edition and low-cost
storage options.

World Journal of Advanced Research and Reviews, 2025, 26(03), 864-883

873

3.5. Implementation/Development

3.5.1. Overview

The design was implemented using a combination of Azure Databricks, Python, and popular data science libraries to
build an automated pipeline for detecting anomalies in the network traffic data. The pipeline consists of structured
stages: data ingestion, validation, feature engineering, unsupervised clustering, and visualization of results.

3.5.2. Code

csv_data = """IP,Bytes_Sent,Duration,Packets,Is_Anomaly

• 192.168.1.2,300,0.5,40,1
• 192.168.1.3,450,0.7,55,0
• 192.168.1.4,1000,1.5,80,0
• 192.168.1.5,800,1.3,70,0
• 192.168.1.6,5000,10.0,300,1
• 192.168.1.7,200,0.3,35,0
• 192.168.1.8,7000,15.0,400,1
• 192.168.1.9,320,0.4,50,0
• 192.168.1.10,150,0.2,20,0
• 192.168.1.11,10000,20.0,600,1
• 192.168.1.12,600,0.9,45,0
• 192.168.1.13,7500,12.0,350,1
• 192.168.1.14,850,1.1,60,0
• 192.168.1.15,300,0.4,30,0
• 192.168.1.16,9000,18.0,500,1
• 192.168.1.17,250,0.3,25,0
• 192.168.1.18,400,0.6,50,0
• 192.168.1.19,5200,8.0,280,1
• 192.168.1.20,700,1.2,65,0

dbutils.fs.put("dbfs:/mnt/data/network_traffic.csv", csv_data, overwrite=True)

===Imports===#

from pyspark.sql import SparkSession

import pandas as pd

import numpy as np

from sklearn.preprocessing import StandardScaler

from sklearn.cluster import KMeans

from sklearn.metrics import silhouette_score

import seaborn as sns

import matplotlib.pyplot as plt

=== Spark session===#

spark = SparkSession.builder.appName("NetworkAnomalyDetection").getOrCreate()

Path to CSV on DBFS

csv_path = "/dbfs/mnt/data/network_traffic.csv"

World Journal of Advanced Research and Reviews, 2025, 26(03), 864-883

874

Load using Pandas

df_raw = pd.read_csv(csv_path)

=== Validation ===#

expected_cols = {

 "IP": object,

 "Bytes_Sent": np.integer,

 "Duration": np.floating,

 "Packets": np.integer,

 "Is_Anomaly": np.integer

}

if df_raw.isnull().any().any():

 raise ValueError("Value Error: Missing values detected.")

for col_name and col_type in the expected_cols.items().

 if not np.issubdtype(df_raw[col_name].dtype, col_type):

 raise TypeError(f"Type Error: '{col_name}' expected {col_type._name_}, got {df_raw[col_name].dtype}")

print("Schema and nulls validated.")

=== Behavior Tagging ===#

conditions = [

 (df_raw["Bytes_Sent"] > 5000) & (df_raw["Duration"] > 5),

 (df_raw["Packets"] > 100) & (df_raw["Duration"] < 1)

]

choices = ["Downloader", "Spammer"]

df_raw["behavior"] = np.select(conditions, choices, default="Normal")

=== Feature Scaling ===#

X = df_raw[["Bytes_Sent", "Duration", "Packets"]]

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)

=== Clustering ===#

kmeans = KMeans(n_clusters=2, random_state=42)

World Journal of Advanced Research and Reviews, 2025, 26(03), 864-883

875

df_raw["prediction"] = kmeans.fit_predict(X_scaled)

silhouette = silhouette_score(X_scaled, df_raw["prediction"])

print(f"Silhouette Score: {silhouette:.4f}")

=== Anomaly Detection ===#

mincluster = df_raw["prediction"].value_counts().idxmin()

df_raw["is_anomaly"] = (df_raw["prediction"] == min_cluster).astype(int)

center = kmeans.cluster_centers_[min_cluster]

df_raw["risk_score"] = np.linalg.norm(X_scaled - center, axis=1)

df_raw["feature_contribution"] = np.abs(X_scaled - center).sum(axis=1)

=== Cluster Visualization ===#

plt.figure(figsize=(10, 6))

sns.scatterplot(data=df_raw, x="Bytes_Sent", y="Duration", hue="prediction", size="risk_score",

 palette="deep", sizes=(20, 200), alpha=0.7, legend='full')

anomalies = df_raw[df_raw["is_anomaly"] == 1]

plt.scatter(anomalies["Bytes_Sent"], anomalies["Duration"], c="red", label="Anomalies",

 edgecolors='black', s=100)

plt.title("Network Traffic Clustering and Anomalies")

plt.xlabel("Bytes Sent")

plt.ylabel("Duration")

plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')

plt.show()

=== Risk Gradient Visualization ===#

plt.figure(figsize=(10, 6))

scatter = plt.scatter(df_raw["Bytes_Sent"], df_raw["Duration"], c=df_raw["risk_score"],

 cmap="viridis", s=100, edgecolor='k', alpha=0.75)

plt.colorbar(scatter, label="Risk Score")

plt.scatter(anomalies["Bytes_Sent"], anomalies["Duration"], c="red", label="Anomalies",

 edgecolors='black', s=120, marker='x')

plt.title("Network Traffic: Bytes Sent vs Duration with Risk Gradient")

World Journal of Advanced Research and Reviews, 2025, 26(03), 864-883

876

plt.xlabel("Bytes Sent")

plt.ylabel("Duration")

plt.legend()

plt.show()

3.5.3. Code Structure

• Data Ingestion

CSV-formatted data were stored in Azure DBFS.

• dbutils.fs.put("dbfs:/mnt/data/network_traffic.csv", csv_data, overwrite=True)
• This allowed seamless integration with Azure Databricks for downstream processing.
• Data Loading & Initial Processing
• The dataset was read into a Pandas DataFrame and schema validation was performed to ensure that there were

no missing values or inappropriate data types.
• df_raw = pd.read_csv(csv_path)

3.5.4. Validation Block

• The data type for each column was checked.
• Null values were flagged and rejected to avoid errors in the downstream model.
• Behavior Tagging (Domain Logic)
• Custom logic was applied to classify the traffic into behavioral categories.
• Downloader: Bytes_Sent > 5000 AND Duration > 5
• Spammer: Packets > 100 AND Duration < 1 Normal: Everything else

3.5.5. Feature Scaling

• The selected numeric features were normalized using a standard scalar to prepare the data for clustering.
• scaler = StandardScaler()
• X_scaled = scaler.fit_transform(X)
• Unsupervised learning–clustering
• K-means with two clusters was trained on the scaled features.
• The smallest cluster was interpreted as anomalous.
• min_cluster = df_raw["prediction"].value_counts().idxmin()
• df_raw["is_anomaly"] = (df_raw["prediction"] == min_cluster).astype(int)

3.5.6. Risk Scoring

• The Euclidean distance from the cluster centroid is computed as the risk score.
• The sum of the absolute feature-wise differences from the centroid was used for feature-contribution

estimation.

3.5.7. Visualization Layer

• Cluster visualization: Displayed predictions using traffic parameters.
• Risk heatmap: Highlighted intensity of abnormality using color-coded scatterplots.

Testing and Validation

Test Case 1: Missing Values

Input CSV Data:

IP,Bytes_Sent,Duration,Packets,Is_Anomaly

World Journal of Advanced Research and Reviews, 2025, 26(03), 864-883

877

192.168.1.2,300,0.5,40,1

192.168.1.3,,0.7,55,0

192.168.1.4,1000,1.5,,0

Expected Output:

Value Error: CSV file contains missing values. Please provide complete data.

Test Case 2: Incorrect Data Types

Input CSV Data:

IP,Bytes_Sent,Duration,Packets,Is_Anomaly

192.168.1.2,300,0.5,40,1

192.168.1.3, fourhundred,0.7,55,0

192.168.1.4,1000,1.5, eighty,0

Expected Output:

Type Error: Column 'Bytes_Sent' has an incorrect data type. Expected: integer; sound: string.

Test Case 3: Empty File

Input CSV Data:

IP,Bytes_Sent,Duration,Packets,Is_Anomaly

Expected Output:

Value Error: CSV file contains missing values. Please provide complete data.

Test Case 4: Wrong Schema Column Type

Input CSV Data:

IP,Bytes_Sent,Duration,Packets,Is_Anomaly

192.168.1.2,300,"0.5",40,1

192.168.1.3,450, "0.7",55,0

192.168.1.4,1000, "1.5",80,0

Expected Output:

Type Error: Column 'Duration' has an incorrect data type. Expected: double; sound: string.

World Journal of Advanced Research and Reviews, 2025, 26(03), 864-883

878

Figure 3 Creating an Azure Databricks Workspace

Figure 4 Computing Databricks

4. Results Analysis and Discussion

The scatter plot effectively visualizes the output of the K-Means clustering algorithm applied to network traffic data,
using "Bytes Sent" and "Duration" as key features. Each data point represents an individual network session positioned
according to the volume of data transmitted (x-axis) and the session duration (y-axis). The clustering process identified
two primary groups, with the majority of sessions forming a compact blue cluster (Figure 5), indicating typical behavior.
Single orange points. 1. stands out, forming a minority cluster that significantly deviates from the norm. This point,
further marked by red X with a black outline, was flagged as an anomaly. The visualization is enhanced with a risk
gradient, where the color intensity reflects the Euclidean distance from the cluster center, quantifying the severity.
Sessions with higher risk scores, characterized by long durations and high byte counts, are visually distinct and
indicative of potentially malicious activities such as data exfiltration or unauthorized persistent connections. This plot

World Journal of Advanced Research and Reviews, 2025, 26(03), 864-883

879

not only supports the project’s goal of leveraging unsupervised learning for anomaly detection but also serves as a
valuable tool for network analysts to prioritize and investigate unusual traffic patterns effectively.

4.1. Network-traffic clustering and anomalies

4.1.1. Network Traffic: Bytes vs. Duration with Risk Gradient

In essence, the plot visually demonstrates how the K-Means clustering algorithm has separated the network traffic data
into two groups based on the "Bytes Sent" and "Duration" features. The red circle highlights the data point that has been
flagged as unusual or anomalous because it belongs to a smaller cluster.

Figure 5 Network Traffic Clustering and Anomalies

• X-axis: Bytes Sent. This axis represents the amount of data transmitted during a network connection, measured
in bytes. As you move to the right-hand side of the plot, the number of bytes sent increases.

• Y-axis: Duration. This axis represents the length of a network connection in some time units (likely seconds,
based on the example data). As the plot moves upward, the duration of the connection increases.

• Data Points: Each point in the scatter plot represents a single network traffic session from the dataset. The
position of the point is determined by its corresponding "Bytes Sent" and "Duration" values.

• Color Coding (clusters): The plot uses different colors to indicate the clusters identified by the K-means
algorithm.

• Blue points: Figure 5 shows the network traffic sessions in which the k-means algorithm is grouped into one
cluster. These sessions are likely to share similar characteristics in terms of the byte sent and duration.

• Orange point: Figure 5 shows the network traffic session in which the K-means algorithm is grouped into a
second cluster.

• Red Circles with Black Outlines: The (labeled "Anomalies”) in Figure 5 are the data points identified as
anomalies by the analysis. Based on the description in the text, these are likely points belonging to the smaller
of the two clusters found by K-means. This plot highlights the single orange point from the cluster "1" as an
anomaly.

World Journal of Advanced Research and Reviews, 2025, 26(03), 864-883

880

4.1.2. Network Traffic Bytes vs Duration with Risk Gradient

Figure 6 Network Traffic: Bytes vs Duration with Risk Gradient

X-axis: Bytes Sent: This axis represents the amount of data transmitted during a single network connection measured
in bytes.

• As one moves to the right, the number of bytes sent increases.
• This metric is critical for identifying large data transfers that may indicate downloads, file-sharing, or data

exfiltration.

Y-axis: Duration: This axis shows the duration of each network session, likely in seconds.

• Moving upward indicates longer sessions.
• Sessions that last significantly longer than average may be persistent connections, streaming events, or

unauthorized long-duration sessions.

4.1.3. Data Points

• Each plotted point corresponds to a network traffic session in the dataset.
• The position of each point is defined by the Bytes Sent (X-axis) and Duration (Y-axis).
• These values were extracted from the uploaded CSV and preprocessed using feature scaling with

StandardScaler.

4.1.4. Color Coding (Risk Gradient)

This plot uses a color gradient to show the risk score of each session.

• The color of each dot reflects its Euclidean distance from the K-Means cluster center (i.e., how far it deviates
from “normal” behavior). Purple/blue: Low risk (close to the cluster center)

• Green/yellow: High risk (far from center, more anomalous)
• The color bar on the right maps these shades to numerical risk scores, ranging from 0.5 to 3.5+

• Red X Markers with Black Borders (Anomalies)

• These represent data points flagged as anomalies by the model.
• Anomalies are defined as sessions that belong to a minority cluster created by k-means (i.e., the smallest

group).
• These sessions exhibit unusually high bytes sent and have long durations

World Journal of Advanced Research and Reviews, 2025, 26(03), 864-883

881

• Fall far outside the compact cluster of typical behavior
• They are marked with red “X” symbols over their scatter points to visually separate them from the regular

traffic.

4.1.5. What Makes These Points Anomalous?

• These outlier points had extreme values for byte stent and/or duration, triggering high-risk scores.
• The combination of long duration and high byte count strongly suggests the following.
• Potential malware exfiltration
• Unauthorized backups
• Rogue applications
• As these points form the smallest cluster, the algorithm correctly flags them for further inspection.

4.2. Visualization Purpose

4.2.1. This visualization delivers a 2D risk heatmap of the network activity

• It not only clusters data but also quantifies the degree of deviation via a risk score.
• It allows security analysts or network engineers to visually prioritize the sessions to investigate based on size,

color, and anomaly marking.

4.3. How It Supports the Project Objective

• “Detecting Anomalies in Network Traffic Using Azure Machine Learning and Log Analytics” — by:
• Demonstrating the power of unsupervised learning (K-Means) to separate normal and suspicious behavior
• Providing a visual decision-making tool to identify network anomalies
• Enabling interpretability via risk scoring and feature scaling

5. Conclusion

We developed a simple, efficient, and scalable system for detecting anomalies in network traffic using the Azure
Databricks and PySpark. The system demonstrates how to handle large datasets, prepare features, build machine
learning models, and detect unusual network behaviors within a cloud platform without complex setups or expensive
infrastructure. We successfully cleaned, validated, and prepared network traffic logs to ensure that the data pipelines
were smooth.

Using K-Means clustering, we identified unusual traffic patterns without requiring labeled data, thereby rendering the
system adaptable to various network conditions. The Silhouette Score confirmed that our clusters were well-separated,
validating that the model could effectively distinguish between normal and abnormal traffic. Built using Azure’s
affordable resources, the system offers an accessible solution for students, researchers, and small businesses without
the need for costly infrastructure.

The detected anomalies and traffic patterns were easily visualized, making the results intuitive for non-technical users.
This project demonstrates that building a smart and reliable anomaly detection system in the cloud is achievable with
minimal complexity and cost. The potential for future upgrades includes real-time monitoring, alert systems, and
automated responses, paving the way for more efficient network security.

Recommendation

• Adopt Real-Time Analytics Frameworks

Justification: Real-time threat detection is critical in modern network security for preventing or minimizing damage
during cyberattacks. Integrating streaming services, such as Azure Event Hubs, allows continuous monitoring and
immediate anomaly detection, which is lacking in the current batch-processing system.

• Incorporate Diverse and Rich Feature Sets

Justification: Limiting the model to a small set of traffic features may result in missed or false-positive results. Enriching
the dataset with additional attributes (e.g., port numbers, timestamps, and protocol types) enhances the sensitivity of
the model and helps to capture a broader range of suspicious behaviors.

World Journal of Advanced Research and Reviews, 2025, 26(03), 864-883

882

• Apply Explainable Machine Learning Techniques

Justification: In security-critical applications, decisions made by human analysts using AI models must be interpretable.
Techniques such as SHAP and LIME help to explain model outputs, thereby increasing trust, aiding audits, and ensuring
accountability in operational environments.

• Enable Automated Threat Response Integration

Justification: Manual incident response is time consuming and often inefficient. Automating alerts and responses using
Azure Logic Apps or Sentinels ensures faster mitigation, minimizes human errors, and streamlines security operations.

• Evaluate Cost-Performance Trade-offs

Justification: Although cloud services offer scalability, their uncontrolled usage may lead to excessive cost. A detailed
cost-benefit analysis helps choose the most efficient resource configurations, especially for resource-constrained teams
or organizations.

• Customize Models for Specific Network Environments

Justification: Network behavior varies significantly across domains (e.g., corporate networks versus IoT). Adapting
models to reflect domain-specific traffic characteristics improves the detection accuracy and reduces irrelevant alerts.

• Promote Collaboration Between Security and Data Teams

Justification: Effective implementation of anomaly detection systems requires combined effort from cybersecurity
professionals and data scientists. Their collaboration ensures that the solution aligns with both the technical and
security requirements.

Compliance with ethical standards

Acknowledgments

The authors would like to thank the support provided by the Supervisor, HOD, and Staff of the Department of CSE (Data
Science), Guru Nanak Institutions Technical Campus. This research was self-funded and did not receive any specific
grants from funding agencies in the public, commercial, or not-for-profit sectors.

Disclosure of conflict of interest

The authors declare that they have no conflict of interest.

References

[1] Ahmed, M., Mahmood, A. N., & Hu, J. (2016). A survey of network anomaly detection techniques. Journal of
Network and Computer Applications, 60, 19–31. https://doi.org/10.1016/j.jnca.2015.11.016

[2] Bhuyan, M. H., Bhattacharyya, D. K., & Kalita, J. K. (2014). Network anomaly detection: Methods, systems, and
tools. IEEE Communications Surveys & Tutorials, 16(1), 303–336.
https://doi.org/10.1109/SURV.2013.052213.00046

[3] Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys (CSUR),
41(3), 1–58. https://doi.org/10.1145/1541880.1541882

[4] Kumar, R., Singh, M., & Arora, A. (2021). Cloud-based anomaly detection system using machine learning for secure
networks. International Journal of Information Security Science, 10(2), 130–138.

[5] Micrsoft. (2022). Azure Machine Learning documentation. https://learn.microsoft.com/en-us/azure/machine-
learning/

[6] Microsoft. (2023). Azure Monitor Logs and Log Analytics overview. https://learn.microsoft.com/en-
us/azure/azure-monitor/logs/log-analytics-overview

World Journal of Advanced Research and Reviews, 2025, 26(03), 864-883

883

[7] Schummer, P., del Rio, A., Serrano, J., Jimenez, D., Sánchez, G., & Llorente, Á. (2024). Machine Learning-Based
Network Anomaly Detection: Design, Implementation, and Evaluation. AI, 5(4), 2967-2983.
https://doi.org/10.3390/ai5040143

[8] Sommer, R., & Paxson, V. (2010). Outside the closed world: On using machine learning for network intrusion
detection. In 2010 IEEE Symposium on Security and Privacy (pp. 305–316). IEEE.
https://doi.org/10.1109/SP.2010.25

[9] Thwaini, M. H. (2022). Anomaly detection in network traffic using machine learning for early threat detection.
Data and Metadata, 1, 34-34. https://doi.org/10.56294/dm202272

[10] Zuech, R., Khoshgoftaar, T. M., & Wald, R. (2015). Intrusion Detection and Big Heterogeneous Data: A Survey.
Journal of Big Data, 2(1), 3. https://doi.org/10.1186/s40537-015-0013-4

https://doi.org/10.56294/dm202272

