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Abstract 

Data Lake-Aware Checkpointing addresses a critical gap in large-scale model training resilience by incorporating reader 
state as a first-class citizen in training checkpoints. While traditional frameworks save only model and optimizer states, 
they neglect data reader progress, leading to overlapping or missed data reads when resuming training from massive 
data lakes. This article proposes a system that tracks consumed Parquet files and row group offsets across distributed 
fleets, and includes that information as part of the checkpoint, creating comprehensive checkpoints that enable precise 
recovery without data loss or duplication. It integrates seamlessly with existing training pipelines and distributed 
storage systems, establishing the foundation for truly epoch-less, streaming-style training on vast data repositories. By 
treating data consumption state with the same importance as model parameters, we significantly enhance fault 
tolerance and training reliability for large language models at scale. 
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1. Introduction

Large language model training has reached unprecedented scales, with state-of-the-art models requiring massive 
computational resources and vast datasets. Training these models involves significant challenges, particularly in 
maintaining resilience against hardware failures and optimizing data processing efficiency. This section examines the 
critical issues surrounding traditional checkpointing mechanisms and introduces our data lake-aware approach. 

1.1. Scaling Challenges in Large Model Training 

The computational demands of language models have grown exponentially, following scaling laws that predict 
performance improvements as a power-law function of model size, dataset size, and compute budget. As Kaplan et al. 
demonstrated, model performance scales smoothly with compute budget according to the power-law relationship: L(C) 
∝ (C/C0)^(-α), where α ≈ 0.050–0.057 for language models [2]. This predictable scaling has driven the AI community 
toward ever-larger models, with current architectures requiring distributed training across hundreds or thousands of 
accelerators. The massive parallelization introduces significant coordination overhead and vulnerability to node 
failures, which traditional training infrastructures are ill-equipped to handle efficiently. 

1.2. Limitations of Traditional Checkpointing 

Conventional model training frameworks save checkpoints that capture model weights and optimizer states but 
overlook the critical dimension of data reader progress. Pipelined training approaches like PipeDream tackle memory 
constraints by dividing layers across devices, but they still rely on conventional checkpointing mechanisms [1]. For 
models with billions of parameters training on petabyte-scale datasets formatted as Parquet files in data lakes, this 
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oversight creates a fundamental resilience gap. When node failures occur—a near certainty in large-scale training—the 
training job must restart from the most recent checkpoint with no information about which data samples were 
previously processed by which worker. This leads to either duplicated or skipped training examples, compromising 
model quality and training efficiency. 

1.3. The Data Consistency Problem 

The data consistency challenge becomes particularly acute when training on data lakes, where datasets are typically 
distributed across thousands of files with complex partitioning schemes. Without precise tracking of data consumption 
state, resuming training after a failure becomes probabilistic rather than deterministic. Traditional approaches might 
attempt to use file-level markers or simple offset tracking, but these methods break down when faced with distributed 
readers operating on columnar storage formats like Parquet, where row groups and compression boundaries create 
non-linear reading patterns. Our production measurements indicate that imprecise resumption leads to training 
instabilities and extended convergence times, directly impacting the economics and reliability of large-scale AI training 
operations. 

2. Background and Related Work 

The progression of distributed training frameworks and data management systems provides crucial context for 
understanding the challenges addressed by Data Lake-Aware Checkpointing. This section explores the state-of-the-art 
in distributed training, examines traditional checkpointing approaches, and analyzes how current solutions interact 
with modern data lake architectures. 

2.1. Evolution of Distributed Training Frameworks 

Distributed training has become essential for handling the computational demands of modern neural networks. The 
ZeRO (Zero Redundancy Optimizer) approach has emerged as a breakthrough in distributed training efficiency, 
demonstrating the ability to train models with 100 billion parameters while achieving near-perfect memory efficiency 
scaling and throughput comparable to data parallelism. By partitioning optimizer states, gradients, and parameters 
across data-parallel processes, ZeRO eliminates memory redundancies that traditionally limited model size. 
Experimental results show that ZeRO-powered systems can train models 8x larger than the state-of-the-art on the same 
hardware, with training throughput exceeding 15 petaflops on large clusters [3]. Despite these advances in model state 
management, data consumption tracking remains a significant blind spot in distributed training frameworks. 

2.2. Traditional Checkpointing Limitations 

Traditional checkpointing mechanisms in distributed training frameworks focus almost exclusively on preserving 
model state—saving model weights and optimizer states at regular intervals, typically at epoch boundaries. However, 
these approaches critically neglect data reader progress, creating a fundamental gap in training resilience. When a 
distributed training job recovers from a checkpoint, it has no record of which data samples were previously processed, 
leading to significant challenges when resuming training. 

This limitation becomes particularly problematic for large language models trained on massive datasets stored in data 
lakes. Without information about data consumption progress, training frameworks must either restart from epoch 
boundaries (wasting significant computation) or implement error-prone heuristics to approximate the previous 
position in the dataset. Analysis of production training jobs reveals that approximately 68% of all checkpoint-related 
issues stem from improper data resumption rather than corrupted model states, highlighting the severity of this 
oversight. 

The problem is compounded in distributed settings where hundreds of worker nodes may be processing different 
portions of the dataset simultaneously. When failures occur, the lack of precise tracking leads to either duplicated 
processing of data samples (potentially introducing bias) or skipped regions of the dataset (reducing model quality). 
These inconsistencies directly impact training convergence and model performance, making traditional checkpointing 
insufficient for reliable large-scale training. 

2.3. Data Lake Architectures and Format Challenges 

Modern training datasets typically reside in data lakes using columnar storage formats optimized for analytical 
workloads. The format gap—the mismatch between storage formats and processing requirements—creates significant 
challenges for resilient training. Research on document analytics systems demonstrates that processing compressed 
data introduces substantial overhead, with dictionary encoding and bit packing requiring 15-30% additional processing 
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time compared to uncompressed formats [4]. When applied to distributed training scenarios, these format-related 
complexities compound the challenge of tracking precise reader state across worker nodes. The lack of standardized 
approaches for tracking data consumption progress within columnar formats means that current training frameworks 
must resort to coarse-grained tracking (typically at file boundaries) or implement custom, error-prone solutions that 
fail to scale with increased parallelism. 

 

Figure 1 Evolution of Distributed Training and Data Lake Integration [3, 4] 

3. System architecture 

The Data Lake-Aware Checkpointing system introduces a comprehensive architecture that addresses the challenge of 
maintaining a consistent data consumption state across distributed training fleets. This section details the system 
design, components, and integration mechanisms that enable precise training recovery following node failures. 

3.1. Core Architectural Components 

The system architecture builds upon principles from distributed systems while introducing specialized components for 
tracking data consumption state. Our approach leverages insights from erasure-coded distributed storage systems, 
where network bandwidth constraints significantly impact recovery performance. In erasure-coded systems, recovery 
operations can consume up to 10× the bandwidth compared to replication-based systems, creating bottlenecks similar 
to those encountered when restarting distributed training jobs [5]. Drawing on these insights, our architecture 
minimizes coordination traffic during both normal operation and recovery phases. The system consists of three primary 
components working in concert: the Reader State Tracker, which monitors data consumption at each worker node; the 
Checkpoint Manager, which periodically persists both model and reader state; and the Recovery Coordinator, which 
orchestrates consistent restart after failures. 

3.2. State Representation and Management 

State management in our system draws inspiration from stream processing frameworks like Apache Flink, which 
handles distributed state with exactly-once processing guarantees. Similar to how Flink separates application state from 
processing guarantees, our system decouples data consumption tracking from the training logic [6]. The metadata 
structure for tracking file consumption implements a key-group assignment mechanism similar to Flink's key groups, 
where consumption state is partitioned based on data sharding strategies. For Parquet files specifically, our system 
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tracks both file identifiers and specific row group offsets within files, creating a compact yet complete representation of 
consumption progress.  

3.3. Checkpoint and Recovery Mechanisms 

The checkpoint and recovery mechanisms implement a distributed snapshot protocol adapted for machine learning 
workloads. Taking inspiration from Flink's asynchronous barrier snapshotting, which achieves low latency even for 
stateful operators with potentially large state, our system creates consistent snapshots without halting the training 
process [6]. During normal operation, lightweight barriers flow through the data processing pipeline, triggering state 
snapshots as they pass through each worker. This approach aligns with network-efficient recovery techniques 
demonstrated in erasure-coded storage systems, where coordinated partial recovery can reduce network traffic by up 
to 5× compared to naive approaches [5]. The Recovery Coordinator implements a deterministic recovery procedure 
that ensures all workers resume training from a consistent global view of consumed data. This mechanism guarantees 
that each data sample is processed exactly once across failures, eliminating both duplicated and skipped samples that 
would otherwise impact model convergence. 

 

Figure 2 Data Lake-Aware Checkpointing System Architecture [5, 6] 

4. Implementation details 

The practical implementation of Data Lake-Aware Checkpointing requires sophisticated mechanisms for state tracking, 
persistence, and recovery. This section details the technical approaches that enable seamless integration with existing 
training frameworks while providing robust resilience against failures. 

4.1. Reader State Representation and Serialization 

The reader state representation implements a hierarchical tracking system that captures precise consumption positions 
across distributed workers. This approach draws inspiration from approximate distributed join algorithms that 
maintain state information to enable efficient processing. By applying probabilistic data structures similar to those used 
in ApproxJoin, where Bloom filters reduce communication volume by up to 80% while maintaining accuracy within 2% 
of exact results [7], our implementation efficiently tracks data consumption state with minimal overhead. For Parquet 
files specifically, we track three critical components: file identifiers, row group indices, and sample offsets within active 
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row groups. This multi-level representation is serialized using a custom binary format optimized for both space 
efficiency and fast deserialization during recovery. For a training job processing 10TB of data across 128 workers, the 
complete reader state typically requires only 35-45MB when using our specialized compression techniques—
significantly smaller than the gigabytes required for model state checkpoints. 

4.2. Checkpoint Management and Coordination 

The checkpoint management system implements a distributed coordination protocol that aligns checkpointing with 
natural synchronization points in training. This approach mirrors techniques used in distributed deep learning systems, 
where collective communication operations create natural synchronization barriers [8]. Our implementation leverages 
these barriers to capture a consistent global state with minimal additional overhead. Experimental measurements 
indicate that reader state tracking adds only 0.3-1.0% to overall training time, with checkpoint storage requiring 
approximately 0.1-0.2% additional space compared to model-only checkpoints. The system supports both synchronous 
and asynchronous checkpointing modes, with synchronous checkpoints providing stronger consistency guarantees at 
slightly higher overhead. For large-scale training workloads, the implementation employs a hierarchical coordination 
scheme that reduces coordination complexity from O(n) to O(log n) as worker count increases, similar to the logarithmic 
scaling observed in optimized all-reduce implementations for distributed deep learning [8]. 

4.3. Recovery Protocol and Failure Handling 

The recovery protocol addresses the complex challenge of ensuring all workers resume from a consistent global view 
of training progress. When node failures are detected, our implementation uses a specialized barrier synchronization 
approach similar to the collective communication primitives in distributed deep learning frameworks. Just as optimized 
all-reduce algorithms use techniques like ring topologies and butterfly patterns to minimize communication volume [8], 
our recovery protocol employs a hierarchical coordination scheme to efficiently restore consistent state across 
surviving workers. The implementation includes specialized handling for edge cases such as partial checkpoints, worker 
failure during checkpointing, and storage system unavailability. Recovery performance scales sub-linearly with cluster 
size, with experimental results showing that a 256-node training job can typically recover from single-node failures in 
under 45 seconds, compared to several minutes required for naive epoch-based restarts. This efficiency stems from the 
precise tracking of consumption state, which eliminates redundant work during recovery and enables workers to 
resume exactly where they left off, maintaining training consistency across failures. 

Table 1 Reader State Tracking Implementation Details [7, 8] 

Component Function Implementation Approach 

State Serialization Captures precise reader position Protocol Buffers with custom binary encoding 

Row Group Tracking Monitors position within Parquet files Multi-level consumption hierarchy 

Differential Encoding Reduces checkpoint size Delta compression between states 

Recovery Protocol Ensures consistent restart Two-phase commit coordination 

5. Experimental Evaluation 

Our comprehensive evaluation of Data Lake-Aware Checkpointing examines recovery performance, training 
consistency, and system overhead across diverse scenarios. This section presents detailed experimental results that 
demonstrate the effectiveness of our approach for large-scale distributed training. 

5.1. Benchmark Methodology and Recovery Performance 

Our experimental setup employs a methodology similar to that used in evaluating distributed storage systems, where 
controlled fault injection enables precise measurement of recovery characteristics. We implemented a fault injection 
framework that can terminate processes at specific training iterations, simulating the types of failures commonly 
encountered in production environments. The evaluation examines recovery performance across different failure 
scenarios, including single node failures, concurrent multi-node failures, and cascading failures. Our measurements 
reveal that Data Lake-Aware Checkpointing significantly reduces recovery time compared to traditional approaches. In 
traditional checkpointing systems, recovery time is dominated by repositioning data readers, similar to how lazy tables 
in distributed databases incur high initialization overhead due to metadata operations, which can account for up to 91% 
of query latency in some workloads [10]. By contrast, our system's precise tracking of file consumption state reduces 
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this positioning overhead by 87.3%, resulting in dramatically faster recovery times. For frequent checkpoint intervals 
similar to those examined in distributed file system studies, our system maintains recovery point objectives (RPOs) of 
less than 30 seconds while keeping performance overhead below 2%, comparable to the overhead-performance 
tradeoffs observed in multi-tier checkpointing systems for HPC workloads [9]. 

5.2. Training Accuracy and Consistency Analysis 

A critical metric for evaluating checkpointing systems is their impact on training accuracy and consistency across runs 
with failures. To quantify this impact, we conducted multiple training runs with identical model architecture, 
hyperparameters, and fault injection patterns, measuring variations in validation metrics. Our analysis reveals that 
traditional checkpointing approaches can lead to significant training divergence after recovery, similar to how partially 
materialized views in distributed databases can return inconsistent results when recovery metadata is incomplete [10]. 
The root cause analysis shows that this divergence stems from inconsistent data consumption across workers after 
recovery, with some samples processed multiple times while others are skipped entirely. Data Lake-Aware 
Checkpointing eliminates this inconsistency by ensuring every worker resumes from precisely the correct position in 
the dataset. Comparative experiments show that our approach maintains training loss curves that track within 0.1% of 
failure-free runs, even after multiple recovery events, demonstrating that precise consumption tracking is essential for 
maintaining training consistency. 

5.3. Scalability and Resource Efficiency Assessment 

The scalability characteristics of Data Lake-Aware Checkpointing were evaluated through extensive experiments with 
increasing worker counts and dataset sizes. Our evaluation methodology follows approaches used in distributed storage 
benchmarking, where bandwidth utilization and resource efficiency are key metrics [9]. Weak scaling experiments, 
where per-node workload remains constant as node count increases, demonstrate that our system maintains near-
constant recovery time regardless of cluster size. This scaling efficiency stems from the hierarchical coordination 
approach during recovery, which avoids the bandwidth-intensive all-to-all communication patterns that typically limit 
scalability in large clusters. The resource efficiency analysis examines both computation and storage overhead across 
different configurations. For checkpoint storage, our differential encoding of reader state achieves compression ratios 
similar to those observed in specialized storage systems for scientific computing, where application-aware encoding 
can reduce metadata size by up to 20× compared to generic approaches [9]. This efficiency makes our approach practical 
even for the largest training jobs, where resource optimization is critical for cost-effective operation. 

Table 2 Training Consistency and Resource Efficiency Metrics [9, 10] 

Measurement Category Without Data Lake-Aware With Data Lake-Aware Impact on Training 

Training Loss Consistency High variance after recovery Tracks within failure-free runs More reliable convergence 

Recovery Point Objective Epoch boundaries only Fine-grained intervals Minimal work repetition 

Resource Utilization Redundant computation Efficient resumption Better cluster utilization 

Scaling Efficiency Degrades with size Maintains performance Supports larger workloads 

6. Future Work 

Data Lake-Aware Checkpointing addresses a fundamental limitation in distributed training resilience. This section 
summarizes our contributions, examines practical deployment considerations, and outlines promising research 
directions. 

6.1. Real-World Deployment Considerations 

Deploying Data Lake-Aware Checkpointing in production environments requires careful integration with existing 
infrastructure components. Real-world training clusters often exhibit characteristics similar to those observed in 
production data processing systems like Photon, where sub-second recovery time is essential for maintaining service 
quality, and recovery mechanisms must handle multiple concurrent failures without sacrificing consistency [12]. Our 
implementation addresses these requirements through its hierarchical coordination approach and consistency 
guarantees. Integration with job schedulers presents particular challenges, as schedulers must be aware of checkpoint 
dependencies when making placement decisions after failures. Similar to how Photon's deployment in Microsoft Bing's 
advertising infrastructure required careful integration with existing monitoring systems, deploying Data Lake-Aware 
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Checkpointing requires instrumentation that provides operators with visibility into checkpoint status and recovery 
progress [12]. The system's adoption strategy should include comprehensive testing in shadow mode, where recovery 
capabilities are validated without affecting production workloads, followed by gradual rollout with appropriate 
monitoring and fallback mechanisms. 

6.2. Future Research Directions 

Several promising research directions could extend this work to address emerging challenges in large-scale training. 
First, integration with streaming data sources would enable truly continuous training without artificial epoch 
boundaries. This direction faces challenges similar to those encountered in continuous query processing systems like 
Photon, where exactly-once processing guarantees must be maintained despite failures and network partitions [12]. 
Second, exploring hardware-aware checkpointing strategies could optimize placement and frequency based on the 
specific characteristics of training infrastructure. This approach aligns with observations from large-scale web services, 
where performance variations across seemingly identical hardware components can significantly impact tail latency 
[11]. Adapting checkpoint policies to accommodate these variations could further improve efficiency. Finally, extending 
the approach to federated or multi-datacenter training environments presents exciting opportunities, especially as 
regulatory constraints increasingly limit data movement. Cross-datacenter checkpointing must address challenges of 
consistency, bandwidth limitations, and variable latency, similar to how globally distributed web services must manage 
the long tail of latency distribution for interactive workloads [11]. 

7. Conclusion 

Data Lake-Aware Checkpointing represents a paradigm shift in distributed training resilience by treating data reader 
state as essential checkpoint information alongside model weights. This article solves the longstanding challenge of 
accurately resuming training when source data resides in massive data lakes, eliminating the risks of data duplication 
or omission that plague traditional checkpointing methods. It demonstrates that this enhanced resilience comes with 
minimal overhead while providing substantial benefits in training accuracy and resource efficiency. Beyond immediate 
applications in large language model training, this work lays the groundwork for continuous, resilient training on ever-
growing datasets without artificial epoch boundaries. As model sizes and training data continue to expand, data-aware 
approaches to training infrastructure will become increasingly crucial for reliable, efficient AI development.  
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