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Abstract 

Due to their remarkable precision and effectiveness, gradient-boosted tree models have become the go-to choice for 
machine learning-driven diabetes detection; however, the key to unlocking their full potential lies significantly in the 
careful tuning of hyperparameters. To automatically optimize LGBM's hyperparameters for improved diabetes 
screening, we present a hybrid framework - Light Gradient Boosting (LGBM) bundled with the Whale Optimization 
Algorithm (LGBM+WOA). Inspired by nature, the Whale Optimization Algorithm (WOA) models the bubble-net feeding 
behaviour of humpback whales, therefore offering a compromise between exploration and exploitation in search areas. 
We evaluated model performance under imbalanced class situations using stratified 10-fold cross-validation using the 
Diabetes Dataset from patients in Borno hospital. Rising above baseline Gradient Boosting (80%), Support Vector 
Machine (74%), Random Forest (86%), and LGBM (88%), the suggested LGBM+WOA model achieved an overall 
detection accuracy of 90%. While diabetes recall increased to 0.86, so lowering false negatives is important; class-
specific metrics for the non-diabetic cohort obtained a precision of 0.93, recall of 0.91, and F1-score of 0.92 - gains of 1-
2 percentage points over standard LGBM. Faster convergence and better generalization follow from WOA-driven 
hyperparameter tuning, refining important LGBM parameters more effectively than grid or random search. The easier 
training and testing process of the hybrid model is a helpful tool for quickly assessing diabetes risk and allows for 
immediate use in clinical decision support systems. Combining LGBM's gradient-boosting efficiency with WOA's robust 
global optimization, the LGBM+WOA framework provides a new benchmark for machine-learning-based diabetes 
detection, enabling more general uses of metaheuristic-tuned ensembles in medical diagnostics.  

Keywords: Diabetes; Support Vector Machine; Random forests; Light gradient boosting; Whale Optimization 
Algorithm 

1. Introduction

Diabetes, formally Diabetes mellitus, is widely recognized as a chronic metabolic disorder primarily characterized by 
hyperglycemia, which occurs when a person has high blood sugar levels that can lead to complications such as blindness, 
cardiovascular diseases, and amputation [1]. The high blood glucose levels are due to insufficient insulin production, 
impaired insulin action or a combination of both factors. In the condition of diabetes, a patient's body is unable to 
generate sufficient insulin or to stop producing insulin [2]. Drugs alone, including insulin injections, are not sufficient to 
treat and cure diabetes. Scientists have not discovered the cure for the disease, but it can be controlled with early 
diagnosis and prognosis at the early stages of the disease and at the later stages of the disease which makes treatment 
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much easier. The prediction of diabetes has become a controversial topic for study and research. The rapid progress of 
machine learning models has led to their widespread utilization in numerous applications, particularly in the medical 
field for the accurate diagnosis of diverse diseases [3]. To make diagnoses less costly and more accurate, there is a need 
for Machine learning. In general, machine learning models aim to describe, learn and predict from data and can help 
people make early judgments about disease based on their physical condition and diagnose the disease in its early stages 
until treatment is complete [3]. Therefore, using machine learning (ML) to predict diabetes can help doctors diagnose 
patients more efficiently and precisely [2]. 

Diabetes has emerged as one of the most public health challenges of the modern era, with its prevalence growing at an 
unprecedented rate. According to recent estimates, approximately 537 million adults were living with diabetes in 2021, 
with projections indicating that this number may rise to 643 million by 2030 and reach nearly 783 million by 2045 [4]. 
These statistics underscore the pervasive nature of the disease, especially in regions where rapid urbanization and 
lifestyle changes have contributed to a rise in risk factors such as obesity, sedentary behaviour, and unhealthy dietary 
habits. The economic implications of this rising epidemic are equally significant. Diabetes not only imposes a substantial 
financial implication on health care systems due to the costs associated with long-term management and treatment of 
its complications, but also exerts significant damage on national economies through lost productivity and premature 
mortality [5]. High-impact journals and peer-reviewed studies have consistently demonstrated that the financial strain 
imposed by diabetes affects both direct medical expenditures and indirect costs related to disability and reduced 
workforce participation. In recent years, there has been a notable shift toward leveraging advanced data analytics and 
machine learning to better understand and predict the epidemiological trends associated with diabetes. These studies 
show how machine learning can change our understanding of diabetes by revealing the complicated ways that genetics, 
environment, and behaviour interact. Overall, the global impact and epidemiology of diabetes reveal a multifaceted 
challenge that extends beyond individual health, affecting societies and economies worldwide [6]. The integration of 
machine learning techniques in epidemiological research not only enriches our understanding of the disease's 
distribution and progression but also informs the development of more effective, targeted strategies for early detection 
and intervention. As the global burden of diabetes continues to escalate, these innovative approaches are essential for 
mitigating the long-term consequences of the disease and optimizing resource allocation in public health initiatives. 
Early detection is paramount for reducing the incidence of severe complications associated with diabetes [7]. 
Traditional diagnostic methods such as fasting plasma glucose (FPG), oral glucose tolerance tests (OGTT), and 
hemoglobin A1c (HbA1c) assessments remain standard in clinical practice [8]. However, these techniques have inherent 
limitations. They typically offer a snapshot of glycemic control rather than capturing the dynamic, progressive nature 
of the disease. Also, they may not be very good at detecting early changes in metabolism, which could slow down the 
start of preventive actions [9].  

Recent advances in machine learning have paved the way for more refined and anticipatory diagnostic approaches. By 
using large-scale data from electronic health records, wearable devices, and continuous glucose monitoring systems, 
machine learning models can identify precise patterns and risk factors that traditional methods might overlook. For 
instance, deep learning algorithms have been effectively employed to integrate multifactorial clinical data, thereby 
enhancing early prediction of Type 2 diabetes onset [10]. Such predictive models improve the timeliness of diagnosis 
and enable personalized treatment plans, which are essential for mitigating the long-term complications associated with 
diabetes [11]. Research from platforms like Google Scholar, PubMed, IEEE Xplore, Springer Link, and Elsevier 
ScienceDirect has shown that using machine learning in diagnosis can greatly improve prediction accuracy and help 
with early treatment plans.  

2. Related works 

This section presents a concise discussion on recent research works done in the field of diabetes detection using 
machine learning algorithms. Over the past few years, researchers have proposed several techniques to address the 
challenges associated with diabetes detection. Recent studies have applied a variety of classical supervised algorithms 
to standard diabetes datasets. Iparraguirre-Villanueva et al. [12] evaluated five ML classifiers on the Pima Indians 
diabetes dataset. The k-NN model achieved the highest accuracy (79.6%) for diabetes detection, outperforming the 
other methods. The shortcoming of their approach is that they used classical supervised ML models for the detection, 
which relied on a small, outdated dataset (PIMA), limiting generalizability to diverse populations, which tends not to 
address real-world imbalanced data scenarios or missing values. Moreover, there is a need for external validation on 
modern, diverse, and large-scale datasets to improve clinical relevance. Howlader et al. [13] used feature selection and 
multiple classifiers on the same Pima dataset. Their results showed a Generalized Boosted Regression model yielded 
90.9% accuracy. An inherent limitation of their research also is the relatively small size of the dataset utilized, which 
hinders the generalizability of the findings to a larger population and overfitting risk due to exhaustive feature 
engineering on the small dataset. Moreover, there is a need for interpretability frameworks like SHAP or LIME to aid 
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clinical decision-making. It is also important to note that these authors consistently identified blood glucose level, body 
mass index, diabetes pedigree function, and age as the most predictive features across all models. 

Other researchers had leveraged large-scale population data and ensemble classifiers. Chou et al. [14] analysed 
outpatient records for 15,000 Taiwanese women (2018–2022) using eight clinical features (pregnancies, glucose, blood 
pressure, skin thickness, insulin, BMI, pedigree, and age). They tested different models (like two-class logistic 
regression, neural network, decision jungle, and boosted trees) and found that the boosted decision-tree classifier 
performed the best, achieving an AUC of about 0.991, which was better than all the other models on this dataset. Some 
major drawbacks of the research are that the dataset is focused only on the female Taiwanese population, which lacks 
gender diversity, and it only uses structured EHR fields, which ignore unstructured notes and lifestyle data. Cichosz et 
al. [15] used data from the US NHANES (45,431 participants, 2005–2018) to detect undiagnosed diabetes. They 
compared five ML models using simple clinical predictors. These classifiers achieved moderate AUCs (~0.78–0.81) with 
very high negative predictive value (~0.99) and sensitivities up to ~0.87. Some limitations of their work include 
achieving a moderate AUC (~0.78–0.81) while being constrained by low model complexity, and the authors' failure to 
explore deep learning or advanced ensemble methods. There is also a need to explore hybrid or deep learning models 
that can capture non-linear relationships for better accuracy. However, the authors concluded that machine learning on 
easily obtainable variables could effectively prescreen high-risk individuals in clinical settings.  

Dharmarathne et al. [16] trained four models (decision tree, K-NN, SVC, and XGBoost) on a public diabetes dataset. All 
models achieved high diagnostic accuracy, with XGBoost performing slightly better than the rest. Crucially, they applied 
SHAP (Shapley Additive Explanations) to interpret the XGBoost predictions at a local level, integrating these 
explanations into a user interface. This self-explanatory system both diagnoses diabetes and provides transparent 
decision rationales to clinicians and users. Such work highlights the growing emphasis on interpretability in ML-based 
diabetes detection. This research's drawback lies in its lack of cross-validation and testing on external datasets, and its 
only qualitative evaluation of the Model's explainability. 

Advanced ensemble and hybrid feature-engineering approaches have shown improvements in accuracy and 
generalizability. Rustam et al. [17] proposed a novel framework combining three diabetes datasets and hybrid feature 
extraction. They ensembled LSTM and CNN networks to derive predictive features, then trained traditional classifiers 
on these features. Their CNN-LSTM feature-ensemble approach achieved approximately 99% accuracy, substantially 
higher than standard classifiers alone. The authors report that this method alleviates overfitting and boosts 
generalization by capturing complex patterns from the combined data. However, High reported accuracy (~99%) may 
suggest overfitting, which lacks interpretability, and that the model is computationally intensive, which could hinder 
real-time deployment. There should also be a Balance between model complexity and interpretability, and real-world 
deployment considerations are also needed. 

Chellappan and Rajaguru [18] used a smart optimization method to choose important features from both gene 
expression data (from the Nordic Islet Transplant Program) and the Pima dataset. They first used a hybrid Artificial Bee 
Colony–PSO algorithm for feature extraction, then applied additional feature-selection heuristics (e.g., Harmonic Search, 
Elephant Herding). Various classifiers (including a Radial SVM) trained on these selected features achieved a very high 
accuracy of about 97.1% on the Nordic gene dataset and 98.1% on PIMA. Their results were better than using all the 
features, showing that their method of combining feature engineering can significantly enhance diabetes detection in 
different types of datasets. The drawback of this research is that it lacks heavy reliance on synthetic benchmarks and 
lab-based evaluation, and it also lacks discussion of clinical integration and usability. 

Akhtar et al. [19] developed a dual-branch CNN model to grade diabetic retinopathy from fundus images. On a combined 
set of retinal scans, their network achieved 98.50% accuracy for detecting diabetic retinopathy (healthy vs. any DR) and 
89.60% accuracy for grading the severity of DR into five classes. Sensitivity and specificity were similarly high (e.g., 
~99.5% and 97.5% in the binary case). The proposed model outperformed prior methods on both binary and multiclass 
classification. These results show that deep-learning image analysis can detect changes in the retina caused by diabetes 
with very high accuracy, suggesting it could be useful for automatic screening in medical settings. The main downside 
of the research is that it only looks at complications and not at the early detection of diabetes. The research suffers a 
significant setback. The limitation of the research is that it focuses only on complications, not early detection of diabetes. 
Moreover, the research requires expensive imaging infrastructure that is not widely available.  
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3. Methodology 

3.1. Random Forests (RF) 

The random forest algorithm is a multifaceted ensemble technique that involves the creation of several decision trees. 
The random forest (RF) technique efficiently manages huge datasets and exhibits a lower susceptibility to overfitting 
compared to individual decision trees. The decision tree methodology described by Dada et al. [20] is recognized for its 
capacity to produce several decision trees from a specified dataset. The process entails randomly dividing the dataset 
into multiple segments before developing separate decision trees for each subset. The anticipated outcomes of each 
decision tree are subsequently merged to yield a prediction that demonstrates enhanced accuracy and precision.  

3.2. Gradient Boosting Regression (GBOOST) 

Gradient boosting is a prevalent ensemble machine learning method utilized for several objectives, including regression, 
classification, and further challenges. The authors [21, 22] proposed a predictive model made up of several simple 
prediction models similar to decision trees, working together as a group. The gradient boosting algorithm incrementally 
selects a function that aligns oppositely to the gradient, intending to optimize a specified cost function across the whole 
function space. The GBOOST algorithm constructs decision trees sequentially, with each subsequent tree aiming to 
correct the deficiencies of the prior tree. The algorithm often demonstrates more predictive accuracy than other 
methods. Decision trees are frequently utilized as suboptimal predictors within the framework of gradient boosting. 
Weakly learned models are characterized by low variance, high regularization, and a significant bias toward the training 
dataset. These models yield results that demonstrate only marginal enhancements compared to random predictions 
[23]. The three fundamental components of boosting approaches include an additive model, weak learners, and a loss 
function. Gradient-boosting machines function by utilizing gradients to detect the shortcomings of inferior models. The 
strategy entails utilizing an iterative method aimed at finally integrating base learners to reduce prediction mistakes. 
This goal is accomplished by integrating decision trees via an additive model, while the minimization of the loss function 
is achieved by the application of gradient descent [24].  

3.3. Support Vector Machine (SVM) 

Support Vector Machines (SVMs) constitute a category of supervised learning techniques employed for classification, 
regression, and outlier detection [25]. They work by finding the best hyperplane that maximizes the margin, which is 
the space between the nearest data points of each class and the decision boundary, in a space with many dimensions. 
When data are not linearly separable, SVMs utilize the "kernel trick" to implicitly transform inputs into higher-
dimensional spaces, facilitating linear separation. Support Vector Machines (SVMs) continue to be among the most 
theoretically robust and extensively utilized machine learning methods. They perform better in situations with many 
features, use less memory by only relying on the support vectors for making decisions, and are less likely to overfit 
thanks to regularization. Nonetheless, they may be computationally demanding on extensive datasets and are sensitive 
to the selection of kernel and hyperparameters [26].  

3.4. Light Gradient Boosting Machine (LGBM) 

The LGBM ensemble method is a gradient-boosting technique recognized for its remarkable computational efficiency 
and effectiveness in machine learning. LGBM is the acronym for the gradient-boosting framework developed by 
Microsoft Inc. The objective of its development was to facilitate the decentralized and efficient training of machine 
learning models on a broad scale, as indicated by Massaoudi et al. [27]. The algorithm at issue belongs to the gradient-
boosting category of machine learning algorithms. These algorithms work by combining the predictions of many simple 
models, often shown as decision trees, to create a strong predictive model. The Light Gradient Boosting Machine (LGBM) 
algorithm is designed to enhance computational speed and efficiency. The system has been recognized for its 
exceptional capability in effectively managing and analyzing substantial quantities of data. The LGBM algorithm 
employs a histogram-based learning strategy that discretizes continuous information into bins. The discretization 
method enhances the efficiency of the training process.  

3.5. Hybridised Light Gradient-Boosting Machine (LGBM) and Whale Optimization Algorithm (LTGB-WOA) 

The Hybridized LGBM-Whale Optimization Algorithm (LTGB-WOA) is a useful combination designed to improve the 
settings of the Light Gradient Boosting Machine (LGBM) by using the Whale Optimization Algorithm (WOA). This 
combined approach uses WOA's ability to search and refine to find the best hyperparameters that make LGBM work 
better for tasks like predicting numbers and sorting things. The WOA enhances the hyperparameters of LGBM to 
optimize model performance, such as accuracy and AUC-ROC. To combine LGBM with the Whale Optimization Algorithm 
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(WOA) for detecting diabetes, the following steps was taken, which improves the model's accuracy while addressing 
challenges related to medical data.  

3.5.1. Data Preprocessing 

A reliable and unbiased diabetes prediction model requires a strong preprocessing pipeline that addresses missing data, 
class imbalance, and feature scaling. Better methods for filling in missing data keep the relationships between glucose, 
insulin, and BMI accurate, while combining different sampling techniques helps balance the number of diabetic and non-
diabetic cases. Regular feature normalization promotes convergence and prevents high-variance variables from 
dominating. All these steps increase model generalization and prediction. The activities carried out during data 
preprocessing include: 

• Handling Missing Values: Use imputation for missing glucose, insulin, or BMI values to preserve physiological 
relationships. 

• Class Imbalance: Combine the oversampling of minority class and undersampling of majority class to balance 
diabetes/non-diabetes cases. 

• Feature Scaling: Normalize numerical features (e.g., glucose levels, blood pressure). 

3.5.2. Define LGBM Hyperparameters to Optimize: Select key parameters that impact model performance 

Establishing and optimizing the appropriate LGBM hyperparameters is essential for achieving a balance between model 
complexity, convergence rate, and generalization. Six important settings—num_leaves, learning_rate, max_depth, 
min_data_in_leaf, lambda_l1, and feature_fraction—are often adjusted because they affect how the trees are built, how 
much regularization is applied, and how data is sampled. Choosing appropriate ranges for each parameter constrains 
the search space for metaheuristic algorithms (such as WOA), enhances convergence speed, and elevates predictive 
efficacy. Specified hyperparameters and their descriptions are below: 

• num_leaves (15, 100): This parameter controls the maximum number of leaves in each decision tree, which in 
turn affects the complexity of the model and its vulnerability to overfitting. A higher number of leaves facilitates 
more intricate splits but may lead to overfitting, whereas a lower count may result in underfitting. 

• learning_rate (0.01, 0.3): This parameter, referred to as the shrinkage factor, modulates the impact of each 
additional tree incorporated into the ensemble. Lower values (like 0.01) allow for steadier learning and often 
improve overall performance, but they need longer training times, while higher values (like 0.3) speed up the 
process but can cause the model to miss the best solutions.  

• maximum_depth (3, 10): The maximum depth of each tree is established to prevent overly deep and overfitted 
constructions. A shallower depth (e.g., 3) limits complexity and enhances interpretability; deeper trees (e.g., 
10) capture interactions but necessitate more robust regularization.  

• min_data_in_leaf (20, 100): Defines the minimal quantity of observations necessary in a leaf node. Higher 
numbers ensure that splits are made only when there is adequate data to justify them, hence minimizing 
variance and overfitting; lower values permit more granular partitions but heighten susceptibility to noise. 

• lambda_l1 (0, 5): Implement L1 regularization (penalizing absolute leaf weights) to promote sparsity and 
mitigate overfitting by reducing less significant leaf weights to zero. Increased lambda_l1 values enforce more 
stringent penalties.  

• feature_fraction (0.6, 1.0): This parameter specifies the proportion of randomly selected features for each tree, 
akin to column subsampling. Reduced values (e.g., 0.6) diminish the connection between trees and training 
duration, hence enhancing generalization; a value of 1.0 employs all characteristics to maximize information 
per split.  

3.5.3. LGBM Training Module 

• Model Specification: LGBM is configured with hyperparameters Θ = {learning_rate, num_leaves, max_depth,....} 
• Objective Function: Uses the fused loss LFUS during gradient-based tree construction, with LGBM’s leaf-wise 

growth strategy for efficiency and accuracy. 
• Evaluation Metric: A validation set is held out; metrics such as accuracy, AUC, or F1-score serve as the fitness 

function for WOA  
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3.5.4. Whale Optimization Algorithm (WOA) Module 

Population Initialization 

• Whale Representation: Each whale is a vector of hyperparameter values (e.g., [num_leaves=30, 
learning_rate=0.1, ...]). 

• Search Space: Define bounds for each parameter (e.g., num_leaves ∈ [15, 100]). 

Fitness Function 

• Use stratified 5-fold cross-validation to evaluate LGBM performance. 
• Prioritize sensitivity (recall) to minimize false negatives (critical in diabetes screening): 

WOA Phases 

• Encircling Prey (Exploitation): Each whale updates its position based on the best solution found so far, 
simulating the encircling of prey. Update whale positions toward the current best solution: 

X⃗(t+1) = X⃗∗(t) − A⃗⋅D⃗, D⃗=∣C⃗⋅X⃗∗(t)−X⃗(t) 

where A⃗, D⃗, C⃗ and X⃗ are coefficient vectors controlling exploration vs. exploitation  

• Bubble-Net Attacking (Local Search): Spiral update equation for fine-tuning. Two strategies alternate - 
shrinking encircling and spiral updating - modelled by probabilistic switching, to refine search around 
promising solutions. 

• Search for Prey (Exploration): Random whale movement guided by another whale’s position to ensure global 
exploration and randomly explore new regions if ∣A∣>1|. 

• Fitness Evaluation: For each candidate Θi , train LGBM and compute the validation metric; assign fitness 
accordingly 

3.5.5. Fusion of WOA and LGBM  

Below is a concise summary of the workflow illustrated in Figure 1, which combines the Whale Optimization Algorithm 
(WOA) with LGBM for effective diabetes identification. Within the hybrid optimization framework, the Whale 
Optimization Algorithm (WOA) is employed for hyperparameter tuning. The suggested method utilizes the Whale 
Optimization Algorithm to identify the critical hyperparameters of LGBM, such as learning rate, num_leaves, and 
feature_fraction. The LGBM Classifier trains gradient-boosted decision trees utilizing the candidate configurations 
suggested by WOA. The model uses multiple threads (or processes) to allow several whale agents to train and test LGBM 
models at the same time, which greatly reduces the overall time needed for optimization. The model uses a smart early 
stopping method that regularly checks the best results achieved so far (like validation accuracy or AUC) to see if it has 
met the required progress. The system terminates the WOA search prematurely if the enhancement in fitness drops 
below 0.001 for 10 successive iterations, so ensuring computing efficiency while maintaining model quality. The 
algorithm determines the optimal hyperparameter configuration upon activating early stopping or reaching the 
maximum iteration limit. We retrain the chosen LGBM model on the aggregated training and validation data to improve 
generalization before deployment. This design combines a multi-threaded WOA search with a strict early-stopping rule, 
allowing for a quick and thorough exploration of the LGBM parameter options, leading to a diabetes-detection model 
that effectively balances accuracy, speed, and resource use.  
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Figure 1 Flowchart of proposed LGBM+WOA model 

3.5.6. Model Evaluation  

Evaluating machine-learning models for diabetes means looking at how well the model can tell apart diabetic and non-
diabetic patients (discrimination) and how closely the predicted probabilities match the real outcomes (calibration). 
Important measures include accuracy, precision, recall, F1-score, and ROC-AUC, which show different aspects of 
performance in situations where the data is uneven, like in diabetes detection. A good model evaluation balances 
sensitivity (reducing missed diabetes cases) with specificity (avoiding false alarms) and also considers positive 
predictive value and negative predictive value, which change based on how common the disease is. Key measurements 
include accuracy, precision, recall, F1-score, and ROC-AUC, which each show different aspects of how well the model 
works in situations where the data is uneven, like in diabetes detection. Proper model evaluation balances sensitivity 
(reducing missed diabetes cases) with specificity (avoiding false alarms) and should also include checking the positive 
predictive value and negative predictive value, which change based on how common the disease is.  

3.6. Dataset Description 

The University of Maiduguri Teaching Hospital and Umaru Shehu Specialist Hospital, Maiduguri, provided the diabetes 
datasets used in this research's assessment. The files comprise information on diabetic individuals collected from 2018 
to 2023. We collected the dataset from males and females aged 17 years and older who resided in Maiduguri, Borno 
State, Nigeria, and its surrounding areas. The models utilize specific diagnostic measurements as feature variables to 
derive this dataset. It comprises 9 features and 1030 instances. The attributes encompass pregnancies, glucose levels, 
blood pressure, skin thickness, insulin levels, body mass index (BMI), diabetes pedigree function, and age.  
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3.7. Performance Metrics 

The effectiveness of the proposed LGBM+WOA model was evaluated using the following metrics: 

• Accuracy: The accuracy in machine learning quantifies the ratio of correct predictions made by a model to the 
total number of predictions produced. The calculation is executed by dividing the total number of correct 
guesses by the overall number of forecasts. The equation is presented in (1).  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
… … … … … . . (1) 

• Precision: Precision is a fundamental metric utilized to evaluate the efficacy of a machine-learning model. The 
metric evaluates the accuracy of the system's affirmative predictions. It is depicted in (2). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
… … … … … … … … … . . (2) 

• Recall: This metric assesses a model's accuracy in correctly identifying cases classed as true positives. It is 
represented mathematically in (3). 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
… … … … … … (3) 

• F1-score: This is a measurement system that evaluates the precision of a model when used on a certain dataset. 
We use binary classification methods to examine and evaluate samples by classifying them into 'positive' or 
'negative' classes. It is depicted in (4). 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
… … … … … (4) 

• Confusion Matrix: A confusion matrix is an effective tool for understanding the intricate nature of a 
classification model's performance. It aids in identifying both the precision and the types of errors committed 
by the model.  

4. Results and Discussion 

This part introduces the findings and analyzes the significant breakthroughs derived from the tests done. We performed 
the experiments utilizing the Python programming language on a Jupyter notebook. We developed and evaluated the 
ensemble machine learning models using the diabetes dataset. This study examined all the attributes in the dataset 
utilized for training and evaluating the models. Figure 2 illustrates the glucose levels of diabetic patients from the 
dataset utilized in this investigation. 6.9% of the patients exhibit a glucose level of 100. A fasting glucose level of 100 
mg/dL falls within the ADA's suggested preprandial goal range for those with diabetes (80–130 mg/dL), signifying 
effective short-term glycemic management. When assessed randomly or after meals, a level of 100 mg/dL is well below 
hyperglycemic thresholds (<180 mg/dL postprandial; <200 mg/dL random), indicating excellent diabetes management 
and a minimal immediate risk of hyperglycemic and hypoglycemic consequences. A glucose level of 100 mg/dL in a 
diabetic patient, whether fasting or postprandial, is within the acceptable range, signifying effective glycemic control 
and a minimal immediate risk of glycemic fluctuations. 5.2% of patients exhibit glucose readings of 125. A blood glucose 
level of 125 mg/dL in an individual with confirmed diabetes typically resides above the upper limit of the advised pre-
meal (fasting) objective, although it remains significantly below hyperglycemic crisis thresholds. A fasting measurement 
of 125 mg/dL indicates acceptable short-term control (80–130 mg/dL), but it nears the upper limit where modifications 
may be needed to reduce long-term complication risks. When assessed postprandially or at random, it indicates 
superior glucose clearance and a minimal immediate risk of hypoglycemia and severe hyperglycemia. A confusion 
matrix is an effective tool for understanding the intricate nature of a classification model's performance. It aids in 
identifying both the precision and the types of errors committed by the model.  
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Figure 2 Glucose of diabetic patients 

Figure 3 illustrates the dermal thickness in individuals with diabetes mellitus. 4.8% of the patients exhibit a skin 
thickness of 32. In adults, normal skin thickness varies from 0.5 mm to 4.5 mm, contingent upon the anatomical region. 
Diabetic skin frequently exhibits elevated collagen and basement membrane thickness (about 20–30% more); however, 
there are no universally recognized definitive "abnormal" criteria in millimeters.  

 

Figure 3 Skin thickness in diabetic patients 

Figure 4 illustrates the insulin levels in diabetic people. There is no diabetes-specific "acceptable" blood insulin level 
above the usual fasting reference range of 2–25 µIU/mL. In practice, insulin measures are utilized mostly for 
differentiating disease types or investigating insulin secretion and resistance rather than directing insulin doses, which 
depend solely on blood glucose monitoring, insulin sensitivity, and personalized treatment procedures.  
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Figure 4 Insulin of diabetic patients 

Figure 5 illustrates the diabetes pedigree functions (DPF) in individuals with diabetes mellitus. The Diabetes Pedigree 
Function is a measure that looks at how diabetes runs in families and how closely related people are, giving each person 
a risk score for diabetes. Diabetic patients routinely have elevated DPF distributions, frequently peaking between 0.5 
and 1.5, in contrast to non-diabetics, whose DPF normally congregates between 0.25 and 0.35. In tree-based models 
(like LGBM), DPF is often an important factor for predictions, ranking after glucose and BMI but ahead of some body 
measurements in SHAP-based assessments. Elevated DPF Values (> 1.0): Indicate a significant genetic tendency; those 
with a DPF > 1.0 are 1.5 to 2 times more likely to acquire diabetes within a 5-year period compared to those with a DPF 
< 0.5. Clinical risk assessments can utilize the DPF to identify high-risk individuals for early intervention, lifestyle 
modification, or increased monitoring frequency. The DPF's dependence on precise family history information may lead 
to recall bias, and its significance may differ among ethnic groups beyond the diabetes dataset population.  

 

Figure 5 Diabetes Pedigree functions in diabetic patients  
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Figure 6 presents the confusion matrix of the gradient boosting (GB) algorithm, which offers significant information 
regarding the model's performance across several classes. The confusion matrix displays the expected and observed 
class labels for a binary-classification task encompassing two distinct categories: individuals with diabetes and 
individuals without diabetes. The GB model accurately classified 119 cases of non-diabetic as non-diabetic, representing 
real positive predictions. There were 18 instances of misclassification of diabetic as non-diabetic (false positives). The 
model correctly classified 46 instances of diabetic as diabetic (true negative). While GB model incorrectly classified 23 
instances of non-diabetic as diabetic (false negative). 

 

Figure 6 Confusion matrix of gradient boosting (GB) 

Figure 7 depicts the confusion matrix of support vector machine (SVM) algorithm. The confusion matrix displays the 
expected and observed class labels for a binary-classification task encompassing two distinct categories: individuals 
with diabetes and individuals without diabetes. The SVM model accurately classified 137 cases of non-diabetic as non-
diabetic, representing real positive predictions. There were 0 instances of misclassification of diabetic as non-diabetic 
(false positives). The model correctly classified 16 instances of non-diabetic as non-diabetic (true negative). While SVM 
model incorrectly classified 53 instances of non-diabetic as diabetes (false negative).  

 

Figure 7 Confusion matrix of Support Vector Machine 
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Figure 8 depicts the confusion matrix of the RF algorithm. The RF model accurately classified 124 cases of non-diabetic 
as non-diabetic, representing real positive predictions. There were 15 instances of misclassification of diabetic as non-
diabetic (false positives). The model correctly classified 54 instances of diabetic as diabetic (true negative). While RF 
model incorrectly classified 15 instances of non-diabetic as diabetic (false negative). 

 

Figure 8 Confusion matrix of Random Forest 

Figure 9 presents the confusion matrix of the LGBM algorithm. The LGBM model accurately classified 124 cases of non-
diabetic as non-diabetic, representing real positive predictions. There were 13 instances of misclassification of diabetic 
as non-diabetic (false positives). The model correctly classified 58 instances of diabetic as diabetic (true negative). While 
RF model incorrectly classified 11 instances of non-diabetic as diabetic (false negative). 

 

Figure 9 Confusion matrix of LGBM 

Figure 10 presents the confusion matrix of the Hybridised LGBM+WOA algorithm. The proposed model accurately 
classified 125 cases of non-diabetic as non-diabetic, representing real positive predictions. There were 12 instances of 
misclassification of diabetic as non-diabetic (false positives). The model correctly classified 59 instances of diabetic as 
diabetic (true negative). While RF model incorrectly classified 10 instances of non-diabetic as diabetic (false negative). 
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Figure 10 Confusion matrix of Hybridised LGBM+WOA 

The statistical results of the models considered in this study are presented in Tables 1-6 

Table 1 Performance of Gradient Boosting 

 Precision Recall  F1-score 

Non-Diabetes 0.84 0.87 0.85 

Diabetes 0.72 0.67 0.69 

Precision measures the proportion of positive predictions that are correct, while recall measures the proportion of 
actual positives captured by the model. The F1‑score - the harmonic mean of precision and recall - is especially valuable 
for imbalanced datasets like diabetes detection, as it balances the trade‑off between false positives and false negatives. 
From the results, Gradient Boosting attained the precision of 0.84, Recall of 0.87, and F1 score of 0.85 for non‑diabetes. 
It also achieved precision of 0.72, recall of 0.67, and F1 score of 0.69 for Diabetic. Gradient boosting shows moderate 
ability to detect diabetics (F1 score of 0.69) but underperforms on the minority class relative to non‑diabetics, reflecting 
some struggle with class imbalance. It has an overall accuracy of 80%. 

Table 2 Performance of Support Vector Machine 

 Precision Recall  F1-score 

Non-Diabetes 0.72 1.00 0.84 

Diabetes 1.00 0.23 0.38 

SVM attained the precision of 0.72, Recall of 1.00, and F1 score of 0.84 for non‑diabetes. It also achieved a precision of 
1.00, recall of 0.23, and F1 score of 0.38 for Diabetic. SVM achieves perfect precision for diabetes (no false positives) but 
detects only 23% of true diabetics - leading to many missed cases and a low F1 for the minority class, a classic 
precision‑recall trade‑off issue. The model achieved an overall accuracy of 74%. 

Table 3 Performance of Random Forest 

 Precision Recall  F1-score 

Non-Diabetes 0.89 0.91 0.90 

Diabetes 0.81 0.78 0.79 
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RF attained a precision of 0.89, Recall of 0.91, and F1 score of 0.90 for non‑diabetes. It also achieved a precision of 0.81, 
recall of 0.78, and F1 score of 0.79 for Diabetic. Random Forest delivers robust and balanced detection across both 
classes, benefiting from its resistance to overfitting and ability to generalise. The model achieved an overall accuracy of 
86%. 

Table 4 Performance of Light Gradient 

 Precision Recall  F1-score 

Non-Diabetes 0.92 0.91 0.91 

Diabetes 0.82 0.84 0.83 

LGBM attained the precision of 0.92, Recall of 0.91, and F1 score of 0.91 for non‑diabetes. It also achieved a precision of 
0.82, recall of 0.84, and F1 score of 0.83 for Diabetic. LGBM further improves on Random Forest, offering faster training 
and often better accuracy when properly tuned - reflected here in higher diabetic‑class F1 (0.83) and overall accuracy. 
The model achieved an overall accuracy of 88%. 

Table 5 Performance of Proposed LGBM+WOA model 

 Precision Recall  F1-score 

Non-Diabetes 0.93 0.91 0.92 

Diabetes 0.83 0.86 0.84 

LGBM+WOA attained the precision of 0.93, Recall of 0.91, and F1 score of 0.92 for non‑diabetes. It also achieved a 
precision of 0.83, a recall of 0.86, and F1 score of 0.84 for Diabetic. Wrapping LGBM in a Whale Optimization Algorithm 
(WOA) hyperparameter search yields the best results - maximizing both recall (86%) and precision (83%) for diabetics 
and boosting overall accuracy to 90%. The model achieved an overall accuracy of 90%. 

Table 6 Performance of Overall Accuracy of models  

MODEL ACCURACY (%) 

Gradient Boosting 80 

Support Vector Machine 74 

Random Forest 86 

Light Gradient 88 

LGBM+WOA  90 

Table 6 indicates that the proposed model achieved an accuracy of 90%, the highest recorded. The identification of 
diabetes is an intrinsically imbalanced problem, characterized by a lower prevalence of positive cases compared to 
negative ones. The F1-score and recall for the diabetic (positive) class are essential parameters. Boosted Ensembles 
(LGBM, LGBM+WOA) sustain diabetes recall exceeding 80%, thereby reducing false negatives. The exemplary positive 
precision of SVM conceals inadequate memory, jeopardizing the identification of undiagnosed instances. Gradient 
Boosting, lacking advanced adjustment, exhibits suboptimal performance in diabetes recall at 67%. The total accuracy 
increases from 74% (SVM) to 90% (LGBM+WOA). Random Forest and LGBM achieved an accuracy increase of 2% and 
an F1 score enhancement of 4 points, whereas LGBM and LGBM+WOA realized a 2% accuracy increase and a 1-point F1 
score improvement. These enhancements demonstrate the efficacy of both advanced gradient boosting and 
metaheuristic optimization in medical diagnostic applications 

5. Conclusion 

This study proposes the combination of the Whale Optimization Algorithm (WOA) with LGBM for hyperparameter 
optimization, significantly improving model performance in diabetes detection beyond that of conventional boosting 
and ensemble approaches. Metaheuristic tuning has been demonstrated to enhance LGBM performance across various 
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domains, including rock mass categorization and thyroid disease detection, by optimizing tree parameters for superior 
split decisions. In our study, WOA-driven search achieved equitable improvements in both precision and recall, 
effectively tackling the class imbalance issues seen in medical datasets and resulting in a 90% accuracy that rivals 
leading deep learning and hybrid frameworks. From a clinical standpoint, the enhanced F1 scores (non-diabetes 0.92, 
diabetes 0.84) result in a reduction in false negatives and false positives, which can directly influence patient triage and 
management decisions. Previous studies have indicated that even small improvements in AUC and F1 scores for 
diabetes prediction models can enhance early intervention strategies and reduce long-term effects through timely 
treatment actions. Additionally, the faster training and prediction processes of our hybrid model allow it to be used in 
electronic health record systems right away, where quick risk assessment is crucial. 

In conclusion, the LGBM+WOA framework signifies a substantial progression in machine learning-based diabetes 
screening instruments. By using WOA's ability to search globally to improve LGBM hyperparameters, the model 
achieves better accuracy and fair performance across different classes, setting a new benchmark for predictive analytics 
in endocrinology. Future research will concentrate on validating LGBM+WOA across varied, multi-center cohorts to 
guarantee generalizability; transitioning from single-objective to multi-objective metaheuristic optimization to 
concurrently minimize error and model complexity; incorporating explainable AI techniques for clinical 
interpretability; investigating real-time, federated learning implementations on edge devices to maintain data privacy; 
and amalgamating multi-modal data (genomic, proteomic, continuous glucose monitoring) for enhanced risk 
stratification.  
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