
 Corresponding author: Arunkumarreddy Yalate.

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0.

Virtualization in the Cloud Era: Understanding the relationship between VMs,
containers and serverless

Arunkumarreddy Yalate *

Mutual Of Omaha, USA.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(02), 1920-1927

Publication history: Received on 04 April 2025; revised on 13 May 2025; accepted on 15 May 2025

Article DOI: https://doi.org/10.30574/wjaets.2025.15.2.0705

Abstract

This article examines the complex landscape of virtualization technologies that have transformed modern cloud
infrastructure, focusing on the relationship between virtual machines (VMs), containers, and serverless computing. The
article analyzes how these paradigms represent a spectrum of increasing abstraction and decreasing developer control,
each offering distinct advantages for specific workloads and organizational contexts. The article provides practitioners
with a decision framework for selecting appropriate virtualization approaches. The article investigation reveals that
rather than converging on a single paradigm, successful organizations implement polyglot virtualization strategies that
leverage each technology's strengths while mitigating limitations through cross-paradigm integration patterns. The
article explores how VMs continue to excel in regulated environments requiring strong isolation, containers dominate
microservices architectures and CI/CD pipelines, and serverless computing optimizes cost and developer productivity
for event-driven workloads. The article further analyzes orchestration ecosystems across paradigms and examines
emerging trends including container-native virtualization, expanded serverless capabilities, and advanced security
innovations that are reshaping the virtualization landscape. This holistic perspective provides essential guidance for
architects and decision-makers navigating the complex trade-offs of modern cloud infrastructure.

Keywords: Virtualization Paradigms; Container Orchestration; Serverless Computing; Hybrid Cloud Architectures;
Infrastructure Abstraction

1. Introduction

The landscape of computing infrastructure has undergone a profound transformation over the past two decades,
evolving from physical hardware to increasingly abstract virtualization technologies. This evolution reflects the
industry's relentless pursuit of resource efficiency, operational agility, and cost optimization. Virtual machines (VMs)
emerged in the early 2000s as the first widespread virtualization paradigm, enabling organizations to partition physical
servers into multiple isolated environments, significantly improving hardware utilization and management flexibility.
By 2013, container technologies like Docker revolutionized application packaging and deployment by providing a
lightweight alternative to VMs, while more recently, serverless computing has pushed abstraction even further by
eliminating infrastructure management concerns for developers [1].

The coexistence of these three paradigms—VMs, containers, and serverless computing—presents both opportunities
and challenges for organizations navigating modern cloud infrastructure. Each approach offers distinct advantages in
specific contexts, with traditional VMs providing strong isolation guarantees essential for regulated industries,
containers enabling microservice architectures and streamlined CI/CD pipelines, and serverless computing optimizing
for cost-efficiency in event-driven workloads. However, selecting the appropriate virtualization technology requires
nuanced understanding of their underlying mechanisms, operational implications, and architectural trade-offs.

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2025.15.2.0705
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2025.15.2.0705&domain=pdf

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(02), 1920-1927

1921

This article examines the complex relationship between these virtualization paradigms in contemporary cloud
environments. We analyze their fundamental differences in resource management, isolation properties, scalability
characteristics, and operational overhead. Through comparative analysis and use case studies, we provide a decision
framework for practitioners to select appropriate technologies based on workload requirements. Furthermore, we
explore orchestration tools that have evolved alongside each paradigm, from VMware vSphere for VM management to
Kubernetes for container orchestration and AWS Step Functions for serverless workflows. Finally, we examine how
these virtualization approaches complement one another in hybrid and private cloud environments, where
organizations must balance innovation with compliance requirements, legacy systems integration, and strategic
flexibility.

2. Foundational Technologies and Concepts

2.1. Hypervisor-based Virtualization Principles

Hypervisor-based virtualization creates virtual machines that emulate physical hardware, enabling multiple operating
systems to run on a single physical server. Type 1 (bare-metal) hypervisors run directly on hardware, while Type 2
hypervisors operate as applications within a host OS. Modern hypervisors employ hardware-assisted virtualization
through technologies like Intel VT-x and AMD-V to reduce performance overhead. Memory management relies on
techniques such as shadow page tables or Extended Page Tables (EPT) to maintain isolation between VMs [2].

2.2. Container Technology Fundamentals

Containers package applications with their dependencies while sharing the host OS kernel, eliminating the need for
guest OS instances. Core technologies include namespaces for isolating system resources, cgroups for resource control,
and union file systems for efficient image building. Container runtimes like containerd or CRI-O implement the Open
Container Initiative (OCI) specification, providing standardized container execution. Docker popularized containers
through developer-friendly tooling, while container orchestration platforms emerged to manage container
deployments at scale [3].

2.3. Serverless Computing Architecture

Serverless computing abstracts infrastructure management entirely, allowing developers to focus solely on application
logic through function-as-a-service (FaaS) offerings. These platforms handle provisioning, scaling, and infrastructure
management automatically. Functions execute in ephemeral environments, typically triggered by events, with billing
based on execution time and resources consumed. Cold starts occur when functions initialize after periods of inactivity,
creating latency challenges for certain workloads. Serverless architectures typically integrate with cloud provider
services for event sources, storage, and service composition.

2.4. Abstraction Layers Across Paradigms

The three paradigms form a spectrum of increasing abstraction and decreasing developer control. VMs abstract
hardware but require OS management; containers abstract OS dependencies but require container orchestration;
serverless abstracts infrastructure entirely but introduces vendor dependencies. Higher abstraction generally
correlates with faster deployment, reduced operational overhead, and more constrained execution environments.
Organizations often employ multiple abstraction layers simultaneously, selecting the appropriate level based on
workload requirements, control needs, and developer expertise.

3. Comparative Analysis of Virtualization Approaches

3.1. Resource Allocation and Utilization Patterns

VMs allocate fixed resources to guests, often resulting in underutilization. Containers share kernel resources more
efficiently, enabling higher density but risking resource contention. Serverless platforms dynamically allocate resources
per invocation, optimizing utilization through statistical multiplexing across many workloads. Resource efficiency
typically increases moving from VMs to containers to serverless, while predictability and isolation decrease along the
same spectrum [4].

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(02), 1920-1927

1922

3.2. Isolation Mechanisms and Security Boundaries

VMs provide strong isolation through hardware virtualization and separate OS instances, making them suitable for
multi-tenant environments with strict security requirements. Containers offer weaker isolation, relying on kernel
features that can potentially be compromised. Serverless functions typically run in containers or lightweight VMs with
additional security controls enforced by the provider. Defense-in-depth approaches often combine these technologies,
using VMs to isolate tenant workloads while leveraging containers within those boundaries.

3.3. Scalability Characteristics and Limitations

VMs scale with minutes of provisioning time and significant memory overhead, making rapid scaling challenging.
Containers start in seconds with lower overhead, enabling more responsive scaling through orchestration platforms.
Serverless functions scale near-instantly to thousands of concurrent executions with zero management overhead,
though subject to provider limits. Each technology faces distinct scaling limitations: VM density is constrained by
hardware resources, container scalability by orchestration complexity, and serverless by cold start latency and
execution time limits.

3.4. Operational Overhead and Management Complexity

VM operations require managing guest OS patching, licensing, and hardware allocation. Container operations focus on
orchestration, networking, and storage persistence challenges. Serverless reduces operational concerns but introduces
monitoring, debugging, and vendor integration complexity. As abstraction increases, operational responsibilities shift
from infrastructure to application concerns, though the overall complexity may remain similar but redistributed across
different domains of expertise.

3.5. Performance Benchmarks Across Use Cases

Performance characteristics vary significantly by workload type. Compute-intensive tasks show minimal overhead
differences between paradigms. I/O-intensive workloads experience greater performance variation, with VMs
benefiting from direct hardware access and containers from reduced context switching. Serverless platforms
demonstrate excellent performance for bursty, event-driven workloads but suffer from cold start latency for
infrequently accessed functions. Network-intensive applications may experience additional overhead in containerized
and serverless environments due to overlay networks and security boundaries.

Table 1 Comparison of Virtualization Paradigms [2-4]

Characteristic Virtual Machines Containers Serverless

Abstraction Level Hardware Operating System Application

Resource
Allocation

Fixed allocation, potential
underutilization

Shared kernel resources,
higher density

Dynamic per-invocation
allocation

Isolation Strong (hardware-level) Moderate (kernel-level) Variable (provider-
dependent)

Startup Time Minutes Seconds Milliseconds

Management
Overhead

OS maintenance, patching,
licensing

Orchestration, networking,
storage

Monitoring, debugging,
vendor integration

Typical Use Cases Regulated environments,
legacy systems

Microservices, CI/CD
pipelines

Event-driven workloads,
bursty traffic

4. Use Case Analysis: When to Choose Each Paradigm

4.1. VM Suitability: Isolation-critical Environments (Financial/Healthcare)

Virtual machines remain indispensable in regulated industries where strong workload isolation is paramount. In
healthcare organizations processing Protected Health Information (PHI) under HIPAA regulations, VMs provide clear
security boundaries that simplify compliance verification and attestation. Financial institutions handling sensitive
payment data leverage VM isolation to implement strict multi-tenant architectures, ensuring that compromises in one
application cannot affect others. VMs also excel in legacy modernization scenarios where organizations need to maintain

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(02), 1920-1927

1923

older operating systems while migrating to cloud environments. Their hardware-level isolation guarantees make them
suitable for workloads with specific licensing requirements tied to physical hardware characteristics [5].

4.2. Container Advantages: Microservices Architectures and CI/CD Pipelines

Containers deliver compelling benefits for microservice architectures by packaging services with their dependencies
while minimizing resource overhead. Development teams achieve significant productivity gains through consistent
environments across development, testing, and production. Container images serve as immutable deployment units,
enabling reliable continuous delivery pipelines and simplified rollback strategies. Organizations implementing DevOps
practices benefit from containers' rapid startup times and efficient resource utilization, allowing developers to run
production-equivalent environments locally. The standardized OCI image format facilitates multi-cloud portability,
reducing vendor lock-in concerns. These characteristics make containers particularly effective for web applications,
stateless services, and batch processing workloads with moderate isolation requirements.

4.3. Serverless Benefits: Event-driven, Cost-optimized Workloads

Serverless computing demonstrates clear advantages for intermittent, event-driven workloads with variable demand
patterns. Common applications include API backends, data processing pipelines, scheduled tasks, and webhook
handlers. The pay-per-use pricing model eliminates costs during idle periods, creating significant savings for bursty
workloads compared to continuously running alternatives. Development velocity increases as teams focus on business
logic without managing infrastructure. Serverless particularly excels for organizations implementing event-driven
architectures where components communicate through events rather than direct calls. The automatic scaling
capabilities handle traffic spikes effectively without pre-provisioning capacity, though cold starts introduce latency
considerations for latency-sensitive applications.

4.4. Decision Framework for Technology Selection

Organizations should apply a structured decision framework when selecting virtualization technologies. The
framework begins with workload characteristics assessment: isolation requirements, scaling patterns, state
management needs, and performance constraints. Additional factors include operational considerations (team
expertise, existing investments), compliance requirements, and financial models (CapEx vs. OpEx preferences). Many
organizations implement a tiered approach, using VMs for isolation-critical workloads, containers for stateless
applications and microservices, and serverless for event-driven components with variable demand. This hybrid
approach optimizes for both security and developer productivity, allowing selective abstraction based on workload
characteristics rather than forcing a one-size-fits-all solution.

5. Orchestration Ecosystems

5.1. VM Management: VMware vSphere and Alternatives

VMware vSphere remains the dominant enterprise VM management platform, providing centralized control of
virtualized resources through features like vMotion (live migration), DRS (distributed resource scheduling), and HA
(high availability). Alternative solutions include Microsoft Hyper-V with System Center Virtual Machine Manager,
offering deep Windows integration, and open-source KVM managed through platforms like oVirt or Proxmox. Cloud
providers offer managed VM services like AWS EC2, Azure VMs, and Google Compute Engine, which integrate
infrastructure-as-code capabilities through services like AWS CloudFormation and Azure Resource Manager. These
tools have evolved to incorporate advanced automation features, though they generally operate with longer
provisioning timelines than container or serverless alternatives [6].

5.2. Container Orchestration: Kubernetes Ecosystem

Kubernetes has emerged as the de facto standard for container orchestration, providing declarative configuration, self-
healing capabilities, and extensible architecture. The ecosystem includes essential components like networking
solutions (Calico, Cilium), service meshes (Istio, Linkerd), and storage providers (Rook, Portworx). Cloud providers
offer managed Kubernetes services like GKE, EKS, and AKS, reducing operational overhead while maintaining workload
portability. The Cloud Native Computing Foundation (CNCF) fosters an extensive ecosystem of complementary tools
addressing monitoring, security, and developer workflows. Enterprise adoption typically includes CI/CD integration
through tools like ArgoCD and Flux, implementing GitOps patterns for continuous deployment and configuration
management.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(02), 1920-1927

1924

5.3. Serverless Workflow Management: AWS Step Functions and Competitors

AWS Step Functions provides visual workflow orchestration for serverless applications, coordinating function
executions through state machines defined in Amazon States Language. Similar offerings include Azure Logic Apps,
Google Cloud Workflows, and IBM Cloud Functions Composer. These services enable complex business processes by
connecting multiple functions with conditional logic, error handling, and parallel execution. Open-source alternatives
like Temporal and Netflix Conductor offer vendor-neutral workflow engines with hybrid deployment options.
Regardless of platform, these tools address the "function composition problem" inherent in serverless architectures,
providing state management and coordination for otherwise stateless functions.

5.4. Cross-paradigm Management Tools and Approaches

Organizations increasingly deploy cross-paradigm management tools to unify operations across VMs, containers, and
serverless resources. Infrastructure-as-code solutions like Terraform and Pulumi enable consistent provisioning across
all paradigms. Observability platforms including Datadog, New Relic, and Dynatrace provide unified monitoring across
virtualization boundaries. Service mesh implementations extend beyond containers to include VMs and sometimes
serverless functions, creating consistent networking policies and telemetry. Cloud management platforms (CMPs) offer
centralized governance regardless of underlying virtualization technology. These cross-cutting tools reflect the reality
that most organizations maintain heterogeneous environments rather than standardizing on a single virtualization
paradigm.

6. Virtualization in Hybrid and Private Cloud Environments

6.1. Traditional Virtualization Persistence in Enterprise Settings

Despite cloud migration trends, traditional VM-based virtualization maintains a significant presence in enterprise
environments. Organizations have invested heavily in VM infrastructure, skilled personnel, and established operational
practices that continue to deliver value. On-premises virtualization remains essential for workloads with specialized
hardware requirements, extreme performance needs, or data gravity constraints. Many enterprises operate in a steady
state where 60-70% of workloads remain virtualized rather than containerized or serverless. This persistence is
particularly evident in industries with legacy applications that cannot be easily refactored for newer paradigms. VM
technology continues to evolve with features like nested virtualization, enhanced security capabilities, and integration
with cloud management platforms [7].

Table 2 Orchestration Ecosystems by Virtualization Paradigm [6,7]

Paradigm Key Orchestration Tools Primary Features Cloud Provider
Implementations

Virtual
Machines

VMware vSphere, Microsoft
Hyper-V, KVM/oVirt

Live migration, high availability,
resource scheduling

AWS EC2, Azure VMs, Google
Compute Engine

Containers Kubernetes, Docker Swarm Declarative configuration, self-
healing, service discovery

GKE, EKS, AKS

Serverless AWS Step Functions, Azure
Logic Apps, Google Cloud
Workflows

Visual workflow orchestration,
state machines, parallel
execution

AWS Lambda, Azure Functions,
Google Cloud Functions

Cross-
paradigm

Terraform, Pulumi, service
meshes

Infrastructure-as-code, unified
observability

Cloud management platforms
(CMPs)

6.2. Compliance and Regulatory Considerations

Regulatory frameworks significantly influence virtualization strategy in regulated industries. GDPR, HIPAA, PCI-DSS,
and sector-specific regulations impose requirements around data residency, access controls, and audit capabilities that
often favor traditional virtualization with its well-established compliance controls. VM-based environments provide
clearer tenant boundaries and more straightforward audit trails than containerized alternatives. Private cloud
deployments using VMs enable organizations to maintain physical control over regulated data while leveraging some
cloud operational benefits. However, certification programs from major cloud providers and container platforms are

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(02), 1920-1927

1925

gradually addressing these concerns, allowing regulated workloads to adopt newer paradigms with appropriate
controls.

6.3. Integration Patterns Across Paradigms

Most enterprises implement hybrid approaches that integrate multiple virtualization paradigms. Common patterns
include "VM-as-platform" approaches where VMs host container orchestration clusters, providing isolation boundaries
while enabling container density within those boundaries. API gateway patterns connect serverless functions to
containerized or VM-based services. Data plane separation approaches keep stateful components in VMs while moving
stateless workloads to containers or serverless. Event mesh architectures enable cross-paradigm communication
through message brokers and event streams. These integration patterns recognize that different workloads have
different requirements, allowing organizations to select appropriate technologies for each component while
maintaining interoperability.

6.4. Migration Strategies Between Virtualization Approaches

Organizations employ several strategies when migrating between virtualization paradigms. The "lift and shift" approach
moves applications to cloud VMs with minimal changes, providing a foundation for incremental modernization.
"Containerize in place" strategies package applications in containers while maintaining VM-based infrastructure.
"Refactor and rearchitect" approaches decompose monolithic applications into microservices suitable for containers or
serverless deployment. "Strangler fig" patterns gradually replace components of legacy systems with modern
alternatives. Successful migrations typically involve discovering application dependencies, identifying suitable
candidates for each paradigm, establishing common networking and security models, and implementing robust CI/CD
pipelines that support heterogeneous deployment targets.

Table 3 Migration Strategies Between Virtualization Paradigms [5, 7]

Strategy Description Benefits Challenges Suitable For

Lift and Shift Move applications to cloud
VMs with minimal changes

Speed, low risk, minimal
refactoring

Limited cloud-native
benefits

Legacy applications,
time-sensitive
migrations

Containerize in
Place

Package applications in
containers while
maintaining VM
infrastructure

Improved deployment
consistency, gradual
modernization

Partial transformation,
potential complexity

Organizations
building DevOps
capabilities

Refactor and
Rearchitect

Decompose monolithic
applications into
microservices

Full cloud-native
benefits, optimal
resource usage

Time-intensive,
requires architectural
changes

Strategic applications
with long-term value

Strangler Fig
Pattern

Gradually replace
components of legacy
systems

Incremental risk
management,
continuous delivery

Extended parallel
operation, integration
complexity

Complex systems
that cannot be
replaced at once

7. Future Trends and Emerging Paradigms

7.1. Evolution of Serverless Beyond Functions

Serverless is evolving beyond simple function execution toward comprehensive application platforms. Container-based
serverless offerings like AWS Fargate and Azure Container Instances provide serverless operational models for
container workloads. Database services including DynamoDB, Cosmos DB, and Firebase offer serverless data
persistence with automatic scaling. Serverless frameworks increasingly support stateful workloads through durable
execution contexts and improved state management. Edge computing platforms are adopting serverless models to
deploy code closer to users. These developments suggest convergence toward a broader "serviceful" computing model
where managed services handle infrastructure concerns regardless of the underlying execution model [8].

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(02), 1920-1927

1926

7.2. Container-native Virtualization Advances

Container-native virtualization blends container and VM paradigms to address security and compatibility challenges.
Technologies like Kata Containers, AWS Firecracker, and Google gVisor create lightweight VM boundaries around
containers, providing stronger isolation while maintaining container-like startup performance. Kubernetes operators
for VMs enable unified management of containers and VMs through the same orchestration layer. Hardware-assisted
virtualization extensions continue to reduce virtualization overhead, enabling more efficient nested virtualization.
These advances are creating a spectrum of isolation options rather than a binary choice between containers and VMs,
allowing security teams to implement appropriate isolation based on workload sensitivity.

7.3. Security Innovations Across Virtualization Layers

Security innovations are addressing key challenges in multi-tenant virtualization. Confidential computing technologies
like AMD SEV, Intel SGX, and ARM TrustZone protect data in use from privileged users and cloud providers. Zero-trust
architectures implement consistent identity-based access controls across all virtualization paradigms. Supply chain
security tools verify container and function provenance through signed images and attestation. Runtime security
monitoring detects and prevents abnormal behavior in virtualized environments. These advances collectively enable
deployment of sensitive workloads in shared infrastructure with enhanced isolation guarantees, accelerating adoption
of newer virtualization paradigms in security-conscious organizations.

7.4. Industry Adoption Patterns and Predictions

Industry trends indicate continued diversification of virtualization approaches rather than convergence on a single
paradigm. We predict accelerated VM-to-container migration for non-legacy workloads, with containers becoming the
default deployment model for new applications by 2026. Serverless adoption will expand beyond simple event handlers
to encompass complex applications, particularly for organizations prioritizing developer productivity over operational
control. Multi-cloud strategies will drive demand for abstraction layers that span virtualization technologies. Edge
computing will accelerate hybrid architectures combining on-premises and cloud resources. Security and compliance
capabilities will mature across all paradigms, reducing barriers to adoption for regulated industries. Overall, we expect
organizations to implement strategic polyglot virtualization, selecting appropriate technologies based on workload
requirements rather than standardizing on a single approach.

Table 4 Emerging Trends in Virtualization Technologies [7, 8]

Trend Key Technologies Impact Industry Implications

Serverless Evolution AWS Fargate, Azure Container
Instances, serverless databases

Expanded application scope
beyond functions

Convergence toward
"serviceful" computing models

Container-native
Virtualization

Kata Containers, AWS
Firecracker, gVisor

Enhanced isolation with
container-like performance

Spectrum of isolation options
rather than binary choices

Confidential
Computing

AMD SEV, Intel SGX, ARM
TrustZone

Protection of data-in-use
from privileged users

Accelerated adoption in
regulated industries

Edge Computing
Integration

IoT platforms, edge serverless
offerings

Distributed execution closer
to data sources

Hybrid architectures
combining edge and cloud
resources

8. Conclusion

The evolution of virtualization technologies from VMs to containers to serverless computing represents a continuum of
increasing abstraction and decreasing operational overhead, each offering distinct advantages for specific workloads
and organizational contexts. As the article demonstrates, these paradigms are best viewed as complementary rather
than competitive approaches within a comprehensive cloud strategy. The persistence of VM technology in regulated
environments, the dominance of containers for microservices architectures, and the rapid adoption of serverless for
event-driven workloads illustrate that no single virtualization approach satisfies all requirements. Forward-looking
organizations are implementing polyglot virtualization strategies that leverage each technology's strengths while
mitigating its limitations through cross-paradigm integration patterns and unified management tools. As container-
native virtualization advances blend the security benefits of VMs with the efficiency of containers, and as serverless
platforms expand beyond functions to support more complex application architectures, the boundaries between

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(02), 1920-1927

1927

paradigms will continue to blur. This convergence, coupled with innovations in confidential computing and zero-trust
security models, will enable increasingly sophisticated workloads to migrate toward higher levels of abstraction
without compromising on security or performance. The most successful cloud adoption strategies will remain those
that match workload characteristics to appropriate virtualization technologies while maintaining operational
consistency and security across paradigms.

References

[1] Ioana Baldini, Paul Castro et al. “Serverless computing: Current trends and open problems. In Research Advances
in Cloud Computing (pp. 1-20). Springer, Singapore. 28 December 2017. https://doi.org/10.1007/978-981-10-
5026-8_1

[2] Paul Barham, Boris Dragovic, et al. “Xen and the art of virtualization”. ACM SIGOPS Operating Systems Review,
37(5), 164-177, 19 October 2003. https://doi.org/10.1145/1165389.945462

[3] Brendan Burns, Brian Grant,et al. “Borg, Omega, and Kubernetes”. Communications of the ACM, 59(5), 50-57, 26
April 2016. https://doi.org/10.1145/2890784

[4] Johann Schleier-Smith, Vikram Sreekanti, et al. “What serverless computing is and should become: The next phase
of cloud computing”. Communications of the ACM, 64(5), 76-84, 26 April 2021.
https://doi.org/10.1145/3406011

[5] Wayne Jansen, Timothy Grance, T. (December 2011). “Guidelines on security and privacy in public cloud
computing”. NIST Special Publication 800-144. National Institute of Standards and Technology.
https://doi.org/10.6028/NIST.SP.800-144

[6] John Fink. “Docker: a Software as a Service, Operating System-Level Virtualization Framework”. Code4Lib
Journal, Issue 25, 2014-07-21. https://journal.code4lib.org/articles/9669

[7] David Bernstein. “Containers and Cloud: From LXC to Docker to Kubernetes”. IEEE Cloud Computing, 1(3), 81-
84, 30 September 2014 . https://doi.org/10.1109/MCC.2014.51

[8] Paul Castro, Vatche Ishakian, et al. “The Rise of Serverless Computing”. Communications of the ACM, 62(12), 44-
54, 21 November 2019. https://doi.org/10.1145/3368454

https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1145/1165389.945462
https://doi.org/10.1145/2890784
https://doi.org/10.1145/3406011
https://doi.org/10.6028/NIST.SP.800-144
https://journal.code4lib.org/articles/9669
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1145/3368454

