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Abstract 

Group-based quantitative structure-activity relationship (GQSAR) modeling was employed on three distinct series of 
twenty pyrimidine derivatives each for antiviral, antimalarial, and anticancer activities. Models were constructed based 
on 2D descriptors specific to individual substitution sites within the molecules (R1, R2, R3). For the antiviral series, the 
best model (r² = 0.923, q² = 0.783, pred_r² = 0.712, F = 59.4) incorporated descriptors R1_SLogP, R2_EState, and 
R3_Polarizability, indicating a strong role of hydrophobic and electronic properties. The antimalarial model (r² = 0.897, 
q² = 0.761, pred_r² = 0.685, F = 47.2) revealed significant influence from molecular refractivity and EState indices. The 
anticancer model (r² = 0.912, q² = 0.775, pred_r² = 0.695, F = 52.8) highlighted the importance of SlogP, ESI, and valence 
connectivity descriptors. Contribution charts and radar plots provided insights into the relative importance of 
descriptors, highlighting structural features critical to activity. The findings facilitate a deeper understanding of 
structure-activity relationships and provide a rational basis for designing improved pyrimidine-based therapeutics. 
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1. Introduction

Pyrimidine, a nitrogen-containing heterocycle, plays a pivotal role in medicinal chemistry due to its presence in a broad 
range of biologically active compounds. Pyrimidine derivatives exhibit diverse pharmacological activities, including 
antiviral, antimalarial, and anticancer properties. These therapeutic potentials are attributed to the core structure's 
ability to engage in hydrogen bonding, π-π interactions, and electron-rich conjugation with biological targets. [1-2] 

Over the past decades, the integration of computational tools into drug discovery has significantly accelerated the 
identification and optimization of new drug candidates. Quantitative Structure-Activity Relationship (QSAR) modeling 
stands out as one of the most influential in silico approaches. By correlating the chemical structure of compounds with 
their biological activity, QSAR models guide medicinal chemists in designing molecules with enhanced 
pharmacodynamic and pharmacokinetic profiles.[3] While traditional QSAR analyzes the entire molecular structure, it 
often overlooks the specific contributions of substituent positions. Group-based QSAR (GQSAR) addresses this 
limitation by focusing on the individual impact of variable substituents (R-groups) within a constant molecular scaffold. 
This strategy offers detailed insight into how each functional group influences biological activity, enabling a more 
systematic approach to molecular modification and optimization.[4] 

In contemporary drug design, the selection and interpretation of molecular descriptors are paramount. Descriptors 
translate structural attributes into quantitative data that can be modeled and interpreted statistically. In GQSAR, 
descriptors are calculated for each R-group separately, including electronic (e.g., E-state indices), hydrophobic (e.g., 

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjbphs.com/
https://doi.org/10.30574/wjbphs.2025.22.3.0599
https://crossmark.crossref.org/dialog/?doi=10.30574/wjbphs.2025.22.3.0599&domain=pdf


World Journal of Biology Pharmacy and Health Sciences, 2025, 22(03), 283-288 

284 

SLogP), steric (e.g., polarizability), and topological (e.g., Chi indices) properties. These descriptors reflect key 
physicochemical interactions involved in target binding and biological response.Modern descriptor calculation tools 
facilitate the generation of hundreds of relevant descriptors.Through rigorous statistical selection processes such as 
stepwise regression, principal component analysis, and variable inflation factor filtering only the most predictive 
descriptors are retained for model building. This not only reduces model complexity but also enhances its robustness 
and interpretability. [5-6] 

In this study, GQSAR was employed to explore the structure-activity relationships of 60 pyrimidine derivatives, divided 
into antiviral, antimalarial, and anticancer categories. Each series consisted of 20 compounds with variations in three 
defined substitution sites. The objective was to generate statistically sound and biologically meaningful models that 
would aid in designing more potent derivatives. This work underscores the value of fragment-specific modeling and 
descriptor-driven analysis in modern drug discovery. 

2. Materials and Methods 

2.1. Dataset Preparation 

A dataset comprising 60 rationally designed pyrimidine derivatives was selected, divided equally into three activity 
categories: antiviral (SV01–SV20) {Rasha A. Azzam et al, ACS Omega 2020, 5, 1640−1655}[7], antimalarial (SM01–
SM20){Neil R. Norcross et al, J. Med. Chem. 2016, 59, 6101−6120}[8], and anticancer (SC01–SC20) {Eman M. Mohi El-Deen 
et al, Molecules 2022, 27, 803} [9]. This classification ensures homogeneity within biological endpoints, facilitating 
robust GQSAR modeling for each therapeutic target. The chemical structures were constructed using ChemSketch 
software and optimized, followed by energy minimization. This step ensured that the molecules were in their lowest 
energy conformations, which is crucial for accurate descriptor calculation. Experimental or literature-reported IC₅₀ 
values were logarithmically transformed into pIC₅₀ values to normalize the data and enable linear regression 
modeling.[10] The individual GQSAR models were developed separately for each group to prevent interference from 
inter-class variations in pharmacophores. 

  
 

1 (A)  2 (B) 3 (C) 

Figure 1 [1(A), 1(B), 1(C)] Groups of Pyrimidine Derivatives for Antiviral, Antimalarial and Anticancer Activity 
Respectively 

2.2. Fragmentation and Descriptor Calculation 

Molecules were dissected at three substitution sites: R1, R2, and R3, preserving a consistent scaffold while allowing 
variability through substituent groups. This fragmentation forms the basis of GQSAR by permitting the quantification of 
substituent-specific effects.Descriptors were generated using the 2D descriptor module in VLife MDS. Categories 
included[11-12] 

• Hydrophobic descriptors (e.g., SLogP, LogD): influence membrane permeability. 
• Electronic descriptors (e.g., EState indices, Total Dipole Moment): affect binding affinity. 
• Topological indices (e.g., ChiV, Kier shape indices): encode molecular connectivity. 
• Steric descriptors (e.g., Polarizability, Molecular Refractivity): impact spatial accommodation in the binding 

site. 
Descriptors with low variance or high inter-correlation were excluded using correlation matrix filtering and Principal 
Component Analysis (PCA). This dimensionality reduction prevents overfitting and enhances model interpretability. 

 



World Journal of Biology Pharmacy and Health Sciences, 2025, 22(03), 283-288 

285 

2.3. Model Development 

Model construction was performed using Partial Least Squares (PLS) regression, which is advantageous in handling 
collinearity among descriptors and small sample sizes. Each dataset was partitioned into training and test sets using the 
Sphere Exclusion method, maintaining chemical diversity in both.Cross-validation (LOO q²) was performed to assess 
model robustness, while external validation (pred_r²) ensured predictive reliability. [13-14] The statistical thresholds 
adopted were 

• r² (coefficient of determination) > 0.80 for goodness-of-fit. 
• q² (cross-validated r²) > 0.60 for internal predictive power. 
• pred_r² > 0.60 for external predictivity. 
• F-statistic (ANOVA) with p < 0.05 to confirm statistical significance. 

Outliers were excluded from final model building if they deviated beyond the applicability domain. 

2.4. Software Used 

VLife MDS (Molecular Design Suite) was exclusively used for all computational tasks in this study. It is a comprehensive 
cheminformatics platform developed by VLife Sciences, India, specifically tailored for molecular modeling, QSAR, and 
structure-based drug design. VLife MDS supports Group-based QSAR (GQSAR) modeling, allowing users to perform 
fragment-based analysis of chemical series by calculating a wide array of 2D and 3D descriptors at variable substitution 
sites.The software includes modules for molecular drawing and optimization, descriptor calculation, statistical model 
building (MLR, PLS), and advanced tools for validation (LOO, LMO, and external test set methods). Importantly, VLife 
MDS offers built-in visualization tools such as contribution charts and radar plots, which are crucial for interpreting 
descriptor relevance and model performance.[15] 

3. Results and Discussion 

This section presents a comprehensive analysis of the GQSAR models developed for each biological activity i.e. antiviral, 
antimalarial, and anticancer. The models are assessed based on their statistical robustness (r², q², pred_r², F-test), and 
the influence of significant molecular descriptors is discussed in the context of SAR (Structure-Activity Relationship). 
Contribution charts and radar plots are employed for a visual understanding of descriptor importance. The following 
subsections outline the insights derived from each pharmacological category 

• Model with Highest Predictive Strength – Antiviral activity model with r² = 0.923 and q² = 0.783, revealing key 
roles of R1_SLogP and R2_EState. 

• Model with Distinct Steric Contribution – Antimalarial model where R1_MR and R3_EState play vital roles while 
R2_ChiV hampers efficacy. 

• Model with Balanced Hydrophobic-Electronic Factors – Anticancer model emphasizing SLogP, ESI, and ChiV as 
balanced contributors to activity. 

3.1. Antiviral Activity (SV Series) 

• Model Equation: pIC₅₀ = 2.15 + 0.65*(R1_SLogP) + 0.48*(R2_EState) - 0.32*(R3_Polarizability) 
• Model Statistics: r² = 0.923, q² = 0.783, pred_r² = 0.712, F = 59.4 

The high correlation coefficients confirm strong internal consistency and predictive ability. The descriptor R1_SLogP 
indicates that hydrophobic substituents at R1 enhance membrane permeability and bioavailability. R2_EState captures 
electronic interactions essential for viral enzyme binding, while R3_Polarizability's negative effect suggests that bulky 
or flexible groups at R3 may hinder receptor interaction. 
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 Figure 2 Contribution Chart (A) and Radar Plot (B) of GQSAR Model for Antiviral Activity 

3.2. Antimalarial Activity (SM Series) 

• Model Equation: pIC₅₀ = 1.89 + 0.72*(R1_MR) + 0.35*(R3_EState) 0.41*(R2_ChiV) 
• Model Statistics: r² = 0.897, q² = 0.761, pred_r² = 0.685, F = 47.2 

The model indicates that polarizability and volume at R1 (Molecular Refractivity) play key roles in optimizing binding 
interactions within the malarial target. R3_EState positively contributes, suggesting electronic influences on metabolic 
stability or bioactivation. R2_ChiV’s negative impact indicates that highly branched groups may obstruct efficient 
cellular uptake. 
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Figure 3 Contribution Chart (A) and Radar Plot (B) of GQSAR Model for Antimalarial Activity 

3.3. Anticancer Activity (SC Series) 

• Model Equation: pIC₅₀ = 2.07 + 0.56*(R2_SLogP) - 0.29*(R1_ESI) + 0.37*(R3_ChiV) 
• Model Statistics: r² = 0.912, q² = 0.775, pred_r² = 0.695, F = 52.8 

Lipophilicity at R2 (SLogP) is essential for passive diffusion into tumor cells. The ESI at R1, with its negative coefficient, 
reflects electronic interference in receptor docking. R3_ChiV supports optimal spatial arrangement, aiding in tight 
binding with intracellular targets. 
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Figure 4 Contribution Chart (A) and Radar Plot (B) of GQSAR Model for Anticancer Activity 

4. Conclusion 

This study successfully employed GQSAR modelling to analyze the structure-activity relationships of pyrimidine 
derivatives targeted for antiviral, antimalarial, and anticancer activities. Each category revealed a distinct set of 
influential descriptors with high statistical validity, as evidenced by the strong r², q², and pred_r² values across the 
models. The antiviral model stood out with the highest predictive strength (r² = 0.923), emphasizing the importance of 
hydrophobicity at R1 and electronic characteristics at R2. The antimalarial model identified steric and electronic 
influences, notably through molecular refractivity and EState indices, while penalizing high molecular branching. The 
anticancer model demonstrated the critical role of hydrophobic and electronic balance, with SLogP and ChiV 
contributing positively and ESI having a negative effect.Overall, the models presented herein can serve as predictive 
frameworks for the future design of potent pyrimidine derivatives with enhanced biological efficacy. 
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