
 Corresponding author: Naga Sai Bandhavi Sakhamuri.

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

AIOps-driven adaptive observability framework for cloud-native applications

Naga Sai Bandhavi Sakhamuri *

Solarwinds, USA.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(02), 1774-1782

Publication history: Received on 04 April 2025; revised on 11 May 2025; accepted on 13 May 2025

Article DOI: https://doi.org/10.30574/wjaets.2025.15.2.0724

Abstract

The emergence of cloud-native architectures has fundamentally transformed how applications are developed and
deployed, bringing unprecedented complexity to monitoring and troubleshooting processes. Traditional observability
approaches that rely on static thresholds and manual correlation prove inadequate in dynamic environments where
microservices communicate through various protocols, creating exponential interaction paths. This document
introduces an AIOps-driven Adaptive Observability Framework specifically designed for cloud-native environments,
addressing critical challenges including distributed system complexity, static instrumentation limitations, signal-to-
noise ratio problems, and resource constraints. The framework leverages advanced machine learning techniques such
as transformer architectures and autoencoder-based anomaly detection to dynamically adjust observability granularity
based on real-time predictions and detected anomalies. Comprising four core components—Telemetry Collection Layer,
ML Processing Pipeline, Adaptive Intelligence Core, and Orchestration Layer—the system operates as a continuous
feedback loop that learns from observed behaviors. Implementation across diverse production environments
demonstrates substantial improvements in detection accuracy, prediction capabilities, root cause identification,
resource utilization, and resolution times. Case studies from e-commerce and financial services sectors validate the
framework's effectiveness in enhancing operational efficiency while reducing observability costs.

Keywords: Adaptive Observability; AIOps; Cloud-Native; Dynamic Instrumentation; Causal Inference

1. Introduction

The proliferation of cloud-native architectures has revolutionized application development and deployment strategies.
Industry research indicates a significant shift toward containerized workloads in production environments, with
continuous increases in Kubernetes deployment across various sectors [1]. Organizations increasingly rely on
Kubernetes clusters, serverless functions, and microservices to build scalable, resilient applications. This rapid adoption
has occurred alongside a notable evolution in security concerns, as many organizations have accelerated their cloud-
native application deployments despite acknowledging gaps in security expertise.

However, this architectural shift introduces unprecedented complexity in monitoring and troubleshooting production
environments. Traditional monitoring approaches that rely on static thresholds and manual correlation of events are
proving inadequate in these dynamic ecosystems. Of particular concern is the fact that existing observability tools often
cannot keep pace with cloud-native application expansion, leading to critical visibility gaps.

Cloud-native applications face unique observability challenges, including unpredictable failures, latency spikes, and
performance degradations that stem from complex interactions between distributed services. Empirical analysis of
production incidents reveals that critical failures in microservice architectures frequently remain undetected by
traditional monitoring tools, with root cause analysis requiring substantial time to complete [2]. The ephemeral nature
of containers and serverless functions further complicates the observability landscape, as components may appear and

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2025.15.2.0724
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2025.15.2.0724&domain=pdf

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(02), 1774-1782

1775

disappear before traditional monitoring systems can effectively capture their operational characteristics. Studies of
real-world production environments demonstrate that trace-based observability techniques often miss service
interaction anomalies due to sampling limitations and instrumentation gaps.

This paper introduces an innovative AIOps-driven Adaptive Observability Framework designed specifically for cloud-
native environments. By leveraging advanced machine learning techniques, including transformer models and
autoencoder-based anomaly detection, the framework dynamically adjusts observability granularity based on real-time
predictions and detected anomalies. Initial testing across production workloads demonstrates significant
improvements in anomaly detection accuracy coupled with reductions in observability-related infrastructure costs
compared to static instrumentation approaches. The result is a more efficient, cost-effective approach to observability
that enhances reliability while optimizing resource utilization. Field testing with early adopters shows meaningful
reductions in Mean Time To Resolution (MTTR) for complex incidents and a decrease in false positive alerts, addressing
key pain points identified across industry benchmarks [1].

2. Current Challenges in Cloud-Native Observability

2.1. Complexity of Distributed Systems

Modern cloud-native applications consist of dozens or even hundreds of microservices communicating through various
protocols. Industry surveys reveal a significant growth in the number of microservices deployed in production
environments, with enterprise organizations reporting substantial increases year-over-year [3]. This distributed
architecture creates an explosion of potential failure points and interaction patterns that traditional monitoring tools
struggle to comprehend. The number of possible interaction paths increases exponentially with each added service,
making manual monitoring approaches practically impossible at scale. Research indicates that a majority of production
incidents stem from complex interactions between apparently healthy services rather than outright component failures,
highlighting a critical gap in current monitoring capabilities.

2.2. Limitations of Static Instrumentation

Current observability practices typically implement static instrumentation across all services, resulting in significant
operational inefficiencies. Production analysis reveals that static instrumentation approaches lead to either over-
instrumentation or under-instrumentation. Over-instrumentation generates excessive telemetry data that increases
storage costs and processing overhead, with a large percentage of collected data never accessed during troubleshooting.
Under-instrumentation misses critical signals that could help identify and diagnose problems, with studies showing that
insufficient observability data frequently delays root cause analysis [4]. Static instrumentation fails to adapt to changing
application behaviors, deployment patterns, or emerging failure modes, resulting in observability blind spots during
critical incidents.

2.3. Signal-to-Noise Ratio Problems

The volume of observability data generated in cloud-native environments creates significant signal-to-noise ratio
challenges. Recent surveys indicate that organizations struggle with the increasing amount of telemetry data produced
by containerized applications, with many reporting that they can utilize only a fraction of the collected information
effectively [3]. SRE and operations teams frequently experience alert fatigue due to irrelevant notifications, while
genuinely problematic signals may be buried in the noise. Research shows a substantial percentage of alerts require no
action, yet consume valuable engineering attention. This pattern often leads to increased Mean Time To Detection
(MTTD) and Mean Time To Resolution (MTTR), with organizations reporting added time to incident resolution due to
alert noise issues.

2.4. Resource Constraints

Comprehensive observability comes at a cost in terms of compute resources, network bandwidth, and storage. Analysis
indicates that organizations allocate a significant portion of their total cloud infrastructure budget to observability
solutions, with costs rising as deployments scale [4]. Performance measurements demonstrate that fully instrumented
applications experience noticeable overhead in CPU utilization and memory consumption compared to their non-
instrumented counterparts. Organizations must balance the need for deep visibility with the operational overhead
imposed by observability tools themselves. Cloud-native architectures can potentially offer cost optimizations through
appropriate resource allocation and usage patterns, but this requires sophisticated tooling. Current solutions rarely
provide intelligent resource optimization mechanisms, leading to unnecessary expenditure on observability

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(02), 1774-1782

1776

infrastructure. Without built-in intelligence, many organizations simply accept default configuration parameters, which
are rarely optimized for their specific applications.

Figure 1 Current Challenges in Cloud-Native Observability

3. AIops-Driven Adaptive Observability Framework

3.1. Framework Architecture

The proposed AIOps-driven Adaptive Observability Framework consists of four primary components organized in a
closed-loop architecture that enables continuous learning and adaptation. Recent studies indicate that such integrated
approaches significantly reduce incident response times compared to traditional monitoring systems by automatically
correlating events across the technology stack [5].

Telemetry Collection Layer: Responsible for gathering logs, metrics, and distributed traces from services using
OpenTelemetry instrumentation. This layer implements distributed tracing with adaptive sampling rates based on
service criticality and observed error rates.

ML Processing Pipeline: Processes incoming telemetry data through feature extraction, normalization, and
transformation for consumption by ML models. The pipeline handles substantial volumes of observability data in
medium-sized microservice deployments, utilizing stream processing to achieve near real-time feature extraction.

Adaptive Intelligence Core: Contains the ML models for anomaly detection, failure prediction, causal analysis, and
instrumentation optimization. This component leverages multi-headed attention-based neural network architectures
to achieve high accuracy in predicting service failures before they impact users.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(02), 1774-1782

1777

Orchestration Layer: Implements the actionable outputs from the ML models, dynamically adjusting instrumentation
levels and resource allocation. This layer interfaces with Open Telemetry collectors via a control plane that can
reconfigure instrumentation parameters across distributed services rapidly.

The framework operates as a feedback loop, continuously learning from observed behaviors and refining its predictive
capabilities over time. In production deployments, the system demonstrates measurable improvement in prediction
accuracy within days of operation due to its self-optimizing capabilities.

3.2. Deep Learning Models

3.2.1. Transformer-Based Sequence Analysis

The framework employs transformer architectures to analyze the temporal sequences of events across microservices.
Unlike traditional time-series analysis, transformers can detect complex patterns and dependencies across services by
leveraging the self-attention mechanism. Research demonstrates that transformer models show marked improvement
in failure prediction accuracy compared to long short-term memory approaches in cloud environments [6].

The implementation uses a modified encoder architecture with multiple attention heads and transformer layers,
processing sequences of events with contextual windows spanning meaningful time intervals. This allows the model to
identify subtle precursors to failures that might occur across disparate components of the system.

3.2.2. Autoencoder Anomaly Detection

Variational autoencoders (VAEs) form the backbone of the anomaly detection system, learning the normal operational
patterns of the application and flagging deviations. The models achieve substantial compression while retaining
information content in system metrics, enabling efficient representation learning. The reconstruction error of the
autoencoder serves as an anomaly score, with higher errors indicating potential issues.

The framework dynamically adjusts anomaly thresholds based on the operational context, reducing false positives
during expected events like deployments or traffic spikes. Testing shows that this dynamic thresholding significantly
reduces false positive rates during deployment events while maintaining high true positive rates for actual anomalies.

3.2.3. Causal Inference Engine

To facilitate automated root-cause analysis, the framework implements a causal inference engine that builds and
maintains a dynamic causal graph representing service dependencies and interaction patterns. The graph encompasses
nodes and directed edges representing potential causal relationships across the application landscape.

When anomalies are detected, the causal inference engine traverses this graph to identify the most likely root causes,
significantly reducing the diagnostic effort required from engineering teams. Evaluation across real-world incident
scenarios demonstrates that the causal inference engine correctly identifies root causes in a majority of cases.

3.3. Adaptive Instrumentation Mechanism

The core innovation of the framework lies in its ability to dynamically adjust instrumentation levels based on the current
state and predicted future states of the system:

Baseline Instrumentation: Standard metrics and logs collected from all services at all times, constituting a fraction of
the total possible instrumentation surface.

Enhanced Instrumentation: Additional traces and detailed metrics activated when the prediction model indicates
elevated failure probabilities, capturing more of the available telemetry.

Deep Instrumentation: Comprehensive tracing, log verbosity increases, and detailed performance metrics when
anomalies are detected or imminent failures predicted, maximizing observability during critical periods.

The orchestration layer interfaces with OpenTelemetry collectors to adjust sampling rates, filter configurations, and
instrumentation levels in real-time without requiring application restarts or redeployments.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(02), 1774-1782

1778

3.4. Resource Optimization Algorithm

The framework includes a resource optimization component that balances observability needs with infrastructure
costs. It dynamically adjusts storage allocation for different types of telemetry data, retention periods based on the
predicted value of historical data, processing capacity for real-time analysis, and sampling rates for different services
based on their predicted criticality.

This optimization ensures that observability resources are concentrated where they provide the most value, rather than
being distributed uniformly across all components. Field deployments demonstrate that the resource optimization
component achieves equivalent detection capabilities while consuming significantly fewer resources compared to static
instrumentation approaches.

Table 1 AIOps-Driven Adaptive Observability Framework

Framework
Component

Key Capabilities Technologies Instrumentation Level Deep Learning
Models

Telemetry
Collection
Layer

Collects logs, metrics, and
traces; Implements
adaptive sampling;
Supports multi-format
data collection

OpenTelemetry SDK;
 Distributed tracing;
 Collector pipelines

Baseline: Core metrics
and logs always active

-

ML Processing
Pipeline

Extracts features from
telemetry;
 Normalizes and
transforms data;
 Enables near real-time
processing

Stream analytics;
 Feature engineering;
 Time-series
processing

Enhanced: Additional
traces and detailed
metrics when failure
probability increases

Data pre-processing;
 Feature selection;
Dimensionality
reduction

Adaptive
Intelligence
Core

Detects anomalies;
 Predicts service failures;
 Identifies root causes

Neural networks;
 Causal inference;
 Anomaly detection

Deep: Comprehensive
tracing and maximum
verbosity during
anomalies

Transformer
networks; Variational
autoencoders; Causal
inference models

Orchestration
Layer

Dynamically adjusts
instrumentation;
 Optimizes resource
allocation;
 Implements feedback loop

Control plane API;
Configuration
automation; Policy
enforcement

All levels: Dynamic
transition between levels
based on system state

Resource
optimization;
Decision algorithms;
Feedback integration

4. Implementation and Evaluation

4.1. Reference Implementation

A reference implementation of the framework has been developed and tested in both laboratory and production
environments. The implementation achieves impressive processing latency from anomaly detection to instrumentation
adaptation, with high availability over the evaluation period [7]. The technology stack leverages a combination of open-
source and cloud-native components for instrumentation, data processing, storage, ML pipeline, and orchestration.

OpenTelemetry serves as the foundation for cross-service telemetry collection, processing a substantial number of
spans per second in moderate-traffic deployments. For data processing, Apache Kafka handles telemetry streaming
while Apache Spark manages batch processing of historical datasets. The storage layer combines Prometheus for
metrics, Elasticsearch for logs, and Jaeger for distributed traces with adaptive sampling, creating a comprehensive
observability data platform.

The ML pipeline utilizes TensorFlow for deep learning models deployed on GPU-accelerated infrastructure, with MLflow
tracking experiments across numerous model variants. Kubernetes Custom Resource Definitions and operators enable
dynamic reconfiguration of thousands of parameters across the monitored environment.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(02), 1774-1782

1779

The implementation is designed to be vendor-agnostic, allowing organizations to integrate it with their existing
observability stack. Integration testing shows compatibility with major cloud providers' monitoring solutions as well as
popular observability platforms, requiring minimal adaptation.

4.2. Performance Metrics

The framework's effectiveness is evaluated across several dimensions using controlled experiments in production
environments. This multi-dimensional assessment approach revealed significant improvements across all key
operational metrics [8].

Detection accuracy shows marked improvement in both precision and recall for anomaly detection compared to
traditional threshold-based approaches. The performance gains are most pronounced for intermittent and partial
failures, where traditional methods typically struggle to maintain consistency.

Prediction lead time measurements demonstrate the system's ability to forecast potential failures several minutes
before service impact, with the majority of critical incidents receiving advance warning. Time-to-detection for emerging
issues improved considerably compared to baseline monitoring systems.

Root cause identification accuracy has increased substantially across simulated and actual incidents compared to
traditional correlation approaches. Mean time to identify decreased significantly across incidents of varying complexity,
enabling faster response.

Resource utilization benefits include reduced storage requirements through intelligent data retention and sampling,
while processing overhead decreased compared to static instrumentation approaches with similar coverage. Peak
resource consumption during incident investigation shows notable improvement.

Mean Time To Resolution for complex incidents decreased considerably across multiple deployment environments,
with the most significant improvements observed in multi-cluster environments with complex service dependencies.

4.3. Case Studies

4.3.1. E-Commerce Platform

A large e-commerce platform implemented the framework across its microservices ecosystem consisting of numerous
services running on containers across multiple geographic regions. The platform processes a high volume of
transactions during peak periods, with substantial traffic variations throughout the day.

The implementation resulted in measurable operational improvements including reduction in Mean Time To Resolution
for complex incidents, decrease in false positive alerts, reduction in observability storage costs, and improvement in
early detection of performance degradations.

4.3.2. Financial Services API

A financial services company deployed the framework to monitor its payment processing API, which handles millions
of daily transactions with strict compliance and performance requirements. The deployment covered multiple
microservices across several Kubernetes clusters with multiple active-active data centers.

The implementation achieved remarkable improvements in reliability and operational efficiency, including enhanced
uptime, reduction in customer-reported incidents, decrease in observability infrastructure costs, and acceleration in
root cause identification during incidents.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(02), 1774-1782

1780

Figure 2 Performance Metrics Comparison: Traditional vs. Adaptive Observability

5. Future Directions and Industry Impact

5.1. Research Opportunities

Several promising areas for future research have emerged from this work, each offering significant potential for
advancing the field of intelligent observability. Current implementations reveal substantial performance enhancements
in operational workflows compared to traditional approaches [9].

Reinforcement Learning for Instrumentation Policies: Using RL to optimize the instrumentation decision-making
process. Preliminary experiments demonstrate marked improvement in instrumentation efficiency compared to rule-
based approaches. These models can adapt to novel failure modes within few iterations, continuously refining their
policies as the application environment evolves.

Multi-Tenant Observability Optimization: Extending the framework to optimize across multiple applications sharing
infrastructure. Research indicates that cross-application correlation can reduce false positives and decrease storage
requirements through identification of common dependencies and shared resource contention patterns. In multi-tenant
Kubernetes clusters with numerous namespaces, experimental deployments have shown considerable reduction in
overall observability overhead.

Explainable AI for Observability: Improving the interpretability of anomaly detection and root cause analysis. Initial
implementations of attention visualization and feature importance techniques have reduced the time engineers spend
analyzing AI-generated recommendations, increasing adoption rates significantly. Explanation techniques allow
engineers to understand model decisions in most cases, compared to previous black-box approaches.

Federated Learning for Cross-Organization Insights: Enabling organizations to benefit from collective experience
without sharing sensitive telemetry data. Prototypes using federated learning techniques across independent
organizations improved anomaly detection accuracy after just a few training rounds while maintaining complete data
isolation. This approach has shown particular promise for detecting novel zero-day vulnerabilities and supply chain
compromises.

5.2. Industry Implications

The AIOps-driven Adaptive Observability Framework represents a significant advancement in cloud-native operations.
According to market research, the global AIOps market size is projected to grow substantially through 2030, driven by
increasing adoption of cloud services and the rising complexity of IT infrastructure [10].

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(02), 1774-1782

1781

Shift from reactive to predictive operational models. Organizations implementing predictive observability report
substantial reduction in customer-impacting incidents and unplanned work for operations teams. Longitudinal studies
of early adopters show that SRE teams spend less time in incident response and more time on proactive system
improvements after deploying adaptive observability frameworks.

Reduction in specialized expertise required for effective monitoring. The knowledge encapsulation provided by causal
models reduces the expertise gap between junior and senior engineers for common troubleshooting scenarios.
Organizations report being able to successfully onboard new team members much faster than before, while
simultaneously reducing monitoring-related false alarms.

More efficient allocation of engineering resources during incidents. With automated context gathering and root cause
suggestions, organizations report a decrease in the number of engineers involved in typical incident response and
reduction in unnecessary escalations. Incident retrospectives show improvement in first-attempt resolution rates and
reduction in repeated incidents due to incomplete fixes.

Lower total cost of ownership for observability infrastructure. Financial analysis across diverse deployment
environments demonstrates reduction in observability-related infrastructure costs, with significant savings in storage
and data transfer. Even accounting for the computational resources required for ML models, operations teams achieve
meaningful cost reductions compared to traditional static observability approaches.

5.3. Transformative Potential and Adoption Roadmap

Figure 3 AIOps-Driven Adaptive Observability Framework

Traditional approaches to observability are increasingly inadequate for modern cloud-native architectures. The AIOps-
driven Adaptive Observability Framework addresses these limitations by intelligently adjusting instrumentation levels
based on predicted needs and detected anomalies. By leveraging deep learning and causal inference, the framework
enables more efficient resource utilization while improving reliability and reducing resolution times.

Organizations following the recommended three-phase adoption roadmap report successful implementation within
months, with positive ROI typically achieved within the first quarter of production deployment. The initial phase focuses
on telemetry consolidation and normalization, followed by ML model training on historical incident data, and
culminating in the gradual activation of adaptive instrumentation capabilities. This phased approach has demonstrated
high success rates across documented implementation cases.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(02), 1774-1782

1782

6. Conclusion

The AIOps-driven Adaptive Observability Framework presents a transformative solution to the increasing inadequacy
of traditional monitoring approaches in modern cloud-native architectures. By intelligently adjusting instrumentation
levels based on predicted needs and detected anomalies, the framework addresses core challenges that plague
contemporary observability practices. The integration of deep learning models-including transformer-based sequence
analysis, variational autoencoders for anomaly detection, and causal inference engines-enables a shift from reactive to
predictive operational models while significantly reducing the expertise barrier for effective monitoring. Real-world
implementations across different industry sectors confirm substantial improvements in reliability, operational
efficiency, and cost management. The framework's vendor-agnostic design facilitates integration with existing
observability stacks, making adoption feasible for organizations at various stages of cloud maturity. Looking forward,
promising research directions such as reinforcement learning for instrumentation policies, multi-tenant optimization,
explainable AI for observability, and federated learning for cross-organization insights will further enhance the
framework's capabilities. As cloud-native architectures continue evolving in complexity, adaptive observability
becomes not merely advantageous but essential for maintaining system reliability while controlling operational
expenditure. The phased adoption roadmap demonstrates that organizations can achieve positive returns within the
first quarter of deployment, making this approach both technically sound and economically viable for the future of cloud
operations.

References

[1] Paloalto, "2024 State of Cloud Native Security Report," 2025. [Online]. Available:
https://www.paloaltonetworks.com/resources/research/state-of-cloud-native-security-2024

[2] Shenglin Zhang, et al., "Failure Diagnosis in Microservice Systems: A Comprehensive Survey and Analysis," ACM
Digital Library, 2025. [Online]. Available: https://dl.acm.org/doi/10.1145/3715005

[3] Charlie Klein, "Survey Review: Key Challenges of Scaling Observability with Cloud Workloads," logz.io. [Online].
Available: https://logz.io/blog/survey-review-key-challenges-of-scaling-observability-with-cloud-workloads/

[4] Inna Fishchuk and Vasyl Vasyuta, "The Role of Cloud-Native Architecture in Optimizing Cloud Costs," Leobit,
2024. [Online]. Available: https://leobit.com/blog/the-role-of-cloud-native-architecture-in-optimizing-cloud-
costs/

[5] Vivek Basavegowda Ramu and Ajay Reddy Yeruva, "AIOps Research Innovations, Performance Impact and
Challenges Faced," ResearchGate, 2023. [Online]. Available:
https://www.researchgate.net/publication/368806279_AIOps_Research_Innovations_Performance_Impact_an
d_Challenges_Faced

[6] Hadeel T. El-Kassabi, et al., "Deep learning approach to security enforcement in cloud workflow orchestration,"
Journal of Cloud Computing, 2023. [Online]. Available: https://link.springer.com/article/10.1186/s13677-022-
00387-2

[7] Vishal Vaid, "Mastering Cloud Observability: Techniques, Tools, and Trends," BuzzClan, 2024. [Online]. Available:
https://buzzclan.com/cloud/what-is-observability/

[8] Jill Willard and James Hutson, "The Evolution and Future of Microservices Architecture with AI-Driven
Enhancements," International Journal of Recent Engineering Science, 2025. [Online]. Available:
https://www.ijresonline.com/assets/year/volume-12-issue-1/IJRES-V12I1P103.pdf

[9] Winston Bowden, "Shaping the Next Generation of AI-Powered Observability," Lumigo, 2024. [Online]. Available:
https://lumigo.io/blog/shaping-the-next-generation-of-ai-powered-observability/

[10] Fortune Business Insights, "AIOps Market Size, Share & Industry Analysis, By Enterprise Type (Small & Medium
Enterprises (SMEs) and Large Enterprises), By Deployment (On-premise and Cloud), By Application (Application
Performance Management, Infrastructure Management, Network and Security Management, Real-Time
Analytics, and Others), By Industry (IT & Telecom, BFSI, Healthcare, Manufacturing, Retail & E-commerce,
Government, Energy & Utility, and Others), and Regional Forecast, 2025-2032," 2025. [Online]. Available:
https://www.fortunebusinessinsights.com/aiops-market-109984

https://www.paloaltonetworks.com/resources/research/state-of-cloud-native-security-2024
https://dl.acm.org/doi/10.1145/3715005
https://logz.io/blog/survey-review-key-challenges-of-scaling-observability-with-cloud-workloads/
https://leobit.com/blog/the-role-of-cloud-native-architecture-in-optimizing-cloud-costs/
https://leobit.com/blog/the-role-of-cloud-native-architecture-in-optimizing-cloud-costs/
https://www.researchgate.net/publication/368806279_AIOps_Research_Innovations_Performance_Impact_and_Challenges_Faced
https://www.researchgate.net/publication/368806279_AIOps_Research_Innovations_Performance_Impact_and_Challenges_Faced
https://link.springer.com/article/10.1186/s13677-022-00387-2
https://link.springer.com/article/10.1186/s13677-022-00387-2
https://buzzclan.com/cloud/what-is-observability/
https://www.ijresonline.com/assets/year/volume-12-issue-1/IJRES-V12I1P103.pdf
https://lumigo.io/blog/shaping-the-next-generation-of-ai-powered-observability/
https://www.fortunebusinessinsights.com/aiops-market-109984

