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Abstract 

Accurate modeling of cardiac excitation propagation requires detailed representation of the heart’s anisotropic 
properties and tissue heterogeneity. Traditional imaging modalities such as CT and MRI fail to capture the fiber 
orientation essential for modeling the myocardium. This study employs the Monodomain reaction-diffusion equation 
and integrates Diffusion Tensor Imaging (DTI) data to enhance modeling fidelity by accounting for both anisotropic 
properties and non-uniform conductivity distributions. The proposed method modifies the conductivity tensor using 
diffusion volume as a proxy for ionic conductivity. Simulation results show significant differences in activation 
isochrones between isotropic and anisotropic models and between uniform and non-uniform conductivity 
distributions. These findings emphasize the importance of tissue-specific modeling for realistic cardiac 
electrophysiology simulations.  
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1. Introduction

When modeling the excitation propagation in the heart, two primary structures must be considered: the myocardium 
and the conduction system. The anatomical structure of the heart is typically derived from medical imaging techniques 
such as CT scans and MRI. However, these conventional imaging modalities lack the capability to capture tissue 
anisotropy, which is crucial for accurate modeling. The myocardium exhibits pronounced anisotropic characteristics 
that significantly influence both electrical and mechanical functions of the heart. While some models treat the 
myocardium as an isotropic material [1 – 5], the majority recognize its anisotropic nature. 

In anisotropic heart models, determining the myocardial fiber architecture is essential and achieved through various 
approaches. A widely used method, exemplified by the work of Streeter et al. [6], relies on dissection-based data to 
assign fiber orientations to each voxel in the anatomical heart model [7 – 13]. Alternatively, models like those of Nielson 
et al. [14] use mathematical formulations to define fiber directions [14 – 21]. More recent developments utilize Diffusion 
Tensor Imaging (DTI) to map fiber structures. Some models employ DTI primarily for geometric reconstruction [22, 
23], while others incorporate DTI data into the computational frameworks for solving the Forward and Inverse 
Problems [24 – 27]. This study investigates the impact of assuming material isotropy and uniformity on the resulting 
excitation propagation isochrones. 
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2. Methods 

2.1. Modeling of the Excitation Propagation of the Heart 

The excitation propagation of the heart is modeled based on the Monodomain reaction-diffusion equation in its 
normalized form namely [28]: 
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where u and t represent the normalized transmembrance potential and the normalized time respectively, D is the 
normalized effective conductivity tensor of the heart material, f is the function that represent the reaction term due to 
ions exchange, and finally g represents the external applied input. The normalized conductivity tensor can be written 
as: 
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where e represents the first eigenvector of the diffusion tensor, and σil and σit represent the intercellular conductivities 
in longitudinal and traverse directions, respectively and I is the Identity Matrix. 

2.2. Modifying the Normalized Monodomain Reaction-Diffusion Equation  

As the effective conductivity tensor of the Monodomain reaction-diffusion equation (2) is in its normalized form, where 
the heart is considered to have uniform conductivity in all of its tissues. This approximates to the real situation, where 
there are mainly two types of structures, the Myocardium and the conduction system, and as stated earlier they do not 
have the same conductivities, as the average conductivity of the Purkinje fibers in the longitudinal direction is almost 
three times the conductivity in Myocardium fibers. Even for the same structure, the conductivity varies slightly from 
zone to another due to cells dimensions and tissue parameters. Identifying the conductivity of each part of the heart is 
a difficult task, but with the proposed use of the DTI, it might be possible to identify such parameters.  

According to literature, this is the first approach that is capable of identifying the non-uniform conductivity distribution 
in the biological tissues using the DTI dataset. It was reported that the parameters of the interlaced disks form the 
“bottle neck” of the conductivity in fibers direction [29]. However, the availability of ions in the intercellular medium is 
another factor that affects the conductivity. If it is assumed that there is a linear relation between number of ions and 
the conductivity of the cell, then the conductivity σ can be seen directly related to the number of ions Nions 

ionsl N
 ………..(4) 

the number of ions is directly related to the volume of the cytoplasm of the cell, and since the DV quantity is directly 
related to the volume of cytoplasm (as mentioned earlier) then the conductivity can be assumed to be directly related 
to the DV quantity 

DVl 
 ………… (5) 

and so, from equation 5 
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where DV is the diffusion volume of any tissue, DV1 is the average diffusion volume for the Myocardium tissue, σl is the 
longitudinal conductivity of any tissues, σl1 is the average longitudinal conductivity of  the Myocardium tissue, and w is 
the ratio of these. Assuming that the traverse conductivity of all cells is the same, and then the general form of equation 
(2) would be 
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The diffusion term in the equation (1) can be modified to include the effect of non-uniform conductivities of the heart 
tissue 
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By referring to the Bidomain reaction-diffusion equation, there are many parameters that should be modified in this 
equation, as well as the assumption of equal conductivities ratio of the longitudinal and traverse directions in both the 
intercellular domain and the extracellular domain for the result to be accurate. However, at this stage the effect of 
longitudinal conductivities difference will be included in the diffusion term of the Monodomain reaction-diffusion 
equation and the other parameters effect will be considered in future work. 

3. Results 

3.1. The Effect of Modeling the Heart as Isotropic Material on Excitation Propagation 

The excitation propagation isochrones for both the anisotropic heart uniform materials (Figure 1) as the reference, and 
the isotropic heart uniform material (Figure 2) are generated using the conduction network [30, 31] which has been 
extracted from the heart DTI data [32, 33] using Diffusion Volume (DV) [34, 35]. 

The conductivity of the isotropic heart material is taken to be the average of both longitudinal and traverses 

conductivities of the anisotropic materials (where l
=34.4 mS/mm and t

=5.96 mS/mm then AVG
=20 mS/mm) 

[36].  Excluding the anisotropy information about the heart material, significantly affects the produced excitation 
propagation. Figure 3 show that there are significant differences in activation time between the two cases. 

 

Figure 1 The isochrones for the excitation propagation of the heart when it is considered an Anisotropic material 
(reference) 
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Figure 2 The isochrones for the excitation propagation of the heart when it is considered an isotropic material 

 

Figure 3 Activation isochrones difference (Red = Lead, Blue = Lag) 

3.2. Comparison between Uniform and Non-Uniform Distribution of Ventricles Conductivities 

The excitation propagation isochrones for both the anisotropic heart uniform materials (Figure 1) as the reference and 
the anisotropic heart non-uniform material (Figure 4) are generated. The difference map (Figure 5), shows that the non-
uniform conductivity activation leads in the left ventricle free wall and the IV Septum, and lag in the right ventricle free 
wall. This is much more realistic than the uniform model, since in the activation isochrones of Durrer et. al. [37], the 
right ventricle free wall is activated about 25 mSec later than the left ventricle. 

 

Figure 4 Activation isochrones for non-uniform distribution of conductivities of ventricles 
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Figure 5 Activation isochrones difference (Red = Lead, Blue = Lag)  

4. Conclusion 

This study demonstrates the critical impact of both anisotropy and conductivity heterogeneity on the accuracy of 
excitation propagation modeling in the human heart. Isotropic approximations significantly distort the propagation 
patterns, while the inclusion of DTI-derived non-uniform conductivity distributions yields results that align more 
closely with clinical observations. The integration of diffusion volume metrics into the conductivity model provides a 
novel, biologically grounded approach for representing ionic behavior in myocardial tissue. Future extensions will 
include a more complete implementation of Bidomain parameters and further validation against empirical activation 
data.  
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