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Abstract 

Introduction: Artificial Intelligence (AI) in 3D image analysis using Cone Beam Computed Tomography (CBCT) can be 
used to provide accurate and reliable orthodontic diagnosis. When deciding on an orthodontic treatment plan and 
evaluation, it is crucial to identify the maxillary and mandibular morphology. Objectives: To identify the maxillary and 
mandibular morphology of patients with malocclusion at the Dental Hospital Universitas Airlangga’s Orthodontic 
Specialist Clinic using AI. This project is a preliminary study into the development of 3D AI-based digital tracing 
software. Material and methods: A total of 17 CBCT x-rays of class I malocclusion patients with Javanese ethnicity were 
divided into training and validation samples. After being manually annotated, the training samples were loaded into 
deep learning software. Deep learning using Convolutional Neural Network (CNN) is repeated until the manual 
annotation points and prediction points reach the most accurate coordinates. The results were validated using the 
validation samples. Results: The lowest MSE in maxillary morphology is at the as point (808.4) and the highest is at the 
ANS point (3043.8), while in mandibular morphology, the lowest MSE is at the Pg point (927) and the highest is at the 
Cd-MR point (8675). Even though there are still a number of anatomical landmark locations with high error rates, the 
outcomes of deep learning are fairly acceptable. Conclusion: CNN-based AI deep learning models can be used to identify 
maxillary and mandibular anatomical landmarks on CBCT x-rays, however additional data are still required to maximize 
the deep learning outcomes. 

Keywords: Artificial Intelligence; Cone Beam Computed Tomography; Anatomical Landmark; Maxillary and 
Mandibular Morphology 

1. Introduction

One technology that is currently quite popular and developing quickly is Artificial Intelligence (AI). AI is the ability of a 
computer system to carry out tasks that often call for human intelligence. This technology can use the data in the system 
to analyze and make judgments [1]. In dental radiology, AI has been utilized to enhance picture interpretation [2]. 
Computerized cephalometric analysis, such as the WebCeph program, allows for direct digital measurement of 
cephalometric angles without the need for traditional methods involving protractors and acetate tracing paper. This is 
made possible by advancements in software and computer technology [3]. 

In the field of orthodontics, radiographic examination is a supportive examination that is used to examine growth 
patterns, malocclusion, soft tissue morphology, jaw connection, incisor inclination, facial development, and treatment 
limits [4]. Standardization is required for the measurement of landmark points, lines/planes, and angles on the facial 
skeleton in cephalometric radiography, one of the supporting radiographs in the area of orthodontics [5]. A crucial step 
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in creating a treatment plan is labeling anatomical landmarks in both soft and hard tissue on cephalometric radiographs 
[6]. 

One of the biggest challenges for inexperienced practitioners when assessing cephalometric radiographs is figuring out 
which landmark points to use [7]. In cephalometric radiography analysis, "projection errors" and "tracking errors" are 
two types of errors that might happen. When converting three-dimensional objects into two-dimensional radiographs, 
projection errors happen. These mistakes vary depending on the relative positions of the film, object, and x-ray tube. 
According to Gravely (1974), tracking errors can be brought on by a variety of factors, including superimposition of 
structures that obscures cephalometric landmarks, movement during exposure that blurs the image, a lack of contrast 
between the film and emulsion grains, measurement errors related to pencil line thickness, and limits on human 
perception [8]. 

Three-dimensional, irregularly shaped structures make up the maxilla and mandible. As stated by Dong et al. (2021) 
three-dimensional structures' real circumstances cannot be fully captured by two-dimensional photographs. As an 
alternative to medical computed tomography (CT), cone-beam computed tomography (CBCT) provides imaging 
findings with a lower radiation dosage and a higher resolution (submillimeter) [9]. More precise location of the 
condylion, gonion, and orbital can be achieved with CBCT since it can produce three-dimensional pictures without the 
distortion and superimposition of bone and other dental structures observed on traditional radiography [10,11]. 

Researchers hope to create 3D AI software on maxillofacial morphology in orthodontic patients as AI advances. 
Maxillofacial morphology is thought to be significant because it can assist orthodontists in making treatment decisions, 
monitoring, and assessing orthodontic treatment. Since homogeneous samples are necessary for the development of AI 
software, this study's participants were patients of Javanese ethnicity. 

2. Material and methods 

The study included patients, either male or female, between the ages of 18 and 25, who were of Javanese ethnicity, had 
class I skeletal malocclusion with ANB 0–4°, had a complete soft file CBCT, and had not received orthodontic treatment. 
The patient does not have any systemic medical history, including diabetes mellitus, heart disease, stroke, HIV, 
osteoporosis, mandibular displacement, facial defects, or abnormalities in the quantity, size, or shape of teeth. Nor does 
she have a history of maxillofacial trauma. 

The study used primary data from August to December 2022 from the CBCT scans of patients at the Orthodontic 
Specialist Clinic, University of Airlangga Dental Hospital Surabaya. The device used is an Intel i9 CPU GPU Nvidia Quadro 
8000 RAM 64 GB computer equipped with AI software development for the Sepuluh November Institute of Technology 
laboratory and annotation software for identifying anatomical landmarks. 

A CBCT examination was performed on a sample of 17 patients. The CBCT samples were split into two sets: three more 
samples were utilized to confirm the results of identifying anatomical landmarks, and the remaining fourteen samples 
were used to train AI software. Each patient has 640 slices of CBCT data, which are stored as DICOM data with an image 
size of 704x704 per slice. After extracting each slice in .jpeg format, the clinical expert chose the right slice for each 
anatomical landmark. 

A technician developed manual annotation software, which the researcher used to manually identify anatomical 
landmarks. Three-dimensional point coordinates (x, y, z) are the annotation's output. The deep learning technique will 
use the annotation results as ground truth (GT). The data and ground truth pairs used in this study will be split into two 
categories: training data and validation data. Validation data is used to determine whether the deep learning model 
developed can generalize data that was not utilized in training. Training data is used to conduct the deep learning 
process for patient samples. The Python programming language is then used to input the training sample data into AI 
software for deep learning. Deep learning is performed repeatedly until the prediction points and manual annotation 
points (ground truth) are at the most precise coordinates. Validation was then performed on the fourteen samples. Next, 
the results of learning to identify the anatomical landmarks of maxillofacial morphology were tested using three test 
data sets. 

Deep Learning uses a Convolutional Neural Network (CNN) consisting of convolution layers that will perform feature 
extraction. These features will be detected during the training process. In deep learning, it is also necessary to select an 
error function. The error function contains a function to calculate the error between the deep learning prediction results 
and ground truth. The deep learning architecture used is a deep learning architecture for regression, where the deep 
learning model used will estimate the coordinate values for each 3-dimensional axis. 
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Error measurements were carried out using the TensorFlow library and Keras (a method for calculating the distance 
between two points from AI). The error function used in this deep learning model is Mean Squared Error (MSE). MSE is 
the average squared error between the actual value and the predicted value. An MSE value that is low or close to zero 
indicates that the prediction results are in accordance with ground truth data. The Mean Squared Error (MSE) formula 
is as follows: 

𝑀𝑆𝐸 =
∑ (At − Ft)𝑛
𝑡=1

2

n
 

At: Ground truth value 

Ft: Prediction/validation value 

n: The amount of data 

3. Results 

The research findings are represented by coordinate numbers (x, y, z), which are values derived from the axial, coronal, 
and sagittal dimensions. The coordinate numbers are separated into two categories: Ground Truth (GT) data and 
Prediction data. The outcomes of AI deep learning, which is done consistently to produce low Mean Square Error (MSE) 
values, are used to generate prediction data. Ground Truth data, on the other hand, comes from manual annotation. 

Table 1 Recapitulation of Prediction Data and Ground Truth Deep Learning for Point as, ANS, M1-R, Cp-L, B, and Pg 

Sample Data as ANS M1-R Cp-L B Pg 

A Prediction [218 501 
356] 

[167 513 
361] 

[310 391 
211] 

[124 295 
659] 

[515 575 
309] 

[615 561 
351] 

GT [220 601 
316] 

[193 675 
349] 

[329 505 
212] 

[161 409 
675] 

[532 605 
303] 

[607 633 
307] 

B Prediction [211 519 
346] 

[150 499 
355] 

[303 382 
214] 

[135 286 
657] 

[521 573 
335] 

[623 556 
355] 

GT [233 539 
330] 

[206 567 
332] 

[329 428 
207] 

[158 324 
665] 

[496 565 
347] 

[560 589 
376] 

C Prediction [217 509 
347] 

[159 492 
357] 

[307 379 
219] 

[141 288 
652] 

[515 568 
331] 

[616 548 
354] 

GT [228 542 
336] 

[202 576 
351] 

[327 431 
216] 

[153 321 
654] 

[513 564 
299] 

[577 589 
383] 

D Prediction [218 506 
350] 

[161 498 
357] 

[306 383 
216] 

[137 290 
654] 

[514 569 
326] 

[616 553 
354] 

GT [242 522 
345] 

[200 548 
362] 

[347 419 
227] 

[172 291 
676] 

[509 544 
331] 

[594 562 
354] 

E Prediction [209 529 
339] 

[137 482 
349] 

[296 370 
216] 

[149 278 
653] 

[523 568 
361] 

[631 549 
359] 

GT [234 528 
319] 

[200 550 
334] 

[326 419 
206] 

[ 99 305 633] [512 514 
347] 

[579 522 
353] 

F Prediction [221 498 
364] 

[179 544 
368] 

[320 406 
203] 

[105 305 
668] 

[518 583 
285] 

[608 575 
345] 

GT [283 505 
327] 

[217 528 
365] 

[390 385 
209] 

[241 259 
636] 

[521 526 
350] 

[591 534 
347] 

G Prediction [212 525 
337] 

[142 473 
348] 

[297 368 
222] 

[157 280 
647] 

[518 562 
362] 

[626 540 
359] 
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GT [231 537 
336] 

[194 570 
365] 

[328 428 
212] 

[108 327 
644] 

[512 536 
352] 

[596 545 
353] 

H Prediction [213 520 
344] 

[149 493 
353] 

[302 378 
215] 

[142 286 
654] 

[519 568 
344] 

[624 551 
357] 

GT [216 533 
371] 

[160 564 
357] 

[324 418 
202] 

[109 286 
637] 

[498 539 
371] 

[568 543 
371] 

I Prediction [212 516 
351] 

[154 510 
358] 

[306 387 
210] 

[127 290 
661] 

[522 576 
324] 

[622 562 
353] 

GT [223 523 
385] 

[164 546 
362] 

[339 409 
210] 

[161 291 
640] 

[494 544 
346] 

[576 555 
347] 

J Prediction [216 507 
355] 

[162 517 
360] 

[309 391 
208] 

[122 294 
662] 

[519 577 
313] 

[618 565 
351] 

GT [231 526 
373] 

[191 578 
333] 

[364 408 
204] 

[168 283 
669] 

[510 550 
415] 

[604 583 
382] 

K Prediction [222 494 
360] 

[178 521 
366] 

[318 396 
212] 

[118 299 
660] 

[514 576 
296] 

[605 563 
346] 

GT [233 547 
381] 

[202 575 
378] 

[351 422 
207] 

[177 335 
648] 

[529 558 
369] 

[633 564 
398] 

L Prediction [220 503 
354] 

[166 505 
361] 

[311 386 
214] 

[130 292 
656] 

[515 572 
317] 

[613 556 
350] 

GT [234 534 
335] 

[196 578 
341] 

[343 438 
216] 

[158 307 
660] 

[510 562 
331] 

[577 583 
366] 

M Prediction [219 502 
356] 

[169 514 
362] 

[312 391 
212] 

[124 296 
659] 

[516 574 
308] 

[612 560 
349] 

GT [255 523 
336] 

[199 556 
363] 

[353 427 
199] 

[116 263 
648] 

[540 544 
306] 

[613 567 
340] 

N Prediction [220 500 
353] 

[169 507 
361] 

[312 388 
216] 

[130 294 
656] 

[513 571 
314] 

[611 556 
352] 

GT [228 537 
328] 

[216 575 
350] 

[346 410 
198] 

[ 74 330 702] [541 536 
286] 

[577 559 
319] 

The results above are then processed to determine the error function for each data using Mean Squared Error (MSE). 
This research is a 3-dimensional research where the average MSE error function is better seen in all dimensions (axial, 
coronal and sagittal). To get the average MSE error function, it can be seen in Table 2 and Table 3 which was obtained 
by calculating using the MSE average formula as follows: 

Mean MSE = [(MSE Results X) + (MSE Results Y) + (MSE Results Z)] 
3 
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Table 2 Recapitulation of Mean Error Function Data Mean Squared Error (MSE) of Maxillary Morphology 

Sample A as is ANS PNS P1-L P1-R M1-L M1-R 

A 5909 3868 3985 9021 651 1633 979 154 4453 

B 3156 380 2216 2763 1140 940 292 2322 947 

C 3019 444 1753 2980 1426 655 303 2627 1038 

D 1444 286 1670 1349 3213 873 578 1645 1033 

E 3211 342 1095 2939 1586 1124 1611 3884 1134 

F 622 1754 1000 570 4980 2997 1444 5135 1792 

G 4166 169 3312 12402 2019 1267 935 2305 1554 

H 3338 302 1854 1726 2788 475 1212 3258 751 

I 1212 442 1163 471 1663 956 1136 4419 524 

J 2221 303 1500 1764 1446 794 800 2350 1110 

K 2178 1124 1315 1212 2659 615 471 1761 597 

L 2051 506 1342 2210 940 987 412 1382 1244 

M 1288 712 1058 888 2814 1186 670 2588 1049 

N 2936 686 1360 2318 1710 627 769 2022 655 

Mean 2625,1 808,4 1758,7 3043,8 2073,9 1080,5 829,48 2560,7 1277,1 

 

The annotation points and deep learning validation result points with the biggest (least accurate) and smallest (most 
accurate) MSE, as determined by calculations made in Table 2 and Table 3, are shown in Figure 1-6. The image below 
shows the display of deep learning validation results along with captions: Yellow dots represent CBCT deep learning 
prediction points, and red dots represent Ground Truth (GT) points. 

 

Figure 1 (a) Validation results of as points with the smallest MSE (b) Validation results of as points with the largest 
MSE (c) as test results with deep learning test data 

Figure 1(a) shows the validation results of the axle point with the smallest MSE in sample G, namely 169 and Figure 
1(b) shows the validation results of as point with the largest MSE in sample A, namely 3868. In figure 1(a), it can be seen 
that the prediction points are close to the GT point, while in Figure 1(b), it can be seen that the distance between the 
prediction points is very far from the GT point. In Figure 1(c) it can be seen that the prediction results for the as point 
using deep learning are more posterior than the anatomy should be. Therefore, it can be said that the as point prediction 
results are still not accurate. 
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Table 3 Recapitulation of Mean Error Function Data Mean Squared Error (MSE) of Mandibular Morphology 

SAMPLE Cp-L Cd-AL Cd-PL Co-L Go-L Sg-L B ai ii Pg Gn Me Cp-R Cd-AR Cd-PR Co-R Go-R Sg-R Cd-ML Cd-MR 

A 4.874 1.332 3.449 3.019 3.539 5.151 408 3.228 1.845 2.395 5.367 1.367 2.141 3.993 1.438 811 2.490 9.895 1.866 2.322 

B 679 805 175 1.988 874 1.558 278 2.255 1.441 1.833 2.737 299 961 1.114 171 274 170 6.799 651 691 

C 412 2.904 2.191 3.463 658 1.990 348 4.521 1.532 1.348 4.797 291 97 5.144 2.726 2.050 1.926 7.957 76.632 99.425 

D 570 1.927 2.358 5.871 4.135 1.383 225 3.021 1.127 188 3.291 262 1.564 2.668 2.541 3.320 808 5.606 3.782 1.782 

E 1.210 1.996 1.443 342 190 1.334 1.078 4.833 1.930 1.156 539 3.345 1.086 1.973 1.433 1.058 2.908 4.854 2.327 2.441 

F 7.212 5.916 4.782 9.419 5.257 1.234 2.494 1.333 1.197 658 150 1.260 4.361 2.710 1.789 7.501 1.942 1.011 3.676 4.129 

G 1.540 1.729 526 2.142 452 1.454 271 4.637 1.487 320 7.281 1.894 1.602 2.998 775 1.883 2.143 1.511 3.205 1.306 

H 459 3.670 2.466 4.311 454 1.464 670 2.291 1.057 1.132 1.706 822 942 2.710 2.124 1.565 942 3.459 2.143 2.037 

I 533 1.428 1.325 3.505 3.873 269 764 2.369 1.397 734 5.053 3.755 917 1.246 662 1.250 446 2.013 1.210 688 

J 762 1.345 1.479 3.102 3.171 175 3.738 1.502 1.258 494 4.365 1.495 2.033 909 2.175 2.915 1.341 2.812 1.542 969 

K 1.640 2.614 2.519 5.302 3.183 93 1.959 866 695 1.163 3.567 2.367 525 505 1.553 3.193 1.913 1.455 1.545 2.211 

L 342 3.027 1.961 2.823 518 1.700 107 2.138 942 760 4.073 522 723 310 442 780 510 1.829 639 926 

M 425 2.547 983 4.967 2.564 2.762 493 2.226 684 44 2.575 1.098 2.129 443 1.748 2.983 2.683 750 3.748 1.620 

N 2.183 1.503 855 2.260 1.514 3.341 931 1.545 902 751 1.334 248 1.766 907 1.589 1.020 281 345 1.367 908 

Mean 1.632 2.339 1.894 3.751 2.170 1.708 983 2.626 1.250 927 3.345 1.359 1.489 1.974 1.512 2186 1.465 3.593 7.452 8.675 
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Figure 2 (a) Validation results of ANS points with the smallest MSE (b) Validation results of ANS points with the 
largest MSE (c) ANS test results with deep learning test data 

Figure 2(a) shows the validation results of ANS points with the smallest MSE in sample I, namely 471 and Figure 2(b) 
shows the validation results of ANS point with the largest MSE in sample G, namely 12402. In figure 2(a), it can be seen 
that the distance between the prediction points is quite close to the GT point, while in Figure 2(b), it can be seen that 
the distance between the prediction points is very far from the GT point. In Figure 2(c) it can be seen that the ANS point 
prediction results using deep learning are more posterior than the anatomy should be. Therefore, it can be said that the 
ANS point prediction results are still not accurate. 

 

Figure 3 (a) Validation results of M1-R points with the smallest MSE (b) Validation results of M1-R points with the 
largest MSE (c) M1-R test results with deep learning test data 

Figure 3(a) shows the validation results for point M1-R with the smallest MSE in sample I, namely 524, and Figure 3(b) 
shows the validation results for point M1-R with the largest MSE in sample A, namely 4453. In figure 3(a), it can be seen 
that the distance between the prediction points is quite close to the GT point, while in Figure 3(b), it can be seen that 
the distance between the prediction points is far from the GT point. In Figure 3(c) it can be seen that the M1-R point 
prediction results using deep learning are very slightly deviated from the anatomy they should be with a good level of 
accuracy. Therefore, it can be said that the prediction results for point M1-R are quite accurate. 
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Figure 4 (a) Validation results of Cp-L points with the smallest MSE (b) Validation results of Cp-L points with the 
largest MSE (c) Cp-L test results with deep learning test data  

Figure 4(a) shows the validation results of the Cp-L point with the smallest MSE on sample L, namely 342 and Figure 
4(b) shows the validation results of the Cp-L point with the largest MSE on sample F, namely 7212. In figure 4(a), it can 
be seen that the distance between the prediction points is quite close to the GT point, while in Figure 4(b), it can be seen 
that the distance between the prediction points is far from the GT point. In Figure 4(c) it can be seen that the prediction 
results for the Cp-L point using deep learning are not in accordance with the anatomy it should be. Therefore, it can be 
said that the prediction results for the Cp-L point are still not accurate. 

 

 

Figure 5 (a) Validation results of B points with the smallest MSE (b) Validation results of B points with the largest 
MSE (c) B test results with deep learning test data  

Figure 5(a) shows the validation results for point B with the smallest MSE on sample L, namely 107 and Figure 5(b) 
shows the validation results for point B with the largest MSE on sample J, namely 3738. In figure 5(a), it can be seen that 
the distance between the prediction points is very close to the GT point, while in Figure 5(b), it can be seen that the 
distance between the prediction points is quite far from the GT point. In Figure 5(c) it can be seen that the prediction 
results for point B using deep learning are slightly more anterior than the anatomy should be with a fairly good level of 
accuracy. Therefore, it can be said that the prediction results for point B are quite accurate. 
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Figure 6 (a) Validation results of Pg points with the smallest MSE (b) Validation results of Pg points with the largest 
MSE (c) Pg test results with deep learning test data  

Figure 6(a) shows the validation results for point Pg with the smallest MSE in sample M, namely 44, and Figure 6(b) 
shows the validation results for point Pg with the largest MSE in sample A, namely 2395. In figure 6(a), it can be seen 
that the distance between the prediction points is quite close to the GT point, while in Figure 6(b), it can be seen that 
the distance between the prediction points is quite far from the GT point. In Figure 6(c) it can be seen that the prediction 
results for point Pg using deep learning are slightly deviated from the anatomy they should be with a fairly good level 
of accuracy. Therefore, it can be said that the prediction results for point Pg are quite accurate. 

4. Discussion 

Technology known as artificial intelligence (AI) can facilitate human labor and boost output.1 AI has witnessed the 
advancement and use of machine learning in a number of medical domains over the past few decades. The advancement 
of medical imaging technology has made it possible to automatically identify anatomical landmarks in cephalometric 
radiographs [12]. 

Orthodontic diagnosis is a time-consuming process that involves patient assessment, study models analysis, 
radiography and photography analysis [13]. Because orthodontists analyze patients in a complicated manner, there is 
a vast range of treatment approaches available. For the purpose of increasing speed, accuracy, and consistency, these 
diagnostic techniques ought to be automated. 

Because cephalometric analysis based on 2D pictures is frequently imprecise, morphological analysis is improved by 
3D imaging, such as CBCT [14]. The development of CBCT provides a more accurate and thorough comprehension of 
diagnostic pictures, enabling the development of treatment strategies that are more likely to be effective. Anatomical 
cephalometric landmarks must be automatically detected because manual detection takes a lot of time, practice, and 
error-prone handling, which reduces accuracy. 2D cephalometric analysis has various unique constraints, so a deep 
learning method approach on 3D CBCT was used to solve this issue. 

Convolutional neural networks (CNNs), a type of neural network that performs well on visual tasks like image 
classification, picture segmentation, object detection, face recognition, and others, are used in the Deep Learning 
process. CNN extracts information from pictures using convolutional filters; first layers identify edges, second layers 
identify objects' pieces, and third layers are able to identify entire things, like faces or other intricate geometric 
structures [15]. Consequently, a CNN-based anatomical landmark detection model in CBCT x-rays is used in this study. 

According to the research findings, three additional samples were used as test data for the anatomical landmark 
determination process, and fourteen samples were used as training and validation samples for the AI software. These 
results produced fairly good deep learning outcomes, despite the fact that there were still a number of high error points 
in anatomical landmarks. 

In maxillary morphology, if further MSE calculations are carried out, the average obtained for the entire sample at each 
point which has the lowest error rate is at the as point, namely 808.4 and the highest is at the ANS point, namely 3043.8. 
In mandibular morphology, if the MSE calculation is carried out further, the average obtained for the entire sample at 
each point which has the lowest error rate is at the Pg point, namely 927 and the highest is at the Cd-MR point, namely 
8675. This shows that, the results of deep learning validation using AI are the best at the as and Pg points and the worst 
at the ANS and Cd-MR points. 
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Test results with new samples (test data) on maxillary morphology, at points A, as, is, ANS, PNS, P1-L, P1-R and M1-L 
have inaccurate results, while at point M1-R the results are quite accurate. The prediction points at points A, PNS, P1-L, 
P1-R and M1-L are still far from the anatomical landmarks they should be. Meanwhile, even though the as, is and ANS 
points are still not accurate, the prediction point results are close to the anatomical landmarks they should be. Test 
results with new samples (test data) on mandibular morphology, at points Co-R, Co-L, Cd-MR, Cd-ML, Cd-AR, Cd-AL, Cd-
PR, Cd-PL, Cp-R , Cp-L, Go-R, Go-L, Gn, Me, Sg-R, Sg-L, ii, ai have inaccurate results, while at points B and Pg the results 
are quite accurate. Prediction points at points Co-R, Co-L, Cd-MR, Cd-ML, Cd-AR, Cd-AL, Cd-PR, Cd-PL, Cp-R, Go-R, Go-L, 
Sg- R, Sg-L is still far from the anatomical landmark it should be. Meanwhile, at points Cp-L, ai, ii, Me, Gn, although still 
not accurate, the results of the predicted points are close to the anatomical landmarks they should be. It is still necessary 
to test more new samples to train machine learning to form memories and record precise anatomical landmark points. 

Even if the research mentioned above yielded an error rate that is still somewhat high, it is nevertheless sufficient as a 
starting point for the development of AI in the field of orthodontics. The obtained disparity is still very large, but with 
the ongoing development of deep learning techniques, it may be less. The following factors have led to differences in 
research findings with varying degrees of precision for every patient and the complete anatomical landmark point of 
the maxillofacial: 

1. Deep learning has time constraints AI program that takes a while to learn. It will take roughly six months to 
receive the prediction results for 14 research samples with total of 29 anatomical landmarks. More accurate 
and meaningful findings can only be obtained through repeated learning. 

2. Small sample size. At the Orthodontic Specialist Clinic, University of Airlangga Dental Hospital Surabaya, CBCT 
is still infrequently used to plan orthodontic therapy for patients. Following numerous deep learning iterations, 
training and validation samples were acquired. More samples are required to boost the variety of learning data 
because the number of collected samples is still extremely little. 

3. Despite the fact that Javanese ethnicity was the primary factor in sample selection, there were differences in 
the research sample, including differences in head sizes, weights, and heights. These size variances also affect 
how different CBCT radiography results are. There are variations in the field of vision for each slice, and the 
mandible's anatomical features—particularly at the condyle—are shortened. 

4. Presentation of anatomical landmark annotation software is still displayed on each side of the axis, axial / 
coronal / sagittal. So there are difficulties in the accuracy of 3D annotation. Manual annotation was only carried 
out from one axis/dimension and annotations from the other two sides were missed. 
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