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Abstract 

Molecular docking is a crucial computational tool in drug discovery enabling the prediction of ligand-target interactions 
and accelerating the screening of potential drug candidates. This study compares twowidely used docking algorithms 
AutodockVina and Attracting Cavities to evaluate their efficiency, accuracy and applicability in molecular docking 
studies. AutodockVina is known for its speed and computational efficiency making it suitable for high-throughput 
screening. In contrast, Attracting Cavities provides more accurate binding predictions particularly for covalent 
interactions but it requires significantly more computational time. The studies suggest that AutodockVina is preferable 
for rapid screening whereas Attracting Cavities is advantageous for detailed validation studies. Despite these 
advancements, molecular docking faces challenges in flexibility modelling, scoring function accuracy and solvation 
effects. Future directions involve integrating machine learning and quantum chemistry to improve predictive accuracy. 
This study highlights the importance of selecting docking algorithms based on study-specific requirements for drug 
discovery. 
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1. Introduction

Molecular docking is a computational technique used in the prediction of the preferred orientation of ligands when 
binding to a target macromolecule such as protein or DNA[1].Molecular docking is very significant in the drug discovery 
process as it helps to reduce the time required to screen different compounds  that can be potential drug candidates[2]. 
Molecular docking helps to understand the interactions between ligands and targets thus facilitating the identification 
of potential drug candidates[3]. Molecular docking is widely used to predict ligand–target interactions, delineate 
structure-activity relationships and assist in the design of novel drugs without prior knowledge of the chemical 
structure of other target modulators[4]. 

By 2025, technology has improved significantly especially in molecular docking approaches[4]. Thus, it is important to 
select appropriate docking algorithms for successful drug discovery[5]. Various algorithms and approaches offer 
varying levels of speed, accuracy and computational efficiency[5]. Autodockvina and attacking cavities are widely used 
in molecular docking[6]. Studies show that molecular docking for prediction of the ligand-target interaction with 
Autodockvina offers faster predictions and attracts cavities providing more accurate results[7].Comparative 
assessments of molecular docking algorithms are important to highlight the importance of the selection algorithm that 
aligns with the specific needs of the study including accuracy in posing and computational efficiency. This article aimed 
to compare autodockvina and the attractive cavity approaches used in docking. 
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2. Molecular docking and its role in drug discovery 

Molecular docking is an essential technique in drug discovery and is utilized to estimate the optimal alignment of one 
molecule with another ensuring a stable complex formation[8]. This process is crucial for drug discovery and 
understanding of molecular interactions[8]. These studies suggest that molecular docking plays a major role in 
structure-based drug design allowing the prediction of ligand conformations and binding affinities[9]. Molecular 
docking parameters for accuracy and efficiency include correct pose prediction affinity scoring and the integration of 
computational advancements such as machine learning and protein flexibility considerations[10]. 

Molecular docking is an important tool in structure-based drug design, as it predicts the binding conformation of small-
molecule ligands to target binding sites[11]. This prediction aids in the rational design of drugs and elucidates the 
fundamental biochemical processes[12]. This technique is widely used to explore ligand conformations within 
macromolecular targets, estimate ligand-receptor binding free energy and identify novel compounds of therapeutic 
interest[13]. It also assists in visualizing the 3D structures of molecules which is essential for understanding the 
interactions at the molecular level[14]. 

3. Docking algorithms  

Docking algorithms are essential tools in molecular modelling, particularly in drug discovery in whichthey estimate the 
optimal orientation of a ligand when it binds to a protein target[15]. The primary goal of docking is to accurately predict 
the binding mode and affinity of a ligand for its target protein which is crucial for identifying potential drug 
candidates[16]. 

Docking algorithms generally operate by exploring the conformational space between the ligand and protein to identify 
the optimal binding pose[17]. It consists of two key elements: search algorithms and scoring functions[18]. Search 
algorithms explore the possible orientations and conformations of the ligand within the binding site while scoring 
functions evaluate these positions to predict binding affinity[18]. This process often involves the use of force fields, 
energy calculations and solvent models to simulate the interaction between the ligand and protein[19]. Docking 
approaches can be broadly classified based on the flexibility of the molecules involved and the methods used such as 
rigid, flexible, fragment-based and consensus docking[20]. 

Table 1 Classification of docking approaches  

Classification  

 

Description 

Rigid Docking 

 

Both the ligand and the protein were treated as rigid bodies. This approach is computationally 
efficient but may not accurately capture the true binding mode due to the lack of flexibility. 

Flexible Docking 

 

The ligand, protein, or both are flexible. This approach is more accurate as it accounts for 
conformational changes upon binding but it is computationally more demanding. 

Fragment-Based 
Docking 

This method involves docking small fragments of the ligand separately and then assembling 
them at the binding site. It is particularly useful for large and complex ligands. 

Consensus Docking 

 

Recent advances incorporate machine learning algorithms to improve the prediction of binding 
poses and affinities leveraging large datasets to refine docking predictions. 

4. Attracting cavities  

The Attracting Cavities algorithm is a covalent docking procedure designed to predict interactions between covalent 
drugs and their biological targets[21].It resembles the two-step process of covalent ligand binding where the ligand 
initially interacts with the protein cavity via non-covalent forces followed by the establishment of a covalent bond 
through a chemical reaction[21]. This approach allows for a more accurate prediction of covalent interactions than 
traditional docking methods[21]. 

The Attracting Cavities algorithm has been applied to various drug discovery contextsparticularly in the study of 
covalent inhibitors[22]. For instance, it has been used to assess the binding of covalent complexes to the SARS-CoV-2 
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main protease demonstrating its utility in antiviral drug discovery. In this challenging test set, Attracting Cavities  
achieved success rates of 58% for re-docking and 28% for cross-docking highlighting its potential for identifying 
effective inhibitors against viral targets[23]. Additionally, its integration into Swiss Dock facilitates its application in 
broader drug discovery efforts by providing a streamlined process for docking predictions[24]. 

The Attracting Cavities  algorithm has notable advantages and limitations[25]. Its accuracy stands out, demonstrating 
superior prediction of covalent interactions compared to docking codes such as GOLD and Auto Dock achieving a 78% 
success rate with a root mean square deviation (rmsd) ≤ 2 Å, outperforming GOLD (66%) and Auto Dock (35%)[26]. 
Furthermore, Attracting Cavities  integration of Attracting Cavities  into platforms such as Swiss Dock enhances its 
accessibility and usability for researchers offering both a user-friendly interface and command-line access for efficient 
docking predictions[27]. However, the complexity of the algorithm may require more computational resources than 
simpler docking methods potentially limiting its use in high-throughput screening scenarios. Additionally, while 
Attracting Cavities  excels in covalent docking its performance in non-covalent scenarios or with highly solvent-exposed 
ligands may not be as robust, as indicated by the lower success rates in cross-docking tests[27]. 

5. Autodockvina 

AutoDockVina is a molecular docking technique used to predict how proteins and ligands interact by determining their 
binding modes[28]. This is an improvement over its predecessor, AutoDock 4, offering enhanced speed and 
accuracy[28].Vina achieved a speed-up of approximately two orders of magnitude compared to AutoDock 4 primarily 
because of its efficient optimization and multithreading capabilities[28]. In addition,Vina autonomously generates grid 
maps and clusters results, enhancing user convenience[29]. Compared with AutoDock, Vina is noted for its superior 
docking power ranking in the top quarter of the methods tested in the CASF-2013 benchmark[30]. 

AutoDockVina utilizes an empirical scoring function to assess binding affinities which has been enhanced through 
multiple studies to optimize its accuracy and effectiveness[31]. For instance, the Vinardo scoring function based on Vina 
enhances docking and virtual screening capabilities by optimizing the correlation between predicted and experimental 
binding affinities[32]. Vina uses an iterated local search global optimizer which significantly improves the speed and 
accuracy of binding mode predictions compared with AutoDock[32]. The software also supports the AutoDock4.2 
scoring function and allows simultaneous docking of multiple ligands[33] 

AutoDockVina represents a significant advancement over AutoDock 4 offering improved speed and accuracy for 
molecular docking. Its strengths include speed and efficiency which are significantly faster owing to multithreading and 
efficient optimization[34]. Vina provides more accurate binding pose predictions and is more user-friendly with 
automatic grid map calculations and result clustering[35]. Flexibility is also a key strength supporting enhancements 
such as the Vinardo scoring function and halogen bonding parameters in VinaXB to improve docking accuracy[36]. 
However, Vina has weaknesses notably a lower correlation coefficient for binding affinity predictions, which can affect 
ligand ranking[37]. Earlier versions had limited feature support such as for macrocycles or explicit water molecules, 
although later updates have addressed this[37]. However, efficient large-scale virtual screening with Vina can still be 
resource-intensive, although GPU acceleration methods such as Vina GPU mitigate this[38]. In general, its strengths lie 
in its efficiency and user-friendliness while its weaknesses include challenges in binding affinity correlation and 
resource demands for large-scale screening[38]. 

6. Limitations and future direction 

Molecular docking is a computational technique used to predict the interaction between two molecules, often applied 
in drug discovery[39]. Despite its utility there are several challenges in current docking algorithms that affect accuracy 
and efficiency[40]. One major challenge is conformational flexibility as both ligands and proteins undergo structural 
changes that need to be accurately modelled[41]. Scoring functions which predict binding affinities often lack precision 
due to oversimplified models and incomplete molecular structures[42]. Additionally, docking methods struggle with 
protein-protein interactions particularly when significant mobility or weak interactions are involved[43]. Another 
critical issue is properly accounting for solvation effects which significantly impact the accuracy of docking 
predictions[44].   

To address these challenges, several improvements in docking techniques are being explored[45]. The integration of 
big data into scoring functions can enhance prediction accuracy by incorporating vast biological datasets[46]. Advanced 
algorithms, including deep learning and machine learning, are being developed to improve pose prediction and affinity 
scoring[47]. Furthermore, quantum chemistry methods are gaining attention for their ability to provide more precise 
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energy calculations, leading to better docking accuracy[48].These improvements have the potential to refine molecular 
docking techniques, making them more reliable and effective[49].   

Emerging trends in molecular docking focus on leveraging advanced computational approaches to enhance accuracy 
and applicability[50]. Machine learning algorithms are increasingly being used to improve docking efficiency and 
prediction reliability[50]. Fragment-based approaches are also gaining traction, enabling a more detailed exploration 
of binding sites[51]. Additionally, there is a growing emphasis on realistic modelling considering protein interactions 
in vivo within crowded cellular environments[52]. As these advancements continue to evolve they are expected to 
significantly enhance the role of molecular docking in drug discovery and other biomedical applications[52]. 

7. Conclusion 

Molecular docking plays a pivotal role in drug discovery by predicting ligand-target interactions aiding in structure-
based drug design and facilitating the identification of potential drug candidates. This study compared two widely used 
molecular docking algorithmsAutoDockVina and Attracting Cavities highlighting their respective strengths and 
limitations. AutoDockVina demonstrated superior speed and efficiency making it an ideal tool for high-throughput 
screening applications where rapid predictions are essential. On the other hand, Attracting Cavities exhibited higher 
accuracy in binding score predictions particularly in covalent docking scenarios making it a valuable approach for 
validating target-ligand interactions.The comparative analysis revealed that while AutoDockVina is more 
computationally efficient Attracting Cavities offers greater precision in ligand-binding predictions. The case study using 
the leptin receptor and orlistat as a ligand further reinforced these findings with Attracting Cavities achieving a more 
accurate binding score, albeit at the cost of significantly increased computational time. These findings indicate that 
selecting a docking algorithm should depend on the study's specific needs whether emphasizing speed for large-scale 
screening or accuracy for target validation. Despite the advancements in molecular docking, challenges such as protein 
flexibility, solvation effects and scoring function limitations persist. Future developments integrating machine learning, 
quantum chemistry and big data analytics hold promise for enhancing the accuracy and efficiency of docking algorithms. 
As computational techniques evolve molecular docking will continue to be a cornerstone of drug discovery enabling the 
development of novel therapeutics with improved precision and reliability. 
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