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Abstract 

Microplastics have become a significant pollutant in aquatic ecosystems, with serious implications for biodiversity, food 
safety, and environmental sustainability. This paper reviews the nature and sources of microplastic pollution, alongside 
its ecological and human health impacts. Recognizing the limitations of traditional monitoring and removal methods, 
the study explores emerging artificial intelligence (AI)-based strategies as innovative tools for improving environmental 
monitoring and pollution mitigation. The manuscript discusses how AI techniques such as machine learning, computer 
vision, and remote sensing can enhance the detection, classification, and prediction of microplastic distribution in water 
bodies. It also highlights the potential of AI-driven robotic systems in supporting targeted mitigation efforts. While these 
technologies show promise, further interdisciplinary research and development are necessary to fully realize their 
application in real-world environmental management. The integration of AI offers a proactive path toward achieving 
cleaner aquatic ecosystems and supporting global sustainability goals.  
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Learning; Computer Vision; Sustainability 

1. Introduction

Microplastic pollution in aquatic ecosystems is a critical environmental issue that has gained increasing attention over 
the past few decades. Defined as synthetic solid particles or polymeric materials measuring less than 5 millimeters in 
diameter, microplastics can be categorized into primary and secondary types [1]. Primary microplastics are 
intentionally manufactured for use in products such as cosmetics, cleaning products, and industrial abrasives. In 
contrast, secondary microplastics result from the breakdown of larger plastic debris through processes like 
photodegradation, mechanical wear, and chemical degradation. These particles are often too small to be efficiently 
filtered by water treatment plants, leading to their widespread distribution in marine and freshwater environments. 
The sources of microplastic pollution are extensive, ranging from synthetic fibers shed from clothing and textiles during 
washing, to plastic waste that degrades into smaller pieces over time. The persistence of these particles in aquatic 
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ecosystems, combined with their ability to accumulate and persist in the environment, presents significant challenges 
for both environmental sustainability and ecosystem health. 

The global environmental and ecological impact of microplastic pollution is profound and widespread. Aquatic 
organisms across various trophic levels are vulnerable to the ingestion of microplastics, which can lead to a range of 
harmful effects. For instance, smaller marine organisms, such as plankton, can mistake microplastic particles for food, 
which then enter the food chain. Studies have shown that microplastics can cause physical damage to the 
gastrointestinal systems of marine species, leading to internal abrasions, blockages, and reduced feeding efficiency [2]. 
Furthermore, the ingestion of microplastics can impair growth and reproduction in various aquatic organisms, 
threatening biodiversity and ecosystem services. In addition to these direct impacts, microplastics also act as vectors 
for persistent organic pollutants (POPs), which include chemicals such as pesticides and industrial compounds that 
adhere to the surface of plastic particles. These chemicals are then transported across the aquatic environment, 
potentially entering the food web and reaching human populations. The effects of microplastics are not confined to 
marine ecosystems alone; freshwater systems such as rivers and lakes are also increasingly contaminated, further 
exacerbating the scope of the problem [3]. 

This issue of microplastic pollution is intricately linked to the United Nations Sustainable Development Goals (SDGs), 
particularly Goal 14, which focuses on conserving and sustainably using the oceans, seas, and marine resources for 
sustainable development. Microplastic pollution directly threatens marine life by disrupting ecosystems, harming 
aquatic species, and compromising the health of marine environments. According to Jambeck et al. [4], the widespread 
presence of plastic waste in the oceans, which includes microplastics, has severe consequences for marine biodiversity 
and the livelihoods of coastal communities dependent on marine resources. Moreover, microplastic pollution also 
intersects with SDG 12, which calls for responsible consumption and production. The increasing prevalence of plastic 
products and their subsequent degradation into microplastics highlight the need for sustainable practices in plastic 
production, consumption, and disposal. Therefore, addressing microplastic pollution is crucial for achieving these SDGs 
and advancing global environmental sustainability efforts. Efforts to mitigate the impacts of microplastics align with the 
broader goals of protecting biodiversity, promoting the sustainable use of marine resources, and ensuring 
environmental health [2,3]. 

The role of Artificial Intelligence (AI) in addressing environmental challenges has been growing rapidly in recent years, 
offering new avenues for monitoring, analyzing, and mitigating pollution. AI technologies, such as machine learning, 
image recognition, and data analytics, are being increasingly applied in environmental science to enhance the efficiency 
and accuracy of pollution detection and management [5,6]. In the context of microplastic pollution, AI has demonstrated 
significant potential in revolutionizing environmental monitoring techniques. For instance, AI-powered image 
recognition systems can analyze large datasets of images from remote sensors and underwater cameras to identify 
microplastic particles, reducing the need for manual inspection and increasing the speed of data processing [7]. Machine 
learning algorithms can also be used to predict the movement and distribution of microplastics in aquatic ecosystems, 
helping to identify hotspots for targeted interventions. Furthermore, AI has the capacity to optimize waste management 
processes, by predicting and detecting microplastic sources and facilitating the development of mitigation strategies 
tailored to specific environments. The integration of AI in environmental science thus represents a transformative 
approach that can improve the effectiveness of monitoring systems and inform data-driven decision-making processes 
aimed at reducing microplastic pollution [6,7]. 

The purpose of this review is to explore the emerging role of AI-based monitoring and mitigation strategies in the fight 
against microplastic pollution in aquatic ecosystems, with a focus on advancing environmental sustainability. By 
synthesizing recent research, this review aims to provide a comprehensive overview of how AI technologies are being 
applied to monitor and manage microplastic pollution. This review will address the various sources of microplastics, 
their environmental impacts, and the innovative AI tools and techniques being utilized to address these challenges. 
Through this analysis, the review seeks to underscore the importance of interdisciplinary approaches, combining 
environmental science and AI, to effectively tackle the microplastic crisis and promote a more sustainable future. The 
scope of this review is to highlight the potential of AI in enhancing environmental sustainability through improved 
pollution monitoring, predictive modeling, and targeted mitigation efforts. 

2. Microplastic Pollution in Aquatic Ecosystems: Current Landscape 

2.1. Types and Classifications of Microplastics 

Microplastics, defined as plastic particles smaller than 5 mm in size, are classified into two major categories: primary 
and secondary microplastics. Primary microplastics are deliberately manufactured at microscopic sizes for specific 
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industrial applications [8]. These include microbeads, which are commonly used in cosmetics, personal care products, 
and cleaning agents, as well as microfibers shed from synthetic textiles such as polyester and nylon. They also 
encompass plastic pellets or "nurdles" used as raw material in the production of larger plastic items. The manufacturing 
process of these materials results in microplastics directly entering aquatic systems, contributing to their pervasive 
spread in the environment [8]. 

On the other hand, secondary microplastics result from the physical degradation and fragmentation of larger plastic 
debris over time. This fragmentation occurs through mechanical processes, photodegradation, and chemical 
weathering, which break down plastics into smaller and smaller particles [9]. Items such as plastic bottles, packaging, 
and fishing nets are common sources of secondary microplastics. These microplastics are more ubiquitous in the 
environment due to the sheer volume of plastic waste present in aquatic ecosystems. They can persist for decades or 
even centuries, causing long-term contamination of water bodies [10]. 

Both primary and secondary microplastics can have significant impacts on aquatic ecosystems due to their small size 
and diverse physical and chemical properties. The classification of microplastics based on their origin helps to 
understand their pathways and fate in the environment and aids in identifying effective mitigation strategies [9-11]. To 
further illustrate the distinctions between primary and secondary microplastics, their sources, and environmental 
behavior, Table 1 presents a detailed classification and characterization matrix that highlights key attributes relevant 
to their environmental fate. 

Table 1 Classification and Characteristics of Microplastics 

Type 
(Primary / 
Secondary) 

Example Source Size Range Shape / 
Morphology 

Common 
Polymer 
Composition 

Typical 
Environmental 
Behavior 

Primary Cosmetics 
(microbeads), 
industrial 
abrasives, plastic 
pellets (nurdles) 

<5 mm Spherical, 
granular, 
fibrous 

Polyethylene 
(PE), 
Polypropylene 
(PP), 
Polystyrene (PS) 

Often suspended in 
water, widely 
dispersed 

Primary Synthetic fibers 
from textiles (e.g., 
polyester) 

<5 mm Fibrous Polyester, Nylon Remain suspended or 
settle depending on 
density 

Secondary Plastic bottles, 
fishing nets, 
packaging 

Variable, <5 mm 
after degradation 

Irregular, 
fragmented 

Varies—PE, PP, 
PET, etc. 

Accumulates in 
sediments, 
bioavailable to fauna 

2.2. Behavior, Transport, and Fate in Marine and Freshwater Systems 

Microplastics exhibit complex behavior in aquatic environments, and their movement and persistence are influenced 
by factors such as size, density, and surface characteristics. The behavior of microplastics varies greatly depending on 
their physical properties [12]. For instance, smaller microplastics tend to remain suspended in the water column, while 
larger particles may sink to the sediments. The buoyancy of microplastics is also influenced by the chemical composition 
of the polymer, with some types being more likely to float on the surface or aggregate with other particles [12-15]. 

Understanding the movement of microplastics through various environmental compartments is crucial for assessing 
their ecological impact. After their release into the environment through domestic, industrial, and agricultural activities, 
microplastics are subject to complex transport dynamics involving wind dispersal, runoff, river transport, and tidal 
deposition. These pathways determine their distribution across soils, freshwater, and marine environments, influencing 
their persistence and interactions with biota. The schematic below provides a comprehensive overview of the major 
pathways and processes involved in the environmental transport and fate of microplastics across terrestrial and aquatic 
systems (Figure 1). 
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Figure 1 Pathways and Fate of Microplastics in Terrestrial and Aquatic Ecosystems. Reproduced with permission 
from ref. [13] 

Once introduced into the aquatic environment, microplastics can be transported over long distances by ocean currents, 
rivers, and wind [16]. Studies have shown that microplastics are found in remote regions of the ocean, far from their 
source of origin. They can be carried from urban areas to the open sea, highlighting the widespread nature of the 
contamination. In freshwater systems, microplastics are similarly transported by rivers and streams, accumulating in 
areas such as riverbeds, wetlands, and lakes [16-18]. 

The fate of microplastics in marine and freshwater systems depends on their interaction with environmental processes 
and biota. Over time, microplastics may accumulate in the sediments or be ingested by marine organisms. In some cases, 
these particles can enter the food chain, leading to bioaccumulation and biomagnification. The persistence of 
microplastics in the environment is concerning, as they resist natural degradation processes, and their presence in 
ecosystems can last for hundreds of years [19-20]. 

Recent studies have provided important insights into the behavior and transport of microplastics in aquatic systems. 
For instance, according to research by Coyle et al. [21], microplastics have been found to accumulate in marine 
sediments and riverbeds, where they pose a threat to benthic organisms. In addition, microplastics' ability to adsorb 
toxic substances, such as persistent organic pollutants (POPs), increases their ecological risk, as these chemicals may be 
released into organisms when ingested, leading to toxic effects [21]. 

2.3. Ecological and Health Risks to Organisms and Humans 

Microplastic pollution in aquatic ecosystems presents significant ecological and health risks to both organisms and 
humans. For aquatic organisms, the ingestion of microplastics is a major concern. Many marine and freshwater species, 
including fish, shellfish, and invertebrates, mistake microplastics for food, leading to internal injuries, digestive 
blockages, and impaired feeding [22]. The ingestion of microplastics can also affect growth, reproduction, and survival, 
as evidenced by studies on fish populations that have shown reduced growth rates and reproductive success following 
microplastic exposure [22,23]. 

The ingestion of microplastics can also result in the bioaccumulation of toxic chemicals present on the plastic's surface. 
These chemicals, which may include heavy metals, pesticides, and other pollutants, can leach into the organisms' tissues, 
leading to adverse health effects [24]. This is of particular concern in marine ecosystems, where microplastics can enter 
the food chain and accumulate in higher trophic levels. In the case of apex predators, such as marine mammals, the 
effects of microplastic ingestion may have severe consequences for species health and population sustainability [25]. 
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For humans, the primary route of exposure to microplastics is through the consumption of contaminated seafood, 
particularly fish and shellfish [26]. In recent years, studies have shown that microplastics are present in commercially 
important seafood species, raising concerns about human health risks [26-28]. In addition to ingestion, humans can be 
exposed to microplastics through drinking water, where microplastic particles have been detected in both bottled and 
tap water globally. Some researchers have even suggested that inhalation of airborne microplastic fibers could pose a 
health risk, especially in areas with high levels of industrial plastic processing or waste incineration [29-31]. 

The potential health risks to humans from microplastic exposure are still under investigation, but early studies suggest 
that microplastics may cause inflammation, oxidative stress, and immune system dysfunction. According to a study by 
Akbari & Jaafari [20], the ingestion of microplastics has been linked to inflammation in laboratory animals, suggesting 
that chronic exposure may lead to more serious health conditions. Moreover, the presence of toxic chemicals adsorbed 
onto microplastics could contribute to long-term health risks, including endocrine disruption, reproductive toxicity, and 
cancer. 

2.4. Gaps in Traditional Monitoring and Control Strategies 

Monitoring and controlling microplastic pollution in aquatic ecosystems has proven to be a challenging task due to 
several limitations in traditional methods [32]. One major challenge is the lack of standardized monitoring protocols for 
microplastics, which makes it difficult to compare results across studies. The diversity in size, shape, and polymer type 
of microplastics requires the use of specialized detection methods, many of which are still in the developmental stage. 
Traditional sampling methods, such as trawling nets and surface water collection, are often insufficient for capturing 
smaller microplastics or those that are buried in sediments [33-35]. 

Furthermore, the global scale of microplastic pollution presents significant logistical challenges for monitoring efforts. 
Microplastics are widely distributed across marine and freshwater systems, often in remote or difficult-to-reach areas. 
Effective monitoring requires a large-scale and coordinated approach, with regular sampling in both high-traffic and 
remote regions. However, the cost and complexity of such monitoring programs are substantial, limiting their feasibility 
[34,36]. 

In terms of control strategies, traditional efforts have largely focused on reducing plastic waste inputs into the 
environment, such as banning single-use plastics and improving waste management systems. While these efforts are 
important, they have been insufficient to address the already existing pollution in aquatic ecosystems. The lack of 
effective removal technologies, particularly for microplastics in wastewater, remains a significant obstacle [37,38]. 
Advances in filtration and treatment technologies, such as the development of microplastic capture systems in 
wastewater treatment plants, are needed to reduce microplastic contamination at its source [38]. 

A study by Choudhury et al. [18] emphasized the need for more comprehensive and effective mitigation measures, 
suggesting that both prevention and active removal strategies are necessary to address microplastic pollution. The 
development of novel techniques, including the use of artificial intelligence (AI) for monitoring and predicting 
microplastic distribution, represents a promising area of research. These technologies could provide more efficient, 
cost-effective, and widespread solutions to microplastic pollution control [18]. 

3. Role of Artificial Intelligence in Environmental Monitoring 

Artificial intelligence (AI) has brought transformative changes to environmental monitoring, particularly in the 
detection and analysis of microplastic pollution in aquatic ecosystems. AI technologies, including machine learning 
(ML), deep learning (DL), and computer vision, are revolutionizing the way researchers and environmental scientists 
study and address microplastic pollution [39,40]. These technologies enhance data processing, enable real-time 
monitoring, and allow for the efficient classification and tracking of microplastic contamination across large 
geographical areas. Additionally, AI-driven systems are able to process vast amounts of data from various sources, 
including remote sensing, drones, underwater imaging, and sensor networks, providing researchers with valuable 
insights that would be difficult or impossible to obtain using traditional methods [41,42]. 

3.1. AI Subfields Relevant to Microplastics 

AI subfields, such as machine learning (ML), deep learning (DL), and computer vision, have been crucial in the 
development of more effective systems for monitoring and detecting microplastics in aquatic environments [43]. 
Machine learning encompasses a wide range of algorithms that can be trained to detect patterns and make predictions 
from data. This capability is particularly useful for classifying microplastics from other environmental debris. ML 
algorithms, such as decision trees, random forests, and support vector machines, have been applied to environmental 
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data to differentiate microplastics based on specific features such as size, shape, and texture [31]. These machine 
learning algorithms are especially beneficial in automating the analysis of large datasets, reducing human error and the 
time required for data processing. 

Deep learning, a subset of machine learning, utilizes neural networks with multiple layers to learn complex patterns in 
data. Convolutional neural networks (CNNs) are especially prominent in deep learning applications for microplastic 
detection. These networks are trained on large datasets of images to detect microplastics in various environmental 
contexts, such as satellite imagery, underwater photos, and drone footage. DL models, particularly CNNs, have 
demonstrated high accuracy in identifying microplastic particles, even in challenging environments where 
microplastics are visually similar to other materials like organic debris [39]. The use of deep learning in microplastic 
detection has the potential to revolutionize how large-scale environmental monitoring efforts are carried out, by 
providing high-speed, automated solutions for continuous data analysis. 

Computer vision, another critical AI subfield, is designed to enable machines to interpret and understand visual 
information from the world around them. In the context of microplastic pollution, computer vision algorithms are 
applied to interpret visual data obtained from underwater cameras, drones, or satellites. These systems analyze images 
to detect microplastic debris, classifying them according to various characteristics such as shape, size, and texture. By 
automating the image analysis process, computer vision significantly reduces the need for manual intervention, 
enabling continuous, real-time monitoring of aquatic ecosystems [40]. This application of computer vision plays a 
crucial role in detecting microplastics that may not be easily identified through traditional monitoring methods. Table 
2 summarizes the major artificial intelligence techniques applied in microplastic monitoring, mapping each to their 
specific applications, data requirements, strengths, and case study examples drawn from recent literature. 

Table 2 AI Techniques and Their Application to Microplastic Monitoring 

AI Technique Application Data Type Used Strengths Limitations Case Study 
Reference 

Machine 
Learning 
(SVM, Random 
Forest) 

Classification of 
microplastics vs 
non-plastics 

Imaging, spectral data High accuracy, 
interpretable 
models 

Requires feature 
engineering, 
sensitive to noisy 
data 

[48] 

Deep Learning 
(CNN) 

Image-based 
detection of 
microplastics 

Drone/underwater/satellite 
imagery 

Automated 
feature learning, 
high accuracy 

Data-intensive, 
opaque decision-
making 

[39] 

Computer 
Vision 

Visual 
identification and 
classification 

Camera/drone footage Real-time 
processing, 
scalable 

Limited by image 
quality, lighting 

[47] 

Predictive 
Modeling 
(ML/DL) 

Forecasting 
microplastic 
movement and 
distribution 

Historical pollution data, 
environmental variables 

Supports 
preventive 
action 

Requires 
continuous data 
input 

[49] 

3.2. Data Sources: Remote Sensing, Drones, Underwater Imaging, Sensor Networks 

AI applications for microplastic detection depend heavily on the integration of diverse data sources. Remote sensing, a 
key technology in environmental monitoring, allows for the collection of large-scale data from satellite and aerial 
imagery. Satellite-based remote sensing provides high-resolution images that are essential for identifying microplastic 
particles on the ocean surface or in large freshwater bodies. AI-powered image classification models are used to analyze 
these images, providing insights into the concentration and distribution of microplastics across vast regions [44]. 
Remote sensing enables the monitoring of large aquatic ecosystems that may otherwise be inaccessible, offering an 
efficient and cost-effective solution for global-scale microplastic surveillance. 

Drones have become increasingly popular for collecting environmental data in both marine and freshwater ecosystems. 
Equipped with high-resolution cameras and sensors, drones capture detailed images and videos of water bodies, which 
are then analyzed using machine learning and computer vision algorithms. Drones are particularly valuable in hard-to-
reach areas where traditional monitoring techniques may be limited. Their mobility and ability to gather real-time data 
make them an indispensable tool for monitoring microplastic pollution [45,46]. Additionally, drones provide 



World Journal of Biology Pharmacy and Health Sciences, 2025, 22(02), 091-109 

97 

researchers with the ability to collect high-quality data across a range of geographic locations, offering a broader scope 
for monitoring microplastic pollution in diverse ecosystems. 

Underwater imaging technologies, such as sonar systems and underwater robots, are crucial for detecting microplastics 
that are not visible from the surface. These technologies allow for the collection of detailed data on submerged 
microplastics that may be suspended in the water column or embedded in the sediments. AI algorithms can process this 
data to identify microplastic particles based on their size, shape, and other physical characteristics [47,48]. 
Furthermore, sensor networks deployed in aquatic environments provide real-time data on environmental conditions, 
such as temperature, water quality, and particle concentrations. When combined with AI-based systems, these sensor 
networks improve the accuracy and efficiency of microplastic detection by providing continuous, high-frequency data 
[49]. A concise overview of the various AI-integrated data sources used in microplastic detection is provided in Table 3, 
detailing the tools, application environments, and technological limitations associated with each method. 

Table 3 Summary of AI-Integrated Data Sources for Microplastic Detection 

Data Source Example Device/Tool Resolution / 
Sensitivity 

Application 
Environment 

Role in AI-Based 
Analysis 

Limitations 

Remote 
Sensing 

PRISMA Satellite, 
Sentinel-2 

Up to 30m 
(optical), 
spectral 
bands 

Marine Broad spatial 
monitoring, used 
in CNNs for 
classification 

Limited to 
surface plastics, 
cloud 
interference 

Drones DJI Phantom with 
multispectral sensors 

High-
resolution 
images (cm 
level) 

Freshwater & 
Coastal 

Used for real-time 
microplastic 
spotting via image 
processing 

Battery limits, 
small area 
coverage 

Underwater 
Imaging 

ROVs with optical 
cameras 

High 
resolution 
(mm scale) 

Deep sea & lake 
beds 

Detailed close-up 
classification with 
AI 

Limited by 
visibility, costly 

Sensor 
Networks 

In-situ 
turbidity/fluorescence 
sensors 

Real-time 
particulate 
matter 

Rivers, 
treatment 
plants 

Feeds ML models 
for trend analysis 

Non-specific 
signal, 
maintenance 
needs 

3.3. Application to Microplastic Detection 

AI technologies have found widespread application in the detection of microplastics, particularly in areas such as image 
recognition, hyperspectral and multispectral data classification, and predictive modeling. 

Image recognition, facilitated by deep learning algorithms like CNNs, is one of the most powerful applications of AI in 
microplastic detection. In recent studies, CNNs have been successfully applied to classify and detect microplastic 
particles in images obtained from drones, satellites, and underwater cameras. By training CNN models on large datasets 
of labeled images, these algorithms can identify microplastics with high accuracy, even when they are mixed with other 
types of marine debris [39]. This application allows for the automation of image processing, reducing the need for 
manual inspections and speeding up the analysis process. 

Hyperspectral and multispectral data classification techniques are becoming increasingly important for microplastic 
detection, particularly in marine environments. These imaging techniques capture data across multiple wavelengths of 
light, allowing for the identification of materials based on their unique spectral signatures. When combined with AI 
algorithms, hyperspectral and multispectral data can be analyzed to differentiate microplastics from natural particles 
or sediments. These AI models are particularly useful in detecting microplastics that are invisible to the naked eye or 
that may be submerged beneath the surface of the water [44]. The ability to analyze multispectral and hyperspectral 
data through AI-powered systems enables more accurate and comprehensive monitoring of microplastic pollution. 

Predictive modeling and pattern recognition, powered by machine learning and deep learning, have also become 
essential tools in the study of microplastics. AI models can be trained to recognize patterns in historical environmental 
data, allowing for predictions about the movement and accumulation of microplastics in aquatic ecosystems. By 
combining predictive models with real-time sensor data, researchers can better understand microplastic distribution 
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dynamics and predict where future contamination may occur [49]. These models are particularly useful for long-term 
monitoring efforts, providing valuable insights into the effectiveness of mitigation strategies and helping policymakers 
make informed decisions about managing microplastic pollution. 

3.4. Case Studies/Examples from Recent Literature 

Recent case studies illustrate the significant impact AI has had in advancing microplastic detection. Studies by Hamzah 
et al. [45] and Maharjan et al. [50] demonstrated the use of drones equipped with machine learning models to detect 
microplastics in freshwater environments. By analyzing images captured by the drones, the machine learning 
algorithms were able to detect microplastic particles with high precision. This study highlights the potential of drone-
based AI systems in detecting microplastics in hard-to-reach areas and offers a practical solution for real-time 
environmental monitoring. 

Another notable example comes from Hu et al. [39], who utilized deep learning algorithms to analyze satellite imagery 
for large-scale monitoring of oceanic microplastics. Their study showed how AI-powered image recognition could be 
applied to satellite data to track microplastic pollution across the world's oceans. This approach allowed for the 
identification of areas with high concentrations of microplastics, providing critical information for marine conservation 
efforts and policy-making. 

In a study conducted by Taggio et al. [47], hyperspectral imaging and machine learning algorithms were used to detect 
microplastics in marine environments. By analyzing hyperspectral images, the researchers were able to identify 
microplastic particles that were not visible using traditional methods. This study demonstrated the power of AI and 
hyperspectral technology in overcoming the limitations of visual detection and improving the accuracy of microplastic 
monitoring. 

4. AI-Driven Mitigation Strategies and Sustainable Interventions 

Artificial intelligence offers transformative potential in developing mitigation strategies for microplastic pollution, 
enabling targeted, efficient, and scalable interventions. AI-driven solutions are revolutionizing the monitoring, 
prediction, and management of microplastics, with applications ranging from optimizing waste management processes 
to advancing recycling technologies [51,52]. Through predictive modeling, AI enhances the ability to foresee areas with 
high contamination risks, allowing for preemptive actions that minimize environmental damage. Additionally, AI 
facilitates the design of sustainable interventions by streamlining waste collection and treatment processes and 
supporting circular economy initiatives that aim to reduce plastic production and consumption. These AI-based 
strategies align with broader environmental sustainability goals and demonstrate the promising role of technology in 
mitigating the pervasive issue of microplastic pollution [4,53]. 

4.1. Autonomous Robotics and Underwater Vehicles for Cleanup 

The integration of autonomous robotics and underwater vehicles in microplastic cleanup efforts presents a 
groundbreaking approach to combating pollution in aquatic ecosystems. These robotic systems, equipped with AI 
technologies, enable precise detection, collection, and removal of microplastics from both freshwater and marine 
environments [54]. The development of these systems has been driven by the need for scalable, efficient, and 
sustainable solutions capable of operating in challenging aquatic environments where traditional methods are 
ineffective. Autonomous underwater vehicles (AUVs) equipped with advanced sensors, such as optical and infrared 
imaging systems, facilitate real-time monitoring of pollution levels, identifying microplastic concentrations with high 
accuracy [55,56]. These technologies can also be designed to perform cleanup tasks autonomously, reducing the need 
for human intervention in dangerous or remote locations. 

AI plays a central role in optimizing the efficiency of these robots, using machine learning algorithms to process data 
from sensors and adapt to varying environmental conditions. These systems are capable of distinguishing between 
microplastics and other organic or inorganic materials, ensuring that only harmful pollutants are targeted for removal. 
Additionally, the deployment of autonomous vehicles reduces operational costs and labor intensity, enabling 
continuous and large-scale cleaning operations. The combination of AI and robotics in underwater cleanup is also 
fostering the development of intelligent navigation systems that can autonomously map and chart polluted areas, 
adjusting their cleaning routes to maximize efficiency [54]. 

Robotic cleanup technologies are being tested in a variety of aquatic environments, with several pilot projects 
successfully employing AI-driven solutions for the removal of microplastics from rivers, lakes, and oceans. These AI-
integrated robots not only provide a significant reduction in pollution but also promote the sustainability of aquatic 
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ecosystems by preventing the accumulation of plastics in sensitive areas. The capability of these robots to collect plastic 
debris at a high rate and in difficult-to-reach locations offers a novel solution that aligns with long-term environmental 
conservation efforts [57,58]. 

4.2. AI-Optimized Bioremediation and Filtration Systems 

AI-optimized bioremediation and filtration systems present an innovative approach to tackling microplastic pollution 
by enhancing natural processes and improving the efficiency of filtration technologies. Machine learning models are 
increasingly utilized to analyze large datasets, which help identify the most effective microbial strains capable of 
breaking down microplastics. Through AI, the environmental conditions required for optimal microbial activity can be 
precisely controlled, resulting in more efficient degradation of microplastics in aquatic ecosystems. These AI-driven 
systems can also monitor real-time data from sensors embedded in water bodies to assess the degradation process, 
predict future outcomes, and adjust conditions accordingly, thereby maximizing the effectiveness of bioremediation 
efforts [59,60]. 

In parallel, AI plays a crucial role in enhancing filtration systems designed to capture microplastics from water sources. 
Advanced filtration techniques, such as membrane-based filtration and electrostatic separation, can be optimized 
through AI algorithms that analyze water flow, pressure, and particle size distribution in real-time. These AI systems 
can dynamically adjust filter parameters, improving the capture rates of microplastics while minimizing energy 
consumption and operational costs [59]. By combining AI with filtration technologies, the overall efficiency of 
microplastic removal is significantly improved, making it possible to scale these systems for widespread use in water 
treatment facilities. 

The integration of AI into both bioremediation and filtration not only enhances the effectiveness of these systems but 
also contributes to the sustainability of aquatic ecosystems. AI algorithms assist in the identification of areas most 
affected by microplastic pollution, enabling targeted interventions. Furthermore, the combination of bioremediation 
with filtration systems ensures that microplastics are not only broken down but also physically removed from the 
environment. This multi-layered approach provides a promising pathway for mitigating microplastic contamination in 
aquatic environments while contributing to long-term environmental sustainability goals [61]. 

4.3. Wastewater Treatment Plant (WWTP) Monitoring and Process Optimization 

AI plays a significant role in optimizing the operations of wastewater treatment plants (WWTPs), crucial for reducing 
microplastic contamination in aquatic ecosystems. Machine learning algorithms can be employed to enhance the 
detection of microplastics in wastewater by integrating sensor data with real-time analysis, improving the efficiency 
and effectiveness of filtration systems. Advanced AI-driven models analyze large datasets from sensors placed 
throughout the treatment process, identifying patterns in microplastic presence and behavior. These insights enable 
the fine-tuning of operational parameters, such as flow rates, chemical dosing, and filtration methods, to ensure higher 
removal efficiency of microplastics from wastewater before discharge into water bodies [39,62]. 

The application of AI in process optimization extends beyond monitoring; predictive models can anticipate variations 
in influent water quality, allowing for adjustments in treatment protocols. For instance, AI can predict fluctuations in 
the concentrations of microplastics based on historical data and environmental factors, enabling operators to adapt 
treatment schedules accordingly. This proactive approach not only enhances the removal efficiency but also minimizes 
energy consumption, thereby contributing to the overall sustainability of the WWTP. Studies have highlighted the 
integration of AI models in monitoring and controlling biological and chemical processes within WWTPs, leading to 
significant improvements in both cost-effectiveness and performance [61,63]. 

AI-powered optimization techniques also foster the development of closed-loop systems in WWTPs, where waste 
byproducts are reused or repurposed, contributing to circular economy goals. By improving the overall efficiency of 
these plants, AI reduces the operational costs and environmental footprint of wastewater treatment processes, while 
simultaneously curbing the release of microplastics into the ecosystem. Furthermore, these AI tools can be integrated 
with real-time environmental monitoring systems, which, in turn, helps in ensuring compliance with water quality 
regulations and contributes to overall environmental sustainability [64]. 

4.4. Role of AI in Lifecycle Analysis and Circular Economy Strategies 

Artificial intelligence plays a crucial role in supporting lifecycle analysis (LCA) and advancing circular economy 
strategies aimed at mitigating microplastic pollution. By employing machine learning algorithms, AI can track the entire 
lifecycle of plastics from production and usage to disposal and recycling. This data-driven approach enables more 
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accurate assessments of the environmental impact of various plastic materials, including their breakdown into 
microplastics. AI-powered models can analyze large datasets, identifying critical points where interventions can reduce 
waste generation or improve recycling efficiency [65]. Additionally, AI facilitates the integration of waste management 
systems with circular economy principles by optimizing recycling processes, making them more efficient, and reducing 
reliance on virgin plastic production. 

AI-driven technologies can also improve the design of sustainable materials, promoting the creation of products that 
are easier to recycle and have lower environmental impacts throughout their lifecycle. AI algorithms assess material 
properties, consumer usage patterns, and recycling capabilities to identify innovative materials that reduce the 
generation of microplastics [66,67]. These solutions can support circular economy goals by ensuring a closed-loop 
system where plastics are continuously reused, recycled, or upcycled, minimizing environmental harm. Furthermore, 
AI supports circular economy business models by providing predictive analytics that guide resource recovery processes 
and streamline the flow of materials across the production and consumption stages [68,69]. These strategies align with 
sustainable development goals and contribute to the reduction of plastic waste entering aquatic ecosystems. To 
compare the emerging AI-driven mitigation approaches, Table 4 outlines the key strategies, their technological 
maturity, AI functions, and the corresponding environmental and operational benefits and limitations. 

Table 4 Comparative Assessment of AI-Driven Mitigation Strategies 

Strategy Type Description AI Role Technological 
Readiness Level 
(TRL) 

Benefits Challenges / 
Limitations 

Autonomous 
Robotics 

Underwater or 
surface robots to 
collect microplastics 

Navigation, 
object 
detection & 
mapping 

TRL 6–7 (pilot 
stage) 

Continuous, 
non-human 
intervention 

Costly, energy-
demanding 

AI-Optimized 
Bioremediation 

Microbial 
degradation of 
plastics 

Optimize 
microbial 
activity using 
ML 

TRL 4–5 
(experimental) 

Eco-friendly, 
scalable 

Slow, needs 
ideal conditions 

Filtration Systems Advanced physical 
removal (e.g., 
membranes) 

AI regulates 
flow & 
efficiency 

TRL 7–8 High capture 
rate 

Maintenance 
intensive 

WWTP Process 
Optimization 

Enhanced treatment 
processes 

Predict 
influent 
variation, 
optimize 
settings 

TRL 8–9 Boosts 
removal rates, 
reduces cost 

Requires 
sensor network 

Lifecycle/Circular 
Economy Models 

Tracking plastic 
from production to 
disposal 

AI for pattern 
detection and 
system 
modeling 

TRL 5–6 Supports 
recycling 
innovation 

Needs robust 
data, regulatory 
alignment 

5. Challenges, Limitations, and Ethical Considerations 

The application of artificial intelligence (AI) in addressing microplastic pollution is not without challenges and 
limitations. While AI offers promising solutions, the integration of these technologies into environmental science and 
management requires careful consideration of data, costs, ethics, and regulatory frameworks. This section explores the 
key challenges that accompany the use of AI in the monitoring and mitigation of microplastic pollution. 

5.1. Data Scarcity and Model Generalization Across Ecosystems 

The scarcity of high-quality, comprehensive datasets presents a significant barrier to the application of AI for 
microplastic detection and mitigation. Microplastic pollution is highly context-dependent, varying significantly across 
different ecosystems, such as marine, freshwater, and terrestrial environments. AI models trained on limited or biased 
datasets may struggle to generalize across diverse geographical regions and environmental conditions [70]. In many 
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cases, there is a lack of comprehensive monitoring data from remote or under-studied areas, which limits the robustness 
and applicability of AI models. 

Moreover, the diverse nature of microplastics in terms of size, shape, composition, and sources complicates the 
development of AI models that can accurately identify and quantify pollution in different ecosystems [39]. The absence 
of a standardized and universally accepted classification system for microplastics further complicates model training. 
Researchers like Zarfl [71] highlight that without an exhaustive and consistent dataset, AI models risk overfitting to 
certain environments or types of microplastic pollution, resulting in reduced model accuracy and real-world 
applicability. 

Lastly, data scarcity also extends to environmental monitoring technologies, such as sensors and drones, which may not 
provide consistent data across all regions. AI models trained with data from high-resource regions may struggle to 
function effectively in areas with limited technological infrastructure. This challenge demands increased investment in 
data collection and a more coordinated approach to data-sharing among researchers and policymakers [72,73]. 

5.2. High Cost and Technical Complexity of AI Solutions 

The high cost and technical complexity of implementing AI-driven solutions for microplastic pollution mitigation 
represent significant barriers to widespread adoption. AI systems require considerable investments in hardware, 
software, and specialized expertise. The development of deep learning models, in particular, demands large 
computational resources, which can be costly and inaccessible to many environmental agencies and smaller research 
institutions [17,74-78]. The cost of acquiring high-resolution imagery, remote sensing data, and deploying drones or 
underwater robots further exacerbates these financial challenges. 

Additionally, the technical complexity involved in deploying AI models in real-world environments can hinder 
scalability. For example, machine learning models need continuous updates to adapt to new data, requiring ongoing 
monitoring and maintenance. This long-term commitment to technical support and the need for specialized personnel 
can place a strain on institutions and organizations with limited funding. AI models also require extensive training 
datasets, which, as mentioned earlier, are not always available for every ecosystem, increasing both the development 
time and cost of AI solutions [79]. 

Furthermore, integrating AI technologies into existing environmental monitoring frameworks can be a complex task 
that requires overcoming technical challenges related to data interoperability, system integration, and automation. To 
address these barriers, there needs to be concerted effort in streamlining AI technologies and making them more 
accessible for large-scale implementation [80]. This would require not only significant financial investments but also 
changes in the infrastructure of environmental management systems. 

5.3. Risk of Algorithmic Bias and Lack of Transparency in Decision-Making 

AI models, while capable of processing vast amounts of data, are vulnerable to biases that can affect their accuracy and 
fairness. The risk of algorithmic bias is particularly concerning when AI is used in environmental science, where biased 
decision-making could lead to ineffective policies or even exacerbate environmental issues. Bias in AI models can stem 
from various sources, including the data used to train the models, the selection of features, and the underlying 
assumptions built into the algorithms [76]. 

In the context of microplastic pollution, biased models might prioritize pollution mitigation in areas that are already 
heavily studied while neglecting regions that are under-researched or that exhibit different pollution patterns. 
Additionally, the lack of transparency in AI decision-making processes—often referred to as the "black-box" nature of 
AI—further complicates efforts to ensure fairness and accountability. Decision-makers may not fully understand how 
AI models arrive at conclusions, making it difficult to assess their accuracy or identify potential issues [81]. 
Transparency in AI models is critical, particularly in environmental applications, where decisions can have significant 
long-term consequences on ecosystems and public health. 

To address these concerns, researchers like Soundariya et al. [74] suggest the development of explainable AI (XAI), 
which aims to provide clearer insights into how models reach their conclusions. Ensuring transparency and reducing 
bias in AI algorithms is an essential step in promoting trust and accountability in AI-driven environmental strategies. 
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5.4. Environmental and Ethical Footprint of AI Infrastructures 

The environmental impact of AI infrastructures is another critical consideration. While AI technologies offer significant 
benefits in environmental sustainability, the development and deployment of AI systems can have substantial 
environmental footprints. The training of AI models, especially those based on deep learning, requires immense 
computational resources that contribute to high energy consumption [82,83]. These processes, if powered by non-
renewable energy sources, can exacerbate the environmental issues that AI is meant to address, creating a paradox 
where AI solutions might indirectly contribute to environmental degradation. 

Moreover, the extraction of rare minerals and metals used in AI hardware, such as GPUs and other high-performance 
computing equipment, also poses environmental and ethical challenges. The mining and disposal of electronic waste 
can lead to additional environmental harms, including soil and water contamination [84]. These ethical considerations 
must be taken into account when evaluating the overall sustainability of AI solutions for microplastic pollution 
mitigation. The future of AI in environmental science should, therefore, focus not only on mitigating pollution but also 
on minimizing the ecological footprint of AI technologies themselves. 

5.5. Need for Regulatory Standards and Open Datasets 

As AI continues to be integrated into environmental monitoring and microplastic pollution management, the 
establishment of regulatory standards and the availability of open datasets become crucial. Currently, the lack of 
standardized practices in AI applications within environmental science leads to fragmented and inconsistent 
approaches. The absence of universal standards for data collection, processing, and analysis in microplastic monitoring 
complicates the development of global strategies to combat pollution [75]. 

Moreover, open access to datasets is essential for fostering collaboration and ensuring that AI models are built on 
diverse and representative data. Many researchers and organizations are hindered by limited access to high-quality 
datasets, which can impede the development of accurate and generalizable AI models. Initiatives to promote open data-
sharing platforms and standardized data formats are necessary to facilitate research and innovation in AI-driven 
environmental solutions [77]. 

Regulatory frameworks must also be put in place to ensure that AI applications in environmental monitoring are safe, 
equitable, and aligned with sustainability goals. These regulations should address issues such as data privacy, ethical AI 
use, and the minimization of environmental impact from AI infrastructures [85]. By establishing clear guidelines and 
fostering open access to data, governments and research institutions can ensure that AI technologies are leveraged 
effectively and responsibly for environmental sustainability. 

6. Future Research Directions 

The continuous advancement of artificial intelligence (AI) technologies has opened numerous avenues for future 
research in mitigating microplastic pollution. The potential integration of AI with other emerging technologies, 
including the Internet of Things (IoT), edge computing, citizen science, and policy-driven frameworks, promises to 
enhance real-time monitoring, data collection, and the effectiveness of mitigation strategies. This section explores some 
critical future directions that will likely play a pivotal role in advancing the understanding and management of 
microplastic pollution in aquatic ecosystems. 

6.1. Integration of AI with IoT and Edge Computing in Real-Time Monitoring 

The integration of AI with IoT and edge computing holds great potential for revolutionizing the real-time monitoring of 
microplastic pollution. IoT devices can collect vast amounts of environmental data from various sources, including 
water quality sensors, remote drones, and underwater robots. These devices generate continuous streams of data, 
which, when coupled with AI, can provide near-instantaneous analysis, helping to detect microplastics in real-time. AI 
algorithms, particularly machine learning models, can analyze this data on-site through edge computing, thus reducing 
the dependency on cloud computing and enabling faster decision-making [86]. 

AI-powered IoT systems can improve monitoring networks by autonomously identifying hotspots of microplastic 
accumulation, pinpointing sources of contamination, and providing actionable insights. The synergy between these 
technologies allows for more granular and timely monitoring, which is essential for understanding the dynamics of 
microplastic pollution in different environments. Additionally, AI-driven predictive models can forecast future pollution 
trends, enabling proactive measures to reduce plastic waste before it reaches critical levels [87]. The continuous 
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interaction between AI, IoT, and edge computing will undoubtedly shape the future landscape of microplastic detection 
and management, allowing for more effective and efficient mitigation strategies. 

6.2. Fusion of AI with Citizen Science and Participatory Sensing 

Citizen science and participatory sensing are powerful approaches for enhancing environmental monitoring. By 
integrating AI with these methods, it becomes possible to engage the public in large-scale data collection efforts while 
leveraging their collective knowledge for more accurate and inclusive environmental monitoring. Citizen scientists, 
equipped with mobile apps, sensors, and AI-powered tools, can report sightings of microplastics, track their own 
consumption patterns, and even assist in data analysis. This democratization of scientific inquiry fosters widespread 
awareness and action towards combating microplastic pollution [88]. 

AI can help organize, process, and analyze the data collected through citizen science, improving the quality of the 
information gathered. With advanced machine learning techniques, AI systems can correct errors, identify patterns in 
citizen-generated data, and provide real-time feedback to participants, thereby enhancing the reliability of the 
monitoring efforts. The fusion of AI with citizen science can also lead to the development of more localized and context-
specific data, which is critical in understanding the regional variation in microplastic pollution [89]. By bridging the gap 
between technology and community participation, AI-powered citizen science initiatives will significantly contribute to 
the larger environmental sustainability movement and help track the effectiveness of mitigation strategies. 

6.3. Multimodal Systems: Combining Imaging, Spectroscopy, and Machine Learning 

Future research should focus on combining multiple data collection methods such as imaging, spectroscopy, and 
machine learning to create multimodal systems capable of providing highly accurate, comprehensive, and scalable 
microplastic detection solutions. Imaging technologies, such as optical and electron microscopy, allow for high-
resolution identification of microplastic particles, while spectroscopy methods, including Raman and FTIR 
spectroscopy, can identify the chemical composition of these particles [90]. The integration of these techniques with 
machine learning models enhances their detection capabilities by enabling the automation of image and spectral data 
analysis, facilitating the classification of microplastics from other materials in complex aquatic environments. 

Multimodal systems powered by AI have the potential to significantly improve the sensitivity and specificity of 
microplastic detection. By combining multiple data sources, AI can generate a more robust understanding of 
microplastic contamination, helping to identify particles of various sizes, shapes, and compositions. Moreover, these 
systems can be used in real-time, allowing for quicker responses to microplastic pollution and more effective tracking 
of contamination over time. The fusion of imaging, spectroscopy, and AI will provide researchers and policymakers with 
the necessary tools to devise precise, data-driven strategies for managing microplastic pollution at both local and global 
scales [91]. 

6.4. Transdisciplinary Collaboration (Environmental Science, Computer Science, Policy) 

Transdisciplinary collaboration is essential for addressing the complex, multifaceted challenges of microplastic 
pollution. The integration of environmental science, computer science, and policy development will create synergies 
that can drive innovative solutions. Environmental scientists bring deep knowledge of ecosystems, pollutants, and their 
impacts on marine and freshwater environments, while computer scientists can develop the necessary AI algorithms 
and systems to monitor, detect, and model microplastic pollution. Policymakers play a crucial role in translating 
scientific findings into actionable laws, regulations, and strategies that can reduce plastic waste and mitigate its 
environmental effects [92]. 

Collaboration across these disciplines allows for the development of AI-powered tools that are both scientifically sound 
and aligned with regulatory requirements. A concerted effort from these sectors can lead to the creation of global 
databases, integrated monitoring platforms, and policy frameworks that are informed by cutting-edge AI technologies. 
Transdisciplinary research will help identify practical solutions for scaling microplastic mitigation strategies and 
ensuring they are incorporated into national and international policies on waste management and environmental 
sustainability [4,93,94]. Moving forward, fostering a culture of collaboration among experts from diverse fields will be 
pivotal in addressing the growing threat of microplastic pollution. 

6.5. Policy-Driven AI Frameworks for Microplastic Governance 

The development of AI frameworks tailored to microplastic governance is a crucial aspect of future research. These 
frameworks will guide the implementation of AI-based technologies in environmental policy, helping to create 
standardized, transparent, and accountable systems for monitoring and mitigating microplastic pollution. Governments 



World Journal of Biology Pharmacy and Health Sciences, 2025, 22(02), 091-109 

104 

and international organizations must integrate AI into existing regulatory frameworks, ensuring that its applications 
are consistent with international environmental agreements, such as the United Nations Sustainable Development Goals 
(SDGs) [95]. AI-based policy frameworks can support decision-making by providing real-time data, predictive insights, 
and transparent reporting on microplastic pollution levels. 

Furthermore, AI can be utilized to enhance compliance with existing regulations by enabling more efficient monitoring 
of waste disposal and recycling practices. Machine learning models can identify patterns of non-compliance or 
inefficiencies in waste management systems, thus facilitating more effective enforcement of policies. These AI-driven 
policy frameworks could also incorporate adaptive learning, where policies evolve based on new data and insights 
gained from ongoing monitoring. By embedding AI in microplastic governance, policymakers will be able to respond 
more rapidly and effectively to the increasing environmental threat posed by microplastics [4]. As AI-driven 
frameworks gain traction, they will support a more data-driven, proactive approach to managing plastic pollution at 
local, national, and global levels.  

7. Conclusion 

The mounting challenge of microplastic pollution in aquatic ecosystems demands innovative and multidisciplinary 
approaches to mitigate its pervasive impact. This review has explored the significant role of artificial intelligence (AI) 
in enhancing the detection, monitoring, and management of microplastics, shedding light on its potential to transform 
environmental science. By integrating AI technologies such as machine learning, deep learning, and computer vision 
with data sources like remote sensing, drones, and underwater imaging, it becomes possible to create more efficient, 
accurate, and real-time monitoring systems. These AI-driven solutions hold promise not only for detecting microplastics 
in diverse environments but also for driving predictive modeling and improving decision-making in mitigation 
strategies. 

Furthermore, the role of AI in sustainable interventions, such as lifecycle analysis and circular economy strategies, is 
pivotal in reshaping waste management practices and fostering a more sustainable relationship with our natural 
resources. By leveraging AI's capabilities in environmental monitoring, researchers and policymakers can develop 
adaptive, data-driven frameworks that facilitate informed decisions and promote environmental sustainability. 

While considerable progress has been made, several challenges remain, particularly in bridging the gaps in traditional 
monitoring techniques and fostering collaboration across disciplines. Future research should focus on advancing the 
integration of AI with IoT and edge computing, enhancing citizen science, and developing multimodal systems that 
combine diverse data sources for comprehensive microplastic monitoring. Additionally, the establishment of policy-
driven AI frameworks will be critical to governing microplastic pollution and ensuring that mitigation efforts are both 
effective and equitable. 

As AI continues to evolve, its potential in addressing microplastic pollution will only grow, offering promising avenues 
for sustainable interventions and effective governance. Collaboration among environmental scientists, computer 
scientists, policymakers, and the public will be crucial in realizing the full potential of AI to safeguard aquatic ecosystems 
and achieve long-term environmental sustainability. Ultimately, AI represents a transformative tool in the global effort 
to combat microplastic pollution, providing the technological foundation for more resilient and sustainable ecosystems 
in the future.  
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