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Abstract 

The power of matrix algebra was seen not only in applied mathematics, applied sciences, engineering but also in 
economics, sociology, modern psychology and industrial management (i.e., system of linear equation, cryptography, 
optics, signal processing, image processing, graph theory, Machine Learning, Data Science etc.). In practice the matrix 
inverse methods is suitable only for non-singular small system because the higher the size of the system the more 
difficult finding the inverse of the system even with the help of software/application. With experience we were able to 
find the inverse of order 4, 5, … , n matrix with ease and also verified the method by computing 𝐴𝐴−1 =  𝐼.  
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1. Introduction

Matrix (Plural matrices) is a Square or rectangular array of an elements (which are usually numbers) in rows and 
columns. 

The general form of matrix with m rows and n column is: 

𝐴 =  

[

𝑎11 𝑎21
. . . 𝑎1𝑛

𝑎12 𝑎22
. . . 𝑎2𝑛

.

.

.
𝑎𝑚1

.

.

.
𝑎𝑚2

.

.

.

.

.

.

.

.

.

.

.

.
. . . 𝑎𝑚𝑛]

Which is written in compact form as 𝐴𝑚𝑛 = [𝑎𝑖𝑗]𝑚𝑛 

1.1. Statement of the Problem 

In practice the matrix inverse methods is suitable only for non-singular small system (2 by 2 and 3 by 3 matrix). Hence, 
the need for order 4, 5, 6, … , n matrix. 
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1.2. Aim and Objectives of the Study 

 This research paper aim to solve inverse of 4 by 4, 5 by 5, … , n b y n non-singular matrix.  

1.2.1. The specific objectives are to 

• find the determinant of n by n matrix 
• test for non-singularity of the matrix if singular stop else  
• find 𝐴𝑑𝑗𝑜𝑖𝑛𝑡 (𝐴) =  [𝑨𝒊𝒋]

𝑇  

• Compute 𝐴−1 = 
1

det (𝐴)
 ⨯ 𝐴𝑑𝑗𝑜𝑖𝑛𝑡(𝐴).  

• Verified by computing 𝐴𝐴−1 =  𝐼. 

1.3. Scope and Limitation 

The study is restricted in finding inverse of order 4, 5, … , n non-singular matrix. 

1.4. Significance of the Study 

The field of matrix is fortunate to be blessed with lots of contribution but scholars used to restrict themselves on 3 by 3 
matrix when it comes to matrix inverse method. As an optimizers we dimmed it fit to teach our student how to obtain 
inverse of order n because we do believe that unravelling the full strength of any method will certainly help our young 
one to think more deeply and be able to develop more sophisticated devices, applications etc. in time to come [1].  

1.5. Operational Definition of Basic Terms 

1.5.1. Transpose is an operator that flips a matrix over its diagonal 

1.5.2. Sign factor is a + (plus) or – (minus) sign that is attached to each entry element of a matrix  
(i.e., if (−1)𝑖+𝑗 = 𝑒𝑣𝑒𝑛 then the sign factor for that element 𝑎𝑖𝑗 is + else it must be – (odd)) 

1.5.3 Minor (𝑴𝒊𝒋 ) is a determinant of some smaller square matrix generated from the original matrix (say A) by 

removing one or more of its rows and columns. 

1.5.4 Cofactor (𝑨𝒊𝒋) it is calculated by multiplying the sign factor by the Minor  

1.5.5 Adjoint matrix is the transpose of the cofactor matrix  

1.5.6 Determinant is a scalar value computed for a given square matrix  

2. History 

Matrix concept has ancient roots, with some early ideas found in Chinese mathematics. Over the years, matrices have 
seen an extended use in research, social science, commerce and are being used in cryptography, computer graphics, 
economics, chemistry, optics geology, animation, communication, wireless, signal processing, robotics, image 
processing, machine learning, data science and finance. Matrices also have in particular a wide range of applications in 
science and have been applied to solve real-world problems. Matrices are used to represent real-world data, message 
encryption and decryption, cryptography, coding theory, creating 3-D image and 2-D motion, to compress electronic 
data and to store fingerprint data, robotics and automation, CT scans and MRI scans, in economics to calculate gross 
domestic products, wireless application protocol, profit prediction, UV spectroscopy, automobiles, etc. The matrices are 
used in physics while applying Kirchhoff's Laws of Voltage and Current to solve problems, to explore electrical circuits, 
quantum mechanics and optics, to create graphs, calculate statistics, and conduct scientific research in a variety of 
domains. Matrices have a long history of use in solving linear equations, dating back to 300BC.  [2, 3, 4, 5, 9, 10, 14]. 

2.1. Overview: Inverse Method 

The square matrix A is called an invertible matrix if there exist a square matrix 𝐴−1 such that 𝐴𝐴−1 = 𝐼 (where I is a unit 
matrix, provided that the two matrices are of the same order). Then 𝐴−1 is called an invertible matrix of A, denoted 
by 𝐴−1. 
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It should be noted that, if 𝐴−1is a square matrix and det. (A) ≠ 0 then A is an invertible matrix, and we always have the 

property 𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼 and 𝐴−1 = 
1

𝑑𝑒𝑡 (𝐴)
 ⨯ 𝐴𝑑𝑗. (𝐴) [6, 7, 8, 11, 13, 12, 15]. 

The divisibility of determinants within square matrices serves as a captivating area of study, offering profound insights 
into the underlying structures and properties of these mathematical constructs. By exploring the divisibility of 
determinants, researchers delve into the intricate interplay between the elements within matrices, unraveling patterns 
and relationships that underpin their mathematical behavior. This pursuit extends beyond mere theoretical conjecture, 
finding practical relevance in various fields where matrices are indispensable tools for problem-solving and analysis. 
Understanding the divisibility of determinants empowers professionals to optimize their use of matrices in diverse 
applications, enhancing their efficacy in tasks ranging from data analysis to algorithm design. Some significant 
advancements have been made regarding the divisibility among determinants of power matrices. Moreover, the study 
of the divisibility of determinants within square matrices represents a testament to the enduring relevance and 
versatility of mathematical concepts across different domains of knowledge. As scholars probe deeper into this 
phenomenon, they uncover connections that transcend disciplinary boundaries, shedding light on the underlying 
principles governing complex systems and phenomena.  

An invertible matrix must be non-singular, meaning its determinant must be non-vanishing else the system is either 
linearly dependent or inconsistent. In Cryptography Matrix A is a key matrix which we used to encrypt our message and 
decrypt our messages by finding 𝐴−1. Hence, one of the importance of learning how to find inverse of large systems. In 
optimization we often pay attention to details (i.e., see how we can come out with a result that is more accurate and 
more convergent than the existing/common knowledge) [1, 3, 7, 15]. 

3. Results 

3.1. Linear Equation with two variables 

Write the system of equation 

2𝑥 + 3𝑦 = 4 

5𝑥 + 4𝑦 = 17 

In matrix form, find 𝐴−1. Hence, solve the simultaneous linear equation 

Solution 

AX = B      (1) 

[
2 3
5 4

] [
𝑥
𝑦] =  [

4
17

] 

Table 1 Cofactor of order 2 matrix 

(𝒂𝒊𝒋)th 𝒂𝒊𝒋 (−𝟏)𝒊+𝒋 𝑴𝒊𝒋 𝑨𝒊𝒋 

𝑎11 2 + 4 4 

𝑎12 3 - 5 -5 

𝑎21 5 - 3 -3 

𝑎22 4 + 2 2 

 

|A| = det. (A) = ∑ 𝑎1𝑗
2
𝑗=1 𝐴1𝑗  = 𝑎11𝐴11 + 𝑎12𝐴12     (2) 

= 2(4) +3(-5) 

= -7 → non-singular, hence matrix A is invertible 
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𝐴−1 = 
1

|𝐴|
 ⨯ 𝐴𝑑𝑗. (𝐴)  (3) 

Adj. (A) = (𝐴𝑖𝑗)
𝑇      (4) 

 

Adj. (A) = [
4 −3

−5 2
] 

𝐴−1 = 
1

−7
[

4 −3
−5 2

]  

𝑋 = 𝐴−1𝐵         (5) 

[
𝑥
𝑦]  =  

1

−7
[

4 −3
−5 2

] [
4
17

]  = [
5

−2
].    Therefore, (x, y) = (5, -2) 

3.2. System of Linear Equation with three variables 

Write the system of equation in matrix form, find 𝐴−1, Hence, solve the simultaneous linear equation 

𝑥 − 𝑦 + 3𝑧 = 5 

4𝑥 + 2𝑦 − 𝑧 = 0 

𝑥 + 3𝑦 + 𝑧 = 5 

Solution 

   AX = B    

[
1 −1 3
4 2 −1
1 3 1

] [
𝑥
𝑦
𝑧
] =  [

5
0
5
] 

Table 2 Cofactor of order 3 matrix 

(𝒂𝒊𝒋)𝒕𝒉 𝒂𝒊𝒋 (−𝟏)𝒊+𝒋 𝑴𝒊𝒋 𝑨𝒊𝒋 

𝑎11 1 + 5 5 

𝑎12 -1 - 5 --5 

𝑎13 3 + 10 10 

𝑎21 4 - -10 10 

𝑎22 2 + -2 -2 

𝑎23 -1 - 4 -4 

𝑎31 1 + -5 -5 

𝑎32 3 - -13 13 

𝑎33 1 + 6 6 

 

|A| = det. (A) = ∑ 𝑎1𝑗
3
𝑗=1 𝐴1𝑗  = 𝑎11𝐴11 + 𝑎12𝐴12 + 𝑎13𝐴13       (6) 

= 1(5) + (-1) (-5) + 3 (10) 
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= 40 → non-singular, hence matrix A is invertible 

𝐴−1 = 
1

|𝐴|
 ⨯ 𝐴𝑑𝑗. (𝐴)  (7) 

Adj. (A) = (𝐴𝑖𝑗)
𝑇       (8) 

Adj. (A) =[
5 −5 10
10 −2 −4
−5 13 6

]

𝑇

 = [
5 10 −5

−5 −2 13
10 −4 6

] 

𝐴−1 = 
1

40
[

5 10 −5
−5 −2 13
10 −4 6

]  

𝑋 = 𝐴−1𝐵          (9) 

[
𝑥
𝑦
𝑧
] =  

1

40
[

5 10 −5
−5 −2 13
10 −4 6

] [
5
0
5
]  = 

1

40
[
0
40
80

] = [
0
1
2
]. 

Therefore, (x, y, z) = (0, 1, 2) 

3.3. System of Linear Equation with four variables 

Write the system 

𝑤 + 𝑥 + 𝑦 − 𝑧 = 2 

4𝑤 + 4𝑥 + 𝑦 + 𝑧 = 0 

𝑤 − 𝑥 − 𝑦 + 2𝑧 = 0 

2𝑤 + 𝑥 + 2𝑦 − 2𝑧 = 2 

In matrix form, find 𝐴−1. Hence, solve the simultaneous linear equation 

Solution 

AX = B 

Table 3 Cofactor of order 4 matrix 

(𝒂𝒊𝒋)𝒕𝒉 𝒂𝒊𝒋 (−𝟏)𝒊+𝒋 𝑴𝒊𝒋 𝑨𝒊𝒋 

𝑎11 1 + -9 -9 

𝑎12 1 - 2 --2 

𝑎13 1 + 27 27 

𝑎14 -1 - -17 17 

𝑎21 4 - -1 1 

𝑎22 4 + 0 0 

𝑎23 1 - 3 -3 

𝑎24 1 + -2 -2 

𝑎31 1 - -2 -2 
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𝑎32 -1 - 0 0 

𝑎33 -1 + 5 5 

𝑎34 2 - -3 3 

𝑎41 2 - -3 3 

𝑎42 2 + 1 1 

𝑎43 2 - 10 -10 

𝑎44 -2 + -6 -6 

 

|A| = det. (A) =∑ 𝑎1𝑗
4
𝑗=1 𝐴1𝑗  = 𝑎11𝐴11 + 𝑎12𝐴12 + 𝑎13𝐴13 + 𝑎14𝐴14      (10) 

= 1(-9) +1 (-2) + 1 (27) + (-1)17 

= -1 → non-singular, hence matrix A is invertible 

𝐴−1 = 
1

|𝐴|
 ⨯ 𝐴𝑑𝑗. (𝐴)   (11) 

Adj. (A) = (𝐴𝑖𝑗)
𝑇         (12) 

Adj. (A) = [

−9
1

−2
2

 

−2
0

 
0
1

  

27
−3
5
2

  

17
−2
3

−6

]

𝑇

 = [

−9
−2
27
17

 

1
0

 
−3
−2

  

−2
0
5
3

  

3
1

−10
−6

] 

𝐴−1 = 
1

−1
[

−9
−2
27
17

 

1
0

 
−3
−2

  

−2
0
5
3

  

3
1

−10
−6

]  

𝑋 = 𝐴−1𝐵        (13) 

[

𝑤
𝑥
𝑦
𝑧

] =  
1

−1
[

−9
−2
27
17

 

1
0

 
−3
−2

  

−2
0
5
3

  

3
1

−10
−6

] [

2
0
0
2

]= [

12
2

−34
−22

]. 

Therefore, (w, x, y, z) = (12, 2,-34, -22) 

3.4. System of Linear Equation with five variables 

Write the system of equation 

2𝑣 + 3𝑤 + 𝑥 + 𝑦 + 4𝑧 = 34 

5𝑣 + 2𝑤 − 4𝑥 + 2𝑦 + 𝑧 = 9 

3𝑣 + 𝑤 + 2𝑥 + 3𝑦 −  5𝑧 = −19 

𝑣 + 2𝑤 + 3𝑥 + 4𝑦 + 7𝑧 = 53 

4𝑣 − 3𝑤 + 2𝑥 − 5𝑦 + 2𝑧 = 37 

In matrix form, find 𝐴−1. Hence, solve the simultaneous linear equation 
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Solution 

AX = B 

[
 
 
 
 
2
5
3
1
4

 

3
2
1
2

−3

 

1
−1
2
3
2

 

1
2
3
4

−5

 

4
1

−5
7
2 ]

 
 
 
 

[
 
 
 
𝑣
𝑤
𝑥
𝑦
𝑧 ]
 
 
 

=  

[
 
 
 
 

34
9

−19
53
37 ]

 
 
 
 

 

Table 4 Cofactor of order 5 matrix 

(𝒂𝒊𝒋)𝒕𝒉 𝒂𝒊𝒋 (−𝟏)𝒊+𝒋 𝑴𝒊𝒋 𝑨𝒊𝒋 

𝑎11 2 + 150 150 

𝑎12 3 - 1650 --1650 

𝑎13 1 + -516 -516 

𝑎14 1 - -954 954 

𝑎15 4 + 126 126 

𝑎21 5 - 546 -546 

𝑎22 2 + 444 444 

𝑎23 -1 - -840 840 

𝑎24 2 + -432 -432 

𝑎25 1 - 162 -162 

𝑎31 3 + -94 -94 

𝑎32 1 - 202 -202 

𝑎33 2 + -616 -616 

𝑎34 3 - 54 -54 

𝑎35 -5 + 366 366 

𝑎41 1 - 4 -4 

𝑎42 2 + 662 662 

𝑎43 3 - 184 -184 

𝑎44 4 + -594 -594 

𝑎45 7 - 300 -300 

𝑎51 4 + -248 -248 

𝑎52 -3 - -256 256 

𝑎53 2 + -284 -284 

𝑎54 -5 - -252 252 

𝑎55 2 + -60 -60 

 

|A| = det. (A) =∑ 𝑎1𝑗
5
𝑗=1 𝐴1𝑗  = 𝑎11𝐴11 + 𝑎12𝐴12 + 𝑎13𝐴13 + 𝑎14𝐴14 + 𝑎15𝐴15  …………    (15) 

= 2(150) + 3 (-1650) + 1 (-516) + 1 (1954) + 4 (126) 

= -3708 → non-singular, hence matrix A is invertible 
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𝐴−1 = 
1

|𝐴|
 ⨯ 𝐴𝑑𝑗. (𝐴)     (16) 

Adj. (A) = (𝐴𝑖𝑗)
𝑇           (17) 

Adj. (A) = 

[
 
 
 
 

150
−546
−94
−4

−248

 

−1650
444

−202
662
256

 

−516
840

−616
−184
−284

 

954
−432
−54
−594
252

 

126
−162
360

−300
−60 ]

 
 
 
 
𝑇

 

𝑋 = 𝐴−1𝐵             (18) 

[
 
 
 
𝑣
𝑤
𝑥
𝑦
𝑧 ]
 
 
 

=  
1

−3708

[
 
 
 
 

150
−546
−94
−4

−248

 

−1650
444

−202
662
256

 

−516
840

−616
−184
−284

 

954
−432
−54
−594
252

 

126
−162
360

−300
−60 ]

 
 
 
 
𝑇

[
 
 
 
 

34
9

−19
53
37 ]

 
 
 
 

=

[
 
 
 
 

2
1
5

−2
6 ]

 
 
 
 

 

Therefore, (v, w, x, y, z) = (2, 1, 5, -2 6) 

4. Discussion 

Table 1, 2, 3 & 4 shows the 𝑎𝐼𝐽 entry elements of the given matrix, sign factor (−1)𝑖+𝑗 , minor (𝑀𝑖𝑗) and the respective 

cofactor (𝐴𝑖𝑗). Equation 1 shows the standard form of writing simultaneous linear equation in matrix form. Equation 2, 

6, 10 and 15 present the formula for computing determinant of order 2, 3, 4 and 5 matrix respectively. Equation 3, 7, 11 
and 16 present the formula for computing 𝐴−1 of order 2, 3, 4 and 5 matrix respectively 

Equation 4, 8, 12 and 17 present the formula for computing adjoint of order 2, 3, 4 and 5 matrix respectively. Equation 
5, 9, 13 and 18 present the formula for computing unknowns of order 2, 3, 4 and 5 matrix respectively. It was proved 
that inverse method can be applied to non-singular matrix of higher order (i.e., 4, 5,  . . .  , n). 

5. Conclusion 

Inverse method for solving order n non-singular matrix has been developed. Future research can consider 
implementing inverse method for solving order n matrix as software package and its deployment to different fields of 
knowledge.  
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