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Abstract 

The convergence of quantum computing, artificial intelligence (AI), and federated cloud architecture offers 
transformative potential for secure, scalable, and privacy-preserving data processing. Yet, trust management and cross-
domain observability remain major challenges, particularly in decentralized, heterogeneous cloud environments. This 
paper introduces Quantum-AI Federated Clouds (QAIFC) a novel trust-aware framework that combines quantum-safe 
encryption, federated machine learning, and explainable AI to enable secure and observable operations across cloud 
domains. We present QFedSecure, a protocol suite leveraging lattice-based cryptography, quantum key distribution, 
and AI-driven anomaly detection to support trust propagation and policy enforcement. The framework features a 
dynamic trust model, observability protocol, and mechanisms for adversarial resilience. Simulations using Qiskit, 
TensorFlow Federated, and NS3 show up to 40% improvement in trust calibration and 55% increase in adversarial 
detection over baseline systems. This work advances the foundation for resilient, decentralized, and quantum-secure 
AI cloud ecosystems.  

Keywords: Post-Quantum Encryption; Quantum Key Distribution (QKD); Zero-Knowledge Proofs (ZKPs); Federated 
Learning (FL); Explainable AI (XAI); Anomaly Detection in FL; Dynamic Trust Scoring; Differential Privacy (DP); Zero 
Trust Architecture (ZTA); Cross-Domain Observability 

1. Introduction and Problem Statement

The ongoing transformation of digital infrastructure fueled by artificial intelligence (AI), ubiquitous cloud services, and 
the early-stage development of quantum computing is pushing the boundaries of conventional security, data privacy, 
and computational coordination. Federated learning (FL) has emerged as a scalable alternative to centralized AI by 
enabling decentralized training across multiple participants without the need for raw data exchange (Kairouz et al., 
2021). In this architecture, models are trained locally and aggregated globally, preserving data privacy and regulatory 
compliance. 

However, federated learning assumes a baseline of trustworthiness among participants and often lacks visibility across 
administrative domains, making it vulnerable to attacks and inconsistencies in policy enforcement. In addition, the rapid 
progression of quantum computing through advances in superconducting qubits, trapped ions, and photonic processors 
poses an existential threat to classical cryptographic systems used in federated cloud infrastructures (Shor, 1994). As a 
result, the need for a unified framework that combines quantum-safe protocols, trust awareness, and AI observability 
has become both timely and critical. 
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1.1. Motivation for Quantum-AI Federated Cloud Systems 

Federated systems are increasingly distributed across national boundaries and diverse cloud service providers (CSPs), 
making issues of interoperability, observability, and security more complex. The motivation to build Quantum-AI 
Federated Clouds (QAIFC) stems from the following: 

• Rising threats to classical encryption: Quantum computing algorithms such as Shor’s and Grover’s can 
compromise RSA, ECC, and symmetric encryption, necessitating post-quantum cryptographic measures 
(Bernstein et al., 2017). 

• Lack of global trust anchors: Cross-domain federated systems often operate without centralized authorities 
or shared Public Key Infrastructures (PKIs), leading to inconsistencies in identity management and trust 
verification. 

• Opacity in AI model updates: Malicious actors may manipulate gradients or inject poisoned updates in 
federated learning environments, with limited explainability tools available to detect or diagnose such behavior 
(Bhagoji et al., 2019). 

• Lack of end-to-end observability: Many federated systems fail to track data provenance, resource usage, and 
threat response in real time, especially across federated boundaries (Zhou et al., 2021). 

These gaps highlight the urgent need for a trust-aware, quantum-resilient framework capable of integrating federated 
AI with security observability and trust management mechanisms. 

1.2. Core Research Problem 

The primary research problem addressed in this paper is: How can federated cloud systems achieve secure, observable, 
and trust-aware AI collaboration across quantum-threatened, cross-domain infrastructures without centralized 
control? 

This problem is complex due to the following intertwined challenges: 

Federated cloud systems face the critical challenge of enabling secure, observable, and trust-aware AI collaboration 
across quantum-threatened, cross-domain infrastructures without relying on centralized control. This complexity 
arises from several intertwined factors: trust is inherently dynamic and multi-dimensional, requiring continuous 
evaluation based on behavioral indicators, policy compliance, and cryptographic verification; observability is often 
fragmented, with each domain operating isolated monitoring systems that create exploitable blind spots; security 
mechanisms must evolve to withstand future quantum threats, necessitating a shift from classical to quantum-resistant 
cryptographic protocols; and finally, AI models must be not only accurate but also explainable and resilient, capable of 
withstanding adversarial manipulation while maintaining interpretability across federated environments. 

1.3. Objectives of the Study 

This paper proposes a layered architectural framework and protocol suite QFedSecure designed to meet several critical 
objectives in securing federated AI systems. First, it integrates Post-Quantum Cryptography (PQC) into the federated 
learning pipeline, incorporating lattice-based encryption, ring-LWE, and Quantum Key Distribution (QKD) to ensure 
future-proof security (Alkim et al., 2016; Pirandola et al., 2020). Second, it introduces a cross-domain trust model, 
providing a mathematical framework for computing and dynamically updating trust scores based on behavioral metrics, 
cryptographic attestations, and explainable AI feedback. Third, the framework includes a Cross-Domain Observability 
Protocol (CDOP) to facilitate real-time monitoring of data exchanges, model updates, and anomaly detection across 
federated nodes. Additionally, Explainable AI (XAI) modules are deployed to interpret model decisions, detect poisoning 
attempts, and enhance accountability in AI workflows (Ghosh et al., 2022). Finally, the system’s robustness is validated 
through simulations using tools such as Qiskit, TensorFlow Federated, and NS3, evaluating its performance under 
adversarial and quantum-resilient conditions. 

1.4. Contributions of the Study 

This research makes significant contributions to both theory and practice by introducing a novel trust-aware federated 
cloud architecture that seamlessly integrates quantum-safe cryptography and explainable AI to enable secure, end-to-
end collaboration across distributed systems. At its core is the QFedSecure protocol suite, which facilitates encrypted 
gradient exchange, dynamic trust scoring, and federated orchestration across untrusted or semi-trusted domains. The 
framework also incorporates a robust observability layer, leveraging AI-driven anomaly detection and comprehensive 
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audit logging to ensure traceability and verification of all model-related activities. Furthermore, the study advances 
mathematical modeling and algorithmic design, offering formal trust scoring equations, privacy guarantees, and 
cryptographic resilience under both classical and quantum threat models. These innovations are supported by a 
rigorous validation framework that measures key performance indicators including trust propagation, anomaly 
detection accuracy, communication overhead, and model degradation in adversarial environments. 

1.5. Scope and Limitations 

The proposed framework focuses on cross-domain federated learning environments, where each domain may be a 
sovereign cloud provider or edge node cluster. While the architecture integrates quantum-safe protocols, it assumes 
access to quantum-secure communication channels (e.g., QKD networks) for key distribution. Moreover, the XAI 
modules emphasize interpretability over deep learning black-box optimization, which may trade off performance in 
certain contexts. Lastly, real-world implementation challenges such as network heterogeneity, jurisdictional 
restrictions, and economic incentives are acknowledged but not exhaustively addressed in this study. 

2. Literature Review and Theoretical Foundation 

2.1. Federated Learning and Decentralized AI Orchestration 

Federated Learning (FL) is a decentralized machine learning technique that enables the training of global models using 
local datasets on client devices without transferring data to a centralized server. Originally introduced by McMahan et 
al. (2017), the FL paradigm has evolved into a cornerstone for privacy-preserving AI, particularly within healthcare, 
finance, and cross-organizational applications. 

2.2. Federated Learning and Decentralized AI Orchestration 

Federated Learning (FL) was introduced to address the growing need for collaborative model training across 
distributed data silos without requiring the centralization of sensitive data (McMahan et al., 2017; Kairouz et al., 2021). 
In conventional machine learning paradigms, data must be uploaded to a central server where models are trained. This 
model poses significant risks related to data privacy, compliance with regulations like GDPR and HIPAA, and scalability 
issues when dealing with massive, decentralized datasets. 

FL circumvents these issues by allowing each participating node (e.g., edge devices, cloud data centers, mobile clients) 
to locally train a copy of the global model using its private data. These updates are then aggregated typically on a central 
server or distributed coordinator without transferring raw data. This approach upholds data locality, minimizes privacy 
leakage, and reduces the risk of breaches. 

The most widely implemented version of FL is the Federated Averaging (FedAvg) algorithm, which balances 
communication efficiency with model convergence. The algorithm works by averaging locally updated model 
parameters weighted by data volume at each client. 

Algorithm 1: Federated Averaging (FedAvg) 

Input: Initial global model w₀, number of clients N 
For each round t = 1, 2, ..., T: 
 Server: 
 Select a subset of clients Sₜ ⊆ N 
 Send global model wₜ to each client i ∈ Sₜ 
 Each client i: 
 Train on local dataset: wᵢ ← wₜ - η ∇ℓᵢ(wₜ) 
 Send wᵢ to server 
 Server: 
 Aggregate: wₜ₊₁ ← Σᵢ∈Sₜ (nᵢ / Σⱼ∈Sₜ nⱼ) * wᵢ 

 
Where: 

wt is the global model at time step t, η is the learning rate, ℓi(wt) is the local loss function of client I, and ni is the number 
of samples on client i. 
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Despite its privacy-conscious design, FL is vulnerable to a variety of adversarial attacks, especially in open, untrusted 
federated environments: 

• Model poisoning: Malicious clients submit altered gradients to manipulate the global model. 
• Backdoor attacks: A small number of poisoned inputs allow a client to mislead model predictions on specific 

triggers. 
• Gradient inversion: Sensitive information is reconstructed from shared gradients (Zhu et al., 2019). 

To combat these issues, several FL extensions have been proposed: 

• FedProx (Li et al., 2020): Introduces proximal terms to account for system heterogeneity across clients. 
• Secure Aggregation (Bonawitz et al., 2017): Protects intermediate updates from being observed by 

aggregators or eavesdroppers. 
• Differential Privacy-based FL: Adds noise to gradients to obscure individual data contributions (Abadi et al., 

2016). 

However, these defenses remain largely classically bounded, meaning they rely on cryptographic assumptions that do 
not hold against quantum-capable adversaries. QFedSecure, by integrating post-quantum encryption and quantum key 
distribution, bridges this gap making it among the first federated protocols built to withstand adversaries armed with 
quantum decryption capabilities. 

2.3. Trust Modeling in Distributed Systems 

In federated environments, where clients span organizational, geographic, and policy boundaries, trust modeling 
becomes essential. Unlike traditional centralized systems with known actors and enforceable governance, federated 
systems must dynamically evaluate the reliability of each participant in real time. 

Traditional approaches have relied on historical reputation scores or static access credentials, but these are insufficient 
in volatile or adversarial federations. Jøsang’s Subjective Logic (2021) provides a mathematical framework for modeling 
uncertainty in trust relationships, particularly when evidence is partial or conflicting. 

Equation 1: Subjective Trust Representation 

Let: b: belief (evidence supporting trustworthiness), d: disbelief (evidence supporting untrustworthiness), and u: 
uncertainty (lack of sufficient information), 

With the constraint: 

𝑏 +  𝑑 +  𝑢 =  1 

Then trust T is computed as: 

𝑇 =  𝑏 +  𝛼𝑢 

Where 𝛼 ∈ [0,1] reflects how much uncertainty contributes to the effective trust score. A lower α implies conservative 
trust assignment in the presence of limited evidence. 

This model is particularly well-suited for federated learning scenarios characterized by frequent client churn, where 
participants may join and leave the federation unpredictably, and where communication is inherently asynchronous 
and intermittent. In such settings, direct verification of client behavior such as inspecting raw data is often infeasible 
due to privacy constraints and infrastructure heterogeneity. 

Within the QAIFC framework, trust is not treated as a static attribute but rather as a dynamic, multi-factor function. It 
incorporates behavioral history, capturing deviations from expected model update patterns over time; cryptographic 
compliance, ensuring that participants adhere to verified quantum-safe protocols and produce valid attestations; and 
explainable anomaly detection, which leverages gradient-based or output-level explanations to identify suspicious or 
malicious contributions. This adaptive approach enables QAIFC to maintain trustworthiness in highly dynamic and 
partially observable federated environments. 
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These factors are processed by a trust scoring engine embedded within the Trust-Orchestration Layer (as described in 
Chapter 3). This engine plays a central role in regulating the behavior of participants in the federated system. It 
determines access to aggregation cycles, assigning privileges based on trustworthiness; it adjusts the weight of each 
client's contributions during model updates to mitigate the influence of unreliable nodes; and it governs participation 
in future training rounds, ensuring that only clients meeting predefined trust thresholds are allowed to continue 
collaborating. 

Hybrid trust models combining subjective logic, machine learning classifiers, and cryptographic endorsements offer a 
robust path forward for building resilient federated systems that can scale across jurisdictions, use cases, and 
adversarial surfaces. 

2.4. Explainable AI (XAI) in Security-Critical Systems 

In highly sensitive and distributed systems such as federated learning across multiple cloud domains, the ability to 
explain and interpret AI decisions is not only a matter of user confidence, it is a vital security feature. As adversaries 
increasingly target AI pipelines through poisoning and stealthy manipulation, Explainable AI (XAI) emerges as a 
foundational component of trustworthy intelligence (Ghosh et al., 2022). 

XAI enhances transparency by offering interpretations of model outputs or internals, enabling both users and 
automated systems to understand why a prediction was made. This is especially crucial when model updates are 
contributed by multiple clients, some of whom may be adversarial or compromised. Within QAIFC, XAI mechanisms are 
embedded into both client nodes and aggregation coordinators to analyze gradient behavior, flag anomalous updates, 
and adjust trust scores accordingly. 

Popular XAI techniques can be categorized into two main types. Local interpretability methods focus on explaining 
individual predictions, making them particularly effective for debugging or analyzing specific gradient updates within 
a federated learning context. In contrast, global interpretability methods aim to provide insights into overall model 
behavior across entire datasets, making them valuable for assessing aggregate trust, identifying systemic biases, and 
supporting comprehensive system audits. 

2.5. Popular XAI Techniques 

• SHAP (SHapley Additive exPlanations): Based on cooperative game theory, SHAP assigns each feature an 
importance value for a particular prediction by simulating marginal contributions across feature combinations. 

• LIME (Local Interpretable Model-Agnostic Explanations): Trains a lightweight surrogate model around a 
prediction by perturbing inputs and observing outputs. 

• Grad-CAM (Gradient-weighted Class Activation Mapping): For convolutional neural networks, this technique 
visualizes which image regions most influenced the decision by backpropagating gradients. 

Equation 2.1: SHAP Value for Feature i 

𝜙𝑖 = ∑
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆𝐹∖{𝑖}

[𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)] 

Where: 

• 𝐹: Set of all features, 𝑆: Subset of features excluding i, and 𝑓(𝑆): Model output with feature subset 𝑆. 

This formulation ensures fair and additive attribution, making SHAP particularly well-suited for distributed FL 
scenarios where model transparency must be auditable and verifiable across domains. 
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Figure 1 XAI Pipeline in Federated Learning 

Integrating SHAP or LIME explanations into the federated learning update cycle allows the aggregation layer in QAIFC 
to perform several critical functions. It can identify and flag poisoned or misleading updates, ensuring that anomalous 
contributions do not compromise model integrity. It also quantifies the confidence of predictions, providing a measure 
of reliability that supports downstream decision-making. Additionally, it adjusts client trust scores based on the 
plausibility of explanations, aligning model behavior with expected patterns. Together, these capabilities bridge the gap 
between statistical accuracy and human interpretability, enhancing the safety, accountability, and regulatory 
compliance of federated learning systems, particularly in sensitive domains such as healthcare, law enforcement, and 
finance. 

2.6. Cross-Domain Observability in Zero Trust Architecture 

Traditional security models operate on implicit trust within network perimeters. However, federated learning across 
heterogeneous cloud and edge infrastructures undermines perimeter-based assumptions. The Zero Trust Architecture 
(ZTA) (Rose et al., 2020) replaces this with a “never trust, always verify” principle, requiring continuous authentication, 
verification, and monitoring of entities. 

In QAIFC, observability is the operational pillar of ZTA, defined as the real-time collection, correlation, and analysis of 
telemetry data from federated nodes. Observability not only enables detection of malicious behaviors and drift but also 
provides the forensic backbone for post-event audits and dynamic trust recalibration. 

2.6.1. Core Observability Dimensions 

The core dimensions of observability in QAIFC encompass several critical aspects of system monitoring and 
accountability. Model updates are tracked in detail, capturing information about which clients submitted updates, when 
they were sent, and how they influenced the overall performance of the global model. Data provenance ensures that the 
origin and transformation history of inputs are verifiable, supporting auditability and trust in the training data. Access 
and identity logs authenticate how APIs are used and verify that participants comply with established policies. Finally, 
behavioral deviations are continuously monitored through analysis of usage patterns and anomaly scores, enabling 
early detection of abnormal or potentially malicious activity. 
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2.6.2. Components of Observability 

The observability framework in QAIFC is supported by three key components, each serving a distinct role in maintaining 
system integrity and visibility. The Telemetry Agent is a lightweight module embedded within clients and servers that 
logs critical runtime data such as system calls, training statistics, gradient hashes, and anomaly scores. The Trust Broker 
functions as an intermediary authority that issues temporary trust tokens and validates each participant’s behavioral 
history before permitting their updates to be aggregated. Meanwhile, the Policy Enforcer continuously assesses whether 
a node's current behavior adheres to established access control rules and assigned risk scores, ensuring that only 
compliant and trustworthy nodes can participate in the learning process. 

 

Figure 2 Observability Layers in Federated Cloud 

This layered observability ensures that QAIFC not only reacts to malicious behaviors but anticipates and mitigates 
threats through continuous risk-aware operations. 

Equation 2.2: Drift Detection in Federated Learning 

𝐷{𝐾𝐿}(𝑃 ||𝑄) = ∑ 𝑃(𝑖)

𝑖

log (
𝑃(𝑖)

𝑄(𝑖)
) 

Where: 

• 𝑃  and 𝑄 : Probability distributions of predicted outputs over time windows, and 𝐷{𝐾𝐿}: Kullback–Leibler 

divergence measuring statistical shift. 

If the computed divergence exceeds a predefined threshold τ, the system initiates anomaly escalation protocols. This 
guards against silent model drift, targeted model poisoning, and data source spoofing. 
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Table 1 Technologies and Tools 

Tool Role in QAIFC 

Prometheus + Grafana Real-time telemetry collection and dashboard visualization 

OpenTelemetry Open-source instrumentation for distributed observability 

Zeek Network traffic analysis and policy anomaly detection 

 

These observability platforms are container-native and integrate easily with Kubernetes-based FL deployments, making 
them ideal for scaling QAIFC across hybrid cloud environments. 

2.7. Section-Specific Research Trends 

Recent years have seen a convergence of multiple research domains relevant to QAIFC including federated learning, 
quantum cryptography, explainable AI, and trust modeling. The figure below illustrates the trajectory of scholarly 
publications (2018–2023) across the five key domains forming QAIFC’s foundation. 

 

Figure 3 Publication Trajectory for Core QAIFC Domains (2018–2023) 

Figure 3 Publication Trajectory for Core QAIFC Domains (2018–2023) illustrates the rapid growth and interdisciplinary 
convergence of the foundational domains supporting the QAIFC framework. Federated Learning publications surged 
from approximately 50 to over 880, largely fueled by applications in healthcare and edge AI. Trust Modeling also saw 
significant growth, driven by the need to manage identities and establish credibility in decentralized environments. The 
field of Quantum Cryptography expanded steadily, bolstered by progress in NIST's post-quantum cryptography (PQC) 
standardization efforts and the development of practical quantum key distribution (QKD) testbeds. Explainable AI (XAI) 
experienced rapid adoption, as ethical AI practices and legislation such as the EU AI Act demanded greater transparency 
and accountability in automated systems. Lastly, Observability emerged as a core concern with the mainstream 
adoption of Zero Trust Architecture and DevSecOps practices. Together, these trends underscore a growing academic 
and industry interest in robust, multi-layered security architectures, validating QAIFC’s relevance as a forward-looking 
synthesis of federated intelligence, cryptographic resilience, explainability, and operational transparency. 

2.8. Summary 

Sections 2.2 through 2.6 have established the theoretical foundation for the Quantum-AI Federated Cloud (QAIFC) 
framework by synthesizing innovations from multiple interrelated domains. Federated Learning enables privacy-
preserving orchestration of AI models by distributing training across client nodes without centralizing sensitive data. 
Trust Modeling facilitates dynamic, adaptive, and verifiable collaboration among heterogeneous participants, ensuring 
that contributions are both credible and accountable. Quantum Cryptography provides the cryptographic backbone 
necessary for future-proof communication and data protection, safeguarding against threats posed by quantum-capable 
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adversaries. Explainable AI (XAI) adds a crucial layer of interpretability and auditability, allowing for transparent 
decision-making and detection of adversarial behavior within learning workflows. Meanwhile, Cross-Domain 
Observability brings the principles of Zero Trust into practice by enabling real-time, full-spectrum monitoring of system 
behavior across federated environments. Collectively, these pillars not only address existing vulnerabilities and 
limitations in federated architecture but also position QAIFC as a robust, scalable, and secure foundation for 
decentralized intelligence systems. The next chapter builds directly on these concepts by detailing the technical 
architecture and layered design of the QAIFC system. 

3. Architectural Framework 

3.1. Overview of QAIFC Architecture 

The Quantum-AI Federated Cloud (QAIFC) represents a paradigm shift in distributed artificial intelligence specifically 
in how secure, trustworthy, and interpretable machine learning is orchestrated across heterogeneous, cross-domain 
environments. Traditional federated learning (FL) architectures have focused primarily on privacy preservation and 
performance optimization. However, they often assume semi-honest participants and rely on classical cryptographic 
primitives that are increasingly vulnerable to quantum computing attacks (Shor, 1994; Mosca, 2018). 

QAIFC extends the capabilities of traditional federated systems by introducing a comprehensive multi-layered 
architecture that addresses emerging security and trust challenges in decentralized environments. It incorporates 
quantum-safe cryptographic primitives, such as lattice-based encryption and quantum key distribution, to ensure 
resilience against quantum-enabled threats. It also implements dynamic trust evaluation mechanisms, which leverage 
explainable AI and behavioral metrics to assess the credibility of each participant in real time. Additionally, QAIFC 
provides real-time observability across federated nodes, enabling continuous monitoring, auditability, and enforcement 
of Zero Trust Architecture principles throughout the system. 

This design allows for decentralized and secure AI model training, even among mutually distrustful parties or across 
regulatory boundaries. It is particularly suited for security-critical domains such as digital healthcare, financial 
analytics, smart city control systems, and sovereign intelligence, where both data and infrastructure trustworthiness 
are paramount. 

The QAIFC framework is modular and scalable, comprising five interdependent layers, each targeting specific systemic 
needs including: 

• Application Layer – Provides interface points for users and services to access FL capabilities. 
• Trust-Orchestration Layer – Manages node verification, trust scoring, and reputation-based access. 
• Federated Learning and Coordination Layer – Executes the core machine learning workflows and coordination 

across clients. 
• Quantum Secure Communication Layer – Ensures transport and exchange of encrypted model parameters using 

post-quantum and quantum-secure techniques. 
• Cross-Domain Observability Protocol (CDOP) – Maintains visibility, anomaly detection, and telemetry across all 

nodes in the system. 

Each layer supports a clear separation of concerns from interaction to execution, verification, and monitoring mirroring 
best practices in systems architecture, cybersecurity, and federated AI design (Zhou et al., 2021; Rose et al., 2020). 

3.2. Layered Architecture Diagram 

To visualize the QAIFC model, we introduce a layered reference architecture that illustrates the hierarchical structure 
and the interactions between these layers. The design aligns with cloud-native architectural standards and 
cybersecurity maturity models such as NIST SP 800-207 (Zero Trust Architecture), while also being extensible to 
domain-specific applications. 
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Figure 4 QAIFC Layered Architecture 

Each block in the diagram represents an autonomous and modular layer, yet they interact through well-defined 
interfaces and security boundaries, ensuring layered defense and operational transparency. 

3.2.1. Application Layer 

This is the topmost layer through which end-users, data scientists, and domain-specific applications interact with the 
federated system. It includes: 

• RESTful APIs, SDKs, and user dashboards 
• Healthcare, finance, and industrial AI models 
• Data preprocessing pipelines (on-device) 

Applications developed in this layer do not directly handle sensitive data; instead, they send encrypted metadata or 
differential model inputs, relying on lower layers to enforce privacy and security (Bonawitz et al., 2019). 

3.2.2. Trust-Orchestration Layer 

The Trust-Orchestration Layer serves as the decision-making core for establishing, maintaining, and regulating trust 
within the QAIFC framework. It enforces dynamic access control and governs participation based on verifiable behavior, 
playing a pivotal role in securing federated collaboration. Drawing from principles of game theory and subjective logic 
(Jøsang, 2021), this layer continuously evaluates each client using adaptive trust scoring functions that incorporate both 
behavioral metrics such as gradient consistency and anomaly detection scores and cryptographic evidence, including 
attestations of secure protocol compliance. 

The trust engine also issues short-lived trust tokens, which act as temporary credentials for accessing aggregation 
rounds. These tokens are generated and verified using zero-knowledge proof systems (e.g., zkSNARKs), ensuring that 
trust is granted based on proven behavior without disclosing sensitive details. Additionally, the layer functions as an 
intermediary between model performance and client reliability, modifying trust scores dynamically in response to 
observed outcomes. 

By mediating participation through quantifiable trust, this layer is essential for defending against critical threats such 
as model poisoning, Sybil attacks, and freeloading, which can undermine federated learning in open and semi-trusted 
environments (Sharma et al., 2022). Its inclusion enables QAIFC to maintain system integrity, foster accountability, and 
support resilient, scalable AI collaboration across domains. 

3.2.3. Federated Learning & Coordination Layer 

The Federated Learning and Coordination Layer implements the core learning logic of the QAIFC framework, 
orchestrating collaborative model training across distributed, privacy-preserving clients. This includes the distribution 
of the global model from the central server to a dynamically selected subset of clients, local training on each client using 
private datasets, and the subsequent aggregation of updates using a trust-weighted mechanism to enhance security and 
resilience. 

The standard Federated Averaging (FedAvg) protocol is extended in QAIFC to integrate trust scores (as detailed in 
Chapter 4), enabling the aggregation process to prioritize updates from more reliable participants. Additionally, 
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encryption wrappers are applied to safeguard gradient updates in transit, and participation eligibility is enforced based 
on each client's current trust score and compliance status. 

To support flexible and scalable training operations, this layer is designed to interface seamlessly with widely adopted 
federated learning frameworks such as TensorFlow Federated (TFF), PySyft, and FedML, allowing the QAIFC system to 
be deployed across diverse platforms and infrastructures while maintaining interoperability, security, and model 
performance. 

3.2.4. Quantum Secure Communication Layer 

As classical encryption becomes obsolete in the face of scalable quantum computing, this layer introduces quantum-
resistant security primitives, such as: 

• Lattice-based cryptography (e.g., Kyber, Dilithium, FrodoKEM) 
• Quantum Key Distribution (QKD) simulations via Qiskit 
• Key management servers (KMS) with verifiable entropy pools 

Encrypted gradient updates are sealed end-to-end using keys generated via post-quantum schemes, ensuring forward 
secrecy and resistance against both present and future decryption attempts (Pirandola et al., 2020). 

3.2.5. Cross-Domain Observability Protocol (CDOP) Layer 

The Observability Layer is essential for maintaining the security, auditability, and real-time adaptability of the QAIFC 
framework. It provides comprehensive visibility into the behavior and health of the federated learning ecosystem by 
continuously collecting and analyzing diverse forms of operational data. This includes telemetry from clients, such as 
CPU utilization, local training durations, and cryptographic hashes of gradient updates, which helps detect inefficiencies 
or irregular behavior. 

In parallel, the layer ingests anomaly detection outputs, including explainability-driven signals like SHAP-based flags, 
which are used to identify and respond to potential model poisoning or adversarial manipulation. It also monitors model 
drift signals, typically quantified using statistical measures like Kullback–Leibler (KL) divergence, to detect distribution 
shifts that may compromise model validity or performance. 

By integrating these inputs, the Observability Layer enables dynamic policy enforcement, automated trust recalibration, 
and forensic auditability all critical functions for sustaining a Zero Trust federated infrastructure that is secure, 
transparent, and responsive. 

Outputs from this layer feed into the Trust-Orchestration Layer, enabling adaptive trust recalibration and real-time 
revocation of malicious clients. It integrates tools like Prometheus, Grafana, OpenTelemetry, and Zeek for full-stack 
visibility (Makanju et al., 2020). 

3.3. Application Layer 

3.3.1. Function 

The Application Layer serves as the interface between end-users, system administrators, and the broader federated 
infrastructure. It is the only layer directly exposed to users and is designed to abstract the complexity of secure 
federated learning operations, offering a seamless user experience across multiple platforms. This layer enables 
domain-specific applications to submit model requests, visualize results, and interact with trained models without 
needing access to underlying data or cryptographic protocols (Kairouz et al., 2021). 

Application contexts for QAIFC are diverse and span several high-impact domains. These include collaborative AI 
modeling for cross-institutional research, where academic or industrial entities contribute to joint model development 
without exposing proprietary datasets. In healthcare diagnostics, multiple hospitals or clinics can participate in 
federated learning to improve diagnostic models while strictly maintaining the privacy of patient data in accordance 
with regulations such as HIPAA. In the financial sector, QAIFC supports fraud detection and risk analysis by enabling 
banks and financial institutions to collaboratively train models on transaction patterns while ensuring confidentiality. 
Additionally, in IoT and edge computing environments, QAIFC facilitates decentralized coordination among smart 
sensors, allowing them to contribute data and consume real-time AI inferences without centralized bottlenecks. 
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To support these varied use cases, the Application Layer plays a crucial role in ensuring usability, security, and 
regulatory compliance. It achieves this by interfacing securely with the Trust-Orchestration Layer through well-defined 
API calls, access tokens, and telemetry submission protocols, thereby maintaining seamless and trusted interactions 
between user-facing applications and the secure federated backend. 

3.3.2. Responsibilities 

The Application Layer of the QAIFC framework carries several critical responsibilities that ensure smooth and secure 
interaction between end-users, federated clients, and the underlying orchestration mechanisms. It handles User 
Input/Output, enabling the system to capture user-defined training goals, model queries, and feedback, while returning 
interpretable outputs such as predictions or SHAP-based visual explanations. Through its Data Preprocessing Pipelines, 
the layer transforms raw inputs such as CSV files, sensor logs, or image arrays into a structured format suitable for local 
federated training. Importantly, this process ensures that raw data remains confined to the client device, preserving 
privacy and compliance. 

The layer also facilitates Client-Server Interaction, where each client securely authenticates with the Trust-
Orchestration Layer, receives the current global model, executes local training, and transmits encrypted updates back 
to the server. Lastly, the Application Layer supports Integration Hooks that allow external services such as compliance 
checkers, visualization dashboards, and federated benchmarking tools—to seamlessly interface with QAIFC workflows. 
These responsibilities ensure not only secure and compliant operation but also enhance the usability and adaptability 
of the entire federated learning ecosystem. 

Table 2 Tools & Technologies 

Tool Functionality 

TensorFlow Federated (TFF) Enables simulation and deployment of client-side federated learning. 

Web and Mobile SDKs Build native client applications with built-in FL compatibility. 

Streamlit, Dash, Grafana Provide real-time dashboards for model monitoring, visualization, and feedback. 

RESTful APIs / GraphQL Facilitate access to model status, telemetry data, and trust scores via standard 
protocols. 

Docker / Kubernetes Host scalable, containerized client apps across edge environments. 

 

By combining these technologies, the application layer can support zero-trust, multi-party learning systems, making 
it suitable for both real-time analytics and batch training in sensitive sectors. 

3.4. Trust-Orchestration Layer 

3.4.1. Function 

The Trust-Orchestration Layer is the core decision-making module of the QAIFC stack. It is responsible for evaluating, 
scoring, and regulating every participant in the federated ecosystem based on dynamic behavioral, cryptographic, and 
statistical metrics. Unlike static access control lists or identity verification alone, this layer actively adjusts client trust 
scores in real time, allowing the system to tolerate transient failures and reject malicious actors (Sharma et al., 2022; 
Jøsang, 2021). 

This dynamic trust model enables risk-aware access control within federated learning by supporting several key 
functions that enhance both security and operational integrity. It allows for the real-time exclusion of suspicious nodes 
from the aggregation process, thereby preventing potentially harmful updates from corrupting the global model. It also 
facilitates trust-weighted gradient contributions, where the influence of each client’s update is proportionate to its 
calculated trust score, ensuring that reliable nodes have greater impact. 

In addition, the model supports anomaly-aware training incentives and penalties, dynamically rewarding honest 
participation and penalizing detected adversarial behavior. Trust decisions are further strengthened through 
decentralized attestation mechanisms, combining cryptographic signatures with insights from explainable AI to verify 
the legitimacy and transparency of each participant’s actions. 
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This layer is critical to ensuring that federated AI systems are not only auditable but also resilient, particularly in 
environments where adversaries may be present or computational resources are limited. By embedding adaptive, trust-
aware logic into the core learning process, QAIFC establishes a secure and accountable foundation for decentralized 
intelligence. 

3.4.2. Key Components 

The Trust-Orchestration Layer in QAIFC is built on several interdependent components that work together to evaluate 
and enforce trustworthy participation in the federated learning process. 

• Trust Score Calculator: Computes scores based on multiple weighted metrics, including behavior, model 
quality, cryptographic integrity, and peer endorsements. 

• Token-Based Access Verifier: Issues and verifies trust tokens that regulate participation eligibility, expiration, 
and revocation. 

• Reputation Database: Stores long-term and session-based behavior logs, performance statistics, and incident 
reports for each participant. 

• Explainable AI Verifier: Evaluates model updates using SHAP or LIME explanations to determine whether an 
update’s behavior is consistent with its input data and expected feature attribution patterns. 

• Formula 3.1: Dynamic Trust Score Function 

𝑇𝑖𝑗(𝑡) =
∑ 𝑤𝑘𝑆𝑘(𝑖, 𝑗, 𝑡)𝑛

𝑘=1

∑ 𝑤𝑘
𝑛
𝑘=1

 

Where: 𝑇𝑖𝑗(𝑡): Trust score assigned by node 𝑗 to node 𝑖 at time 𝑡, 𝑆𝑘(𝑖, 𝑗, 𝑡): The k-th trust metric (e.g., anomaly rate, 

historical accuracy, cryptographic validation), 𝑤𝑘: Weight assigned to metric k based on its reliability and sensitivity. 

This multi-dimensional trust function ensures a balanced and tunable scoring system that can reflect diverse 
operational realities, such as higher trust for historically stable nodes or penalization for sudden behavioral shifts. 

3.4.3. Trust Metrics May Include 

Trust metrics in QAIFC are designed to provide a nuanced, real-time assessment of each participant’s reliability, 
leveraging a combination of behavioral analytics, cryptographic verification, and peer validation. One key metric is 
gradient deviation, which measures how significantly a client’s submitted gradient diverges from the statistical average 
of its cohort. Large deviations may indicate model poisoning or data inconsistency, triggering further scrutiny. Historical 
performance is another critical factor, capturing each client’s contribution quality and consistency over time, and 
rewarding nodes that demonstrate stable, accurate behavior. 

Cryptographic compliance ensures that participants adhere to the system’s security standards by verifying the use of 
quantum-safe signatures, post-quantum encryption schemes, and enforcement of key expiration policies. This ensures 
that even in a future quantum-enabled threat environment, the system remains secure. 

Additionally, peer endorsements allow clients to vouch for each other through mechanisms such as cryptographic 
referrals or blockchain-based attestations, adding a decentralized layer of trust validation. These endorsements can 
influence initial trust scores or serve as secondary validators when anomalies are detected. 

All trust metrics are continuously recalibrated using real-time telemetry and interpretability data collected through the 
Cross-Domain Observability Protocol (CDOP). This enables the trust engine to adapt dynamically to changing client 
behavior and evolving threat landscapes, reinforcing QAIFC’s resilience and accountability. 

3.4.4. Applications 

The trust mechanisms implemented within QAIFC support a wide range of critical applications that enhance both the 
security and operational resilience of federated learning environments. One such application is the dynamic inclusion 
or exclusion of nodes from the aggregation process, where participants are admitted or barred based on real-time trust 
thresholds and anomaly detection scores. This ensures that only trustworthy clients influence the global model, 
significantly reducing the system’s vulnerability to adversarial behavior. 
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Another key application is trust-weighted model aggregation, in which each client’s contribution is scaled according to 
its computed trust score. This approach improves the robustness of the global model by minimizing the influence of 
low-trust or suspicious updates without requiring their outright exclusion. 

QAIFC also supports real-time forensic logging, enabling transparent audits of trust-based decisions. This feature 
provides accountability and traceability, particularly in scenarios involving disputes over false positives or negatives in 
trust evaluation. Logs can be reviewed to understand why a particular client was penalized or excluded, supporting 
governance and compliance. 

Finally, the trust engine enables automated enforcement of security policies, such as blocking any client whose trust 
score falls below 0.3 for three consecutive rounds. These programmable policies allow administrators to implement and 
adapt risk controls in real time, maintaining system integrity across changing conditions and threat landscapes. 

3.5. Federated Learning & Coordination Layer 

3.5.1. Function 

The Federated Learning and Coordination Layer is the operational core of QAIFC architecture. It is responsible for 
orchestrating decentralized training across geographically dispersed, privacy-sensitive nodes while ensuring 
consistency, integrity, and convergence of the global machine learning model. Unlike traditional centralized ML 
pipelines, this layer supports a distributed computation paradigm, where each client trains a local model using private 
data and contributes encrypted and trust-weighted updates to the shared global model (McMahan et al., 2017). 

Key differentiators of this layer in QAIFC include: 

• Trust-aware aggregation, where model updates are scaled based on a client’s current trust score (computed in 
the Trust-Orchestration Layer). 

• Secure model parameter exchange using post-quantum and quantum-secure communication protocols (see 
Section 3.6). 

• Integration with anomaly detection feedback loops, which adapt aggregation weightings based on real-time 
model explainability metrics. 

3.5.2. Workflow Steps 

The learning process in this layer proceeds in the following structured steps, repeated over multiple communication 
rounds: 

Model Initialization & Broadcast 

The global model 𝑊𝑡 is initialized or updated and then broadcasted from a central aggregator or decentralized peer 
coordinator to selected clients 𝑆𝑡. 

Local Training with Private Data 

• Each selected client performs training on its private dataset 𝐷𝑖 without uploading the data itself. 
• The local optimization follows stochastic gradient descent (SGD) or its variants. 

Trust-Weighted Aggregation 

• Clients return encrypted gradient updates 𝑊𝑖 along with their trust score 𝑇𝑖 . 
• The server aggregates updates proportionally to their trust values using Equation 3.1 from the Trust-

Orchestration Layer. 

Feedback to Orchestration Layer 

• Model behavior (e.g., convergence speed, SHAP consistency, anomaly scores) is sent to the Trust-Orchestration 
Layer for recalibration of trust values. 

• This design allows QAIFC to dynamically adapt to changing node behavior, detect faulty or malicious 
participants early, and optimize model performance while preserving user privacy and security (Kairouz et al., 
2021). 
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Algorithm 3.1: Trust-Weighted Aggregation 

For each communication round t: 
 For each client i in selected set Sₜ: 
 Send model Wₜ to client i 
 Client i performs training: Wᵢ ← Wₜ - η∇ℓᵢ(Wₜ) 
 Client i returns encrypted Wᵢ and trust score Tᵢ 
 Server aggregates: 
 Wₜ₊₁ ← Σ (Tᵢ * Wᵢ) / Σ Tᵢ 

Where: 

• Wₜ: Current global model, η: Learning rate, ∇ℓᵢ(Wₜ): Gradient of the local loss function at client iii, and Tᵢ: Trust 
score from the Trust-Orchestration Layer 

This algorithm increases robustness against model poisoning and Sybil attacks by reducing the aggregation influence of 
low-trust clients while encouraging well-behaved participants. 

Table 3 Technologies 

Tool Role 

TensorFlow Federated (TFF) Simulation and prototyping of federated learning workflows 

FedML Scalable deployment for real-world edge/cloud FL coordination 

PySyft Secure aggregation with encrypted tensors and privacy guarantees 

MLflow Logging of model versions, hyperparameters, and metrics across rounds 

KubeFL / Flower Kubernetes-based FL orchestration across multi-cloud clusters 

 

These tools make it possible to deploy QAIFC at scale, with observability hooks and real-time update routing across 
clients and aggregation servers. 

3.6. Quantum Secure Communication Layer 

3.6.1. Function 

The Quantum Secure Communication Layer plays a critical role in safeguarding the integrity and confidentiality of all 
data transmissions within the QAIFC framework. As federated learning systems increasingly operate over open and 
potentially untrusted infrastructures such as public cloud platforms, 5G edge nodes, and multi-domain networks the 
reliance on post-quantum and quantum-resilient cryptographic solutions becomes imperative. 

This layer ensures that gradient updates, trust tokens, and telemetry logs are protected using quantum-safe 
cryptographic primitives, including lattice-based encryption and ring-LWE constructions. To secure communication 
sessions, it supports the establishment of symmetric session keys through either post-quantum key exchange protocols 
(e.g., Kyber, FrodoKEM) or Quantum Key Distribution (QKD) channels when available, providing resilience even in the 
presence of quantum-capable adversaries. 

To further reinforce integrity and identity verification, the layer integrates zero-knowledge signatures and tamper-
evident logging mechanisms, ensuring that data in transit is both authenticated and auditable without compromising 
privacy. All communication protocols within this layer are designed to align with emerging NIST and ETSI security 
standards, positioning QAIFC for seamless transition into a post-quantum cryptographic landscape (Alkim et al., 2016; 
Pirandola et al., 2020). By embedding these security guarantees at the communication level, QAIFC ensures that 
federated learning remains trustworthy and secure, even under the most advanced threat models. 

3.6.2. Features 

The Quantum Secure Communication Layer in QAIFC integrates multiple cryptographic techniques to ensure robust 
protection of federated learning data, even in the face of future quantum threats. 
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• Post-Quantum Key Exchange (PQKE) utilizes lattice-based encryption schemes such as Kyber, FrodoKEM, and 
Dilithium to establish secure communication channels. These schemes are designed to withstand attacks from 
quantum computers, providing forward secrecy and ensuring that previously exchanged data remains secure 
even if future keys are compromised. 

• Quantum Key Distribution (QKD), specifically through the implementation of the BB84 protocol, allows the 
generation of provably secure symmetric keys based on the principles of quantum entanglement and 
measurement. This approach inherently protects against eavesdropping, as any attempt to intercept the 
quantum transmission results in a detectable disturbance due to quantum-state collapse. 

• To authenticate all transmitted data, QAIFC also employs End-to-End Message Authentication Codes (MACs). 
These MACs verify the integrity and authenticity of each communication packet, effectively preventing man-in-
the-middle and replay attacks. The MACs are built using quantum-safe hashing algorithms, such as SHA-3 and 
SPHINCS+, which are resistant to both classical and quantum cryptanalytic techniques. 

Together, these technologies form a multilayered security model that ensures confidentiality, integrity, and forward 
secrecy in federated AI communications, aligning with post-quantum cryptographic standards. 

3.6.3. Script Example: BB84 QKD Simulation Using Qiskit 

from qiskit import QuantumCircuit, execute, Aer 
 
qc = QuantumCircuit(1, 1) 
qc.h(0) # Step 1: Create a superposition state 
qc.measure(0, 0) # Step 2: Measure in computational basis 
 
backend = Aer.get_backend('qasm_simulator') 
result = execute(qc, backend, shots=1024).result() 
counts = result.get_counts() 
print("Simulated BB84 bit counts:", counts) 

 

This example simulates one step in the BB84 QKD protocol, demonstrating key generation and measurement. In 
production systems, these keys would be validated via error checking and privacy amplification before use in federated 
encryption routines. 

Table 4 Standards & Protocols 

Standard Description 

NIST PQC Suite Cryptographic algorithms selected for post-quantum resistance (Kyber, Dilithium, Falcon) 

ETSI GS QKD 004 Protocols and architectural guidelines for deploying QKD networks 

IETF CFRG Quantum-safe hash functions and secure key derivation mechanisms 

 

These standards ensure interoperability, security assurance, and compliance for deployments in critical sectors such as 
finance, healthcare, and national security. 

3.6.4. Use Case Integration 

• In a multi-hospital federation, QKD channels could be established between data centers to prevent MITM 
attacks on patient model exchanges. 

• In a national security application, session keys derived from Kyber could protect telemetry logs and trust 
certificates exchanged between distributed intelligence nodes. 

3.7. Cross-Domain Observability Protocol (CDOP) 

3.7.1. Function 

The Cross-Domain Observability Protocol (CDOP) serves as the real-time sensory and monitoring infrastructure for 
QAIFC, ensuring operational transparency and traceability across all federated components. Traditional federated 
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learning architectures lack fine-grained visibility into data provenance, update quality, and policy adherence, making 
them vulnerable to stealthy adversarial activity and unexplainable performance degradation. 

CDOP addresses this gap by enabling continuous: 

• Telemetry collection from client and server nodes, 
• Anomaly classification using explainable AI, 
• Drift detection to identify model corruption or conceptual shifts, 
• Security auditing and compliance reporting across jurisdictional boundaries. 

Inspired by observability principles in Zero Trust Architecture (ZTA) and modern DevSecOps systems (Rose et al., 
2020), CDOP transforms QAIFC into a self-aware, self-defending learning ecosystem. 

Table 5 Core Modules 

Module Description 

Telemetry Capture 
Agents 

Embedded agents collect fine-grained logs (e.g., training time, loss values, API usage) from each 
federated node. 

Anomaly Detection 
Engine 

Leverages XAI methods (e.g., SHAP, Isolation Forest) to score each update and identify malicious 
or inconsistent behaviors. 

Audit Log 
Replicator 

Aggregates and distributes audit trails for tamper-proof storage across domains using ELK stack 
or blockchain-based ledgers. 

Drift Tracker Continuously compares prediction distributions against historical norms using statistical 
divergence metrics. 

 

Formula 3.2: Model Drift Detection Using KL Divergence 

Model drift is a key indicator of untrustworthy contributions or emerging data shifts. CDOP applies Kullback-Leibler 
Divergence (KL Divergence) to compare predicted output distributions over time. 

𝐷𝐾𝐿(𝑃 ||𝑄) = ∑ 𝑃(𝑖)

𝑖

log (
𝑃(𝑖)

𝑄(𝑖)
) 

Where: 

• 𝑃(𝑖) : Expected or historical output distribution (reference), 𝑄(𝑖) : New/current output distribution 
(observation), and 𝐷𝐾𝐿: Divergence measure (non-symmetric). 

When 𝐷𝐾𝐿 > τ, where τ is a predefined threshold (typically 0.1–0.3), CDOP triggers: 

• Trust reassessment in the Trust-Orchestration Layer, 
• Quarantine or rate-limiting of the suspected client, 
• Logging of the drift event into the distributed audit ledger. 

This detection technique helps in mitigating silent model corruption, data poisoning, and domain shifts (Lu et al., 2019). 
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Figure 5 CDOP Data Flow 

This architecture allows QAIFC to observe, react, and adapt to evolving threats and performance deviations across any 
federated domain, cloud provider, or organizational boundary. 

Table 6 Integration Tools and Platforms 

Tool/Framework Role 

OpenTelemetry Cross-platform telemetry instrumentation and metric streaming. 

Grafana Visualization dashboard for trust scores, drift alerts, and update frequency. 

Zeek IDS Passive network monitoring tool for detecting suspicious traffic or protocol violations. 

ELK Stack (Elasticsearch, 
Logstash, Kibana) 

Distributed log collection, search, and real-time audit visualization. 

Prometheus Time-series database and alerting engine for metrics gathered from all layers. 

 

Together, these tools form a robust observability and alerting framework for federated AI, enabling compliance, rapid 
remediation, and trust transparency. 

3.7.2. CDOP Use Case Example 

In a QAIFC deployment across three healthcare systems: 

• Telemetry agents monitor training behavior of hospital A’s edge node. 
• Anomaly classifier flags inconsistent gradient directions compared to the rest of the federation. 
• Drift tracker confirms a sharp rise in KL divergence. 
• CDOP initiates trust downgrading, logs the incident, and temporarily removes hospital A’s node from 

aggregation until a remediation protocol is executed. 
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This ensures real-time trust regulation and privacy-preserving accountability without centralizing sensitive patient 
data. 

3.8. Inter-Layer Communication and Feedback Loops 

The QAIFC architecture is not simply a stack of isolated functionalities; it is a deeply interconnected system where each 
layer shares metrics, triggers, and policy feedback with its neighbors. This multi-layer feedback loop creates a resilient, 
context-aware AI platform that can enforce security, optimize performance, and adapt to real-world variability. 

3.8.1. Examples of Inter-Layer Interactions 

The QAIFC framework is designed with tightly integrated inter-layer communication to ensure that security, trust, and 
observability are enforced coherently across all functional domains. For instance, trust scores computed in the Trust-
Orchestration Layer are directly informed by inputs from other layers specifically, real-time anomaly scores generated 
by the Cross-Domain Observability Protocol (CDOP) and cryptographic proof compliance verified by the Quantum 
Secure Communication Layer. This allows the trust engine to reflect both behavioral irregularities and cryptographic 
adherence in its scoring. 

In the Federated Learning Layer, model aggregation decisions are governed by these trust scores. Only updates from 
clients that meet the current trust threshold are included in the global model, and even among those, the gradient 
contributions are scaled according to trust-weighted factors as described in Section 3.4. This mitigates the influence of 
potentially unreliable or marginally trusted participants. 

Meanwhile, audit logs and telemetry data collected by CDOP are stored in tamper-evident formats and can be queried 
through the Application Layer by system administrators via secure dashboards or APIs. This provides visibility into 
system health and supports compliance reporting and incident forensics. 

Further reinforcing system integrity, gradient updates are only accepted and processed if they meet multiple conditions: 
they must be signed with valid post-quantum certificates, the associated trust score must exceed a minimum threshold 
(e.g., 0.6), and there must be no recent drift or anomaly flags tied to the client’s activity. 

This holistic, cross-layer design ensures that attacks, distributional drift, or component failures are rapidly detected, 
isolated, and addressed by adjacent system layers. It also enables federation-wide transparency and resilience, 
supporting compliance with emerging AI governance standards and data sovereignty regulations (Kumar et al., 2021). 

3.9. Summary 

QAIFC architecture introduces a modular, layered approach to securing federated learning in untrusted and quantum-
vulnerable environments. Each layer from user-facing applications to quantum-secure communication and real-time 
observability contributes to a coherent and robust federated ecosystem. At the core lies a dynamic trust function, 
allowing adaptive participation and cryptographically verified collaboration across administrative domains. This 
layered model sets the foundation for the protocol and threat modeling introduced in Chapter 4 and 5. 

4. Proposed Protocol: QFedSecure 

4.1. Introduction 

In federated learning environments involving untrusted, heterogeneous participants particularly those spanning 
multiple cloud domains and geopolitical boundaries ensuring security, accountability, and trust becomes paramount. 
The rise of quantum computing further threatens classical encryption, compelling the need for protocols that are not 
only distributed and resilient but also quantum secure. 

QFedSecure addresses the core challenges of secure, decentralized AI collaboration by introducing a composable 
federated learning protocol that integrates protection, trust, and interpretability across five critical dimensions. First, it 
incorporates Quantum Key Distribution (QKD) and post-quantum encryption to secure communications against 
quantum-enabled adversaries, ensuring forward secrecy and long-term confidentiality (Pirandola et al., 2020). Second, 
it leverages lattice-based cryptographic primitives, such as Kyber and Dilithium, to encrypt model parameters and verify 
participant identities with resistance to both classical and quantum attacks (Alkim et al., 2016). 
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Third, the protocol embeds AI-driven anomaly detection, enabling the system to identify poisoned or otherwise 
suspicious updates before they influence the global model. Fourth, it employs dynamic trust scoring, assigning weights 
to client contributions based on behavioral integrity, cryptographic compliance, and explainability metrics. Finally, 
feedback loops are implemented to reinforce trustworthy behavior over time, allowing the system to adaptively reward 
reliable nodes and penalize those exhibiting malicious or erratic behavior. 

QFedSecure is modular and pluggable, designed to integrate seamlessly with federated learning orchestration 
frameworks such as TensorFlow Federated, PySyft, and FedML. Its alignment with Zero Trust principles, commitment 
to cryptographic assurance, and support for explainable intelligence make it particularly well-suited for high-assurance 
environments, including healthcare, financial services, national defense, and critical infrastructure sectors where trust, 
security, and transparency are non-negotiable. 

4.2. QFedSecure Protocol Design and Specification 

The QFedSecure protocol is executed in five sequential phases, each contributing to the end-to-end lifecycle of secure 
and verifiable federated learning: 

• Quantum Key Initialization – Clients and coordinators negotiate session keys using QKD or post-quantum key 
exchange to ensure secure communication. 

• Secure Model Distribution – Clients receive encrypted model parameters after passing access and trust 
verification checks. 

• Anomaly Detection Pipeline – Local updates are evaluated using local explainability techniques (e.g., SHAP) to 
detect inconsistencies or adversarial intent. 

• Gradient Encryption and Trust Scoring – Gradients are encrypted with quantum-safe primitives and assigned a 
dynamic trust score based on observed behavior and past reputation. 

• Secure Aggregation and Trust Feedback – Aggregators perform trust-weighted update aggregation and send 
scores back to the Trust-Orchestration Layer. 

This compositional pipeline enables real-time risk-aware learning, mitigating both insider threats and long-range 
adversarial attacks without centralizing any sensitive data. 

 

Figure 6 QFedSecure Protocol Flow 

Each component of this pipeline is cryptographically protected, trust-evaluated, and observable via telemetry 
integrations from the CDOP layer. 
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4.3. Quantum Key Exchange for Federated Learning 

To protect model parameters and trust credentials in transit, QFedSecure integrates Quantum Key Distribution (QKD) 
into its initial communication handshake. The selected protocol for simulation and early implementation is BB84, the 
first quantum cryptographic protocol proposed by Bennett and Brassard in 1984. 

BB84 exploits the no-cloning theorem and quantum measurement collapse to enable two parties (typically a client and 
a server) to establish a symmetric key that is immune to interception even by quantum adversaries (Scarani et al., 2009). 
Unlike RSA or ECC, BB84 does not rely on hard math problems, making it probably secure under quantum and classical 
threats. 

Algorithm 4.1: BB84 QKD Handshake (Simplified) 

1. Alice prepares qubits in random bases (X or Z) 
2. Bob measures qubits in random bases 
3. Alice and Bob communicate their bases over a public channel 
4. Discard mismatched bases to extract shared key 
5. Apply privacy amplification to remove leaked bits 

 

This key is then used to encrypt gradients using symmetric lattice-encryption schemes (e.g., Kyber) or AES-256 
(fallback) depending on quantum hardware availability. 

4.3.1. Script: Simulating Quantum Key Generation Using Qiskit 

The following Python script demonstrates a simplified QKD key generation using IBM's Qiskit simulator, ideal for 
educational and prototyping purposes: 

from qiskit import QuantumCircuit, Aer, execute 

 

qc = QuantumCircuit(1, 1) 

qc.h(0) # Create superposition 

qc.measure(0, 0) # Measure in Z basis 

 

backend = Aer.get_backend('qasm_simulator') 

result = execute(qc, backend, shots=1024).result() 

print("Key bits:", result.get_counts()) 

 

The outcome shows a probabilistic distribution of qubit measurement results, which represent one half of the key pair. 
A second party would run a similar protocol and compare measurement bases to generate the final key. 

4.3.2. Security Implications 

BB84 offers forward secrecy keys are freshly generated per session and cannot be retroactively decrypted even if an 
attacker captures the encrypted gradients. Moreover, BB84 and its extensions (e.g., decoy state BB84) can detect 
eavesdropping by measuring the quantum bit error rate (QBER). 

QFedSecure can also fall back to post-quantum key exchange protocols such as Kyber or FrodoKEM, which are efficient 
and NIST-finalist candidates for deployment in classical environments (NIST PQC, 2023). 

4.4. Secure Gradient Exchange Using Lattice-Based Cryptography 

In the post-quantum era, classical encryption schemes such as RSA and ECC become vulnerable to decryption using 
algorithms like Shor’s, which run in polynomial time on quantum hardware (Shor, 1994). To prevent model inversion, 
gradient leakage, and unauthorized update analysis, QFedSecure leverages lattice-based cryptography specifically 
schemes based on the Learning With Errors (LWE) problem. 
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LWE is considered quantum-resistant and forms the foundation of cryptographic primitives such as Kyber, FrodoKEM, 
and Dilithium, which are all NIST-approved for post-quantum standardization (Alkim et al., 2016; NIST PQC, 2023). 

Formula 4.1: LWE-Based Gradient Encryption 

Let: 

A: Public matrix, s: Secret vector (private key), e: Small noise vector sampled from a discrete Gaussian distribution, q: A 
large prime modulus. 

The encryption of a gradient vector s proceeds as follows: 

𝑏 =  𝐴 𝑠 +  𝑒 𝑚𝑜𝑑 𝑞 

To decrypt: 

𝑠𝑚𝑜𝑑  𝑞𝑠 ≈ 𝑏 –  𝐴 

Since e is small and known in distribution, the decrypted signal can recover 𝑠 with high probability. This noise also hides 
the structure of 𝑠, ensuring semantic security under quantum attacks. 

4.4.1. Use in QFedSecure 

In the QFedSecure protocol, lattice-based encryption is employed to ensure secure and privacy-preserving 
communication of model updates between clients and the aggregator, even in the presence of quantum-capable 
adversaries. The process begins with each client encrypting its local model updates either gradients or weights using a 
public matrix AAA and their own private key sss. This encryption is based on the Learning With Errors (LWE) problem, 
which underpins the security of modern lattice-based schemes such as Kyber and FrodoKEM. 

Once encrypted, these updates are transmitted via the Quantum Secure Communication Layer, which guarantees end-
to-end confidentiality using post-quantum key exchange or quantum key distribution (QKD). Importantly, the 
aggregator does not decrypt these individual updates. Instead, it performs homomorphic aggregation such as computing 
a sum or mean directly on the ciphertexts. This allows the global model to be updated securely without ever exposing 
the individual contributions of clients. 

By enabling homomorphic operations over encrypted data, this mechanism preserves both data privacy and model 
integrity, while remaining resistant to quantum attacks. It also ensures that no single point in the system, including the 
central aggregator, ever has access to raw or decrypted client data, making QFedSecure compliant with the strongest 
privacy and cryptographic guarantees. 

Table 7 Cryptographic Tools & Libraries 

Tool Function 

PQC-CRYSTALS-Kyber Official NIST finalist for post-quantum KEM. Used for encrypting gradients and keys. 

OpenFHE Fully homomorphic encryption framework for secure computation over encrypted data. 

PALISADE Lattice-based homomorphic encryption library for FL-compatible secure aggregation. 

Liboqs Open Quantum Safe implementation for integrating multiple PQC algorithms. 

 

This cryptographic workflow ensures forward secrecy, model confidentiality, and secure gradient exchange without 
exposing the local data, gradient patterns, or update behaviors of individual clients. 

4.5. AI-Driven Anomaly Detection Pipeline 

Even with robust cryptographic protection in place, federated learning systems remain vulnerable to a range of data-
driven attacks that exploit the statistical nature of model updates rather than the transmission channels themselves. 
Among the most critical threats are model poisoning, where adversaries submit manipulated gradients to degrade the 



World Journal of Advanced Research and Reviews, 2025, 26(02), 4098–4140 

4120 

overall model accuracy; backdoor insertion, which involves injecting specific patterns that trigger malicious 
misclassifications; gradient inversion, where attackers attempt to reconstruct private training data from shared 
gradients; and Sybil attacks, where a single entity impersonates multiple clients to disproportionately influence the 
model. 

To counter these threats, QFedSecure incorporates an embedded AI-driven anomaly detection engine within its Trust-
Orchestration Layer. This engine evaluates each client’s model update by analyzing behavioral patterns, measuring 
statistical deviations from expected gradient distributions, and assessing consistency over time. Clients whose updates 
exhibit abnormal behavior such as extreme gradient magnitudes, divergent loss trajectories, or uncharacteristic feature 
attributions are assigned to elevated risk scores. These scores directly inform trust calculations, enabling the system to 
penalize or exclude malicious actors in real time. This integrated approach provides a second line of defense beyond 
cryptography, reinforcing the overall resilience and reliability of the QAIFC framework. 

Table 8 Pipeline Components 

Component Role 

SHAP Explainability Explains local gradient updates by attributing them to feature contributions. 

Isolation Forests Detects outliers in gradient magnitude, direction, or model loss. 

KL-Divergence Drift Detection Measures temporal shift in model output distribution to detect concept drift. 

 

Equation 4.2: KL-Divergence for Drift Detection 

𝐷𝐾𝐿(𝑃 ||𝑄) = ∑ 𝑃(𝑖)

𝑖

log (
𝑃(𝑖)

𝑄(𝑖)
) 

Where: 

• 𝑃(𝑖): Expected distribution of model outputs (from prior rounds), 𝑄(𝑖): Current observed distribution, 
• 𝐷𝐾𝐿: Measures divergence; large values indicate unexpected shifts.  

If 𝐷𝐾𝐿(𝑃 ||𝑄)  >  𝜏 (a threshold like 0.3), it is flagged as suspicious and can: 

Lower the client's trust score, Delay or isolate its update from aggregation, and/or Trigger administrative audit or 
visualization via the CDOP layer. 

4.5.1. Tools for Implementation 

• SHAP (SHapley Additive exPlanations): For local gradient attribution. 
• PyCaret / Scikit-Learn: For deploying unsupervised anomaly detectors. 
• Grafana + Prometheus: For real-time metric visualization and anomaly alerts. 

This enables explainable, autonomous vetting of client updates and feeds results directly to the trust engine. 

4.6. Trust Score Evaluation and Secure Aggregation 

In QFedSecure, each client is assigned a dynamic trust score that continuously evolves based on observed behavior, 
contribution reliability, and adherence to cryptographic protocols. These trust scores serve as a central mechanism for 
enforcing accountability and security within the federated system. During model aggregation, trust scores are used to 
weight each client's contribution, ensuring that updates from more reliable participants have greater influence on the 
global model. They also govern access privileges, determining which clients are eligible to receive updated models or 
participate in subsequent communication rounds. 

Furthermore, trust scores are persistently stored and visualized within the Cross-Domain Observability Protocol 
(CDOP) telemetry stack. This enables real-time monitoring, historical analysis, and auditability of trust dynamics across 
the federation. By integrating trust into both decision logic and operational observability, QFedSecure ensures that 
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participation is not only secured by cryptography but also adaptive to behavior, enhancing the resilience and 
transparency of federated AI collaboration. 

Formula 4.3: Trust Function 

𝑇𝑖𝑗(𝑡) =
∑ 𝑤𝑘𝑆𝑘(𝑖, 𝑗, 𝑡)𝑛

𝑘=1

∑ 𝑤𝑘
𝑛
𝑘=1

 

Where: 

• 𝑇𝑖𝑗(𝑡): Trust score for client iii from aggregator j at time t, 𝑆𝑘(𝑖, 𝑗, 𝑡): The k-th behavior/security metric, and 𝑤𝑘: 

Weight of metric k (e.g., anomaly score importance vs. gradient consistency). 

This weighted means allows the system to assign nuanced, explainable trust values based on multidimensional 
observations. 

Algorithm 4.2: Federated Quantum Trust Computation 

Input: Encrypted gradients Gᵢ from clients, trust scores Tᵢ 
 
For each client i: 
 Decrypt Gᵢ using QKD-derived key or Kyber 
 Compute anomaly likelihood Aᵢ via SHAP and outlier detection 
 Update trust score: 
 Tᵢ ← f(Tᵢ, Aᵢ, historical logs, reputation, drift score) 
 
Aggregate: 
 W ← Σ (Tᵢ * Gᵢ) / Σ Tᵢ 
 
Broadcast: 
 Send updated global model W only to clients with Tᵢ > threshold 

 

This weighted and selective aggregation makes QFedSecure robust to outliers and tampering. Malicious or anomalous 
nodes have diminished influence, and consistent contributors are incentivized through increased aggregation weight 
and visibility. 

4.6.1. Applications of Trust-Based Aggregation 

Trust-based aggregation in QFedSecure enables federated learning systems to operate securely and contextually across 
a wide range of sensitive and distributed environments. In healthcare federations, for example, model updates from 
hospitals or institutions with a track record of high clinical accuracy and data integrity can be weighted more heavily, 
ensuring that the global model reflects contributions from the most reliable medical sources. 

In smart city IoT deployments, the system can detect and suppress updates from malfunctioning or compromised 
sensors, such as those affected by hardware faults or hijacking attempts, thereby preventing corrupted data from 
degrading model performance. 

For multi-nation collaborations, particularly those involving critical infrastructure or defense applications, QFedSecure 
supports geopolitical trust filters that modulate the influence of updates based on national policy, regulatory alignment, 
or institutional reputation. This enables sensitive federated AI initiatives to operate in alignment with sovereign risk 
management strategies while still leveraging global data diversity. 

4.7. Security Guarantees of QFedSecure 

QFedSecure is designed not only as a federated learning coordination mechanism but also as a robust security protocol 
that can survive future cryptographic threats and adapt to complex, untrusted multi-cloud environments. Its 
architecture incorporates principles from Zero Trust Architecture (ZTA) and confidential computing, offering a defense-
in-depth strategy that spans cryptography, trust modeling, and AI-driven detection. 



World Journal of Advanced Research and Reviews, 2025, 26(02), 4098–4140 

4122 

Here, we outline the core security guarantees provided by QFedSecure: 

4.7.1. Forward Secrecy 

Forward secrecy is a foundational security property that ensures the confidentiality of past communications even if 
long-term cryptographic keys are later compromised. In QFedSecure, this principle is rigorously enforced through the 
integration of both Quantum Key Distribution (QKD) utilizing the BB84 protocol and its extensions and post-quantum 
ephemeral key exchange schemes such as Kyber and FrodoKEM. 

All cryptographic keys in QFedSecure are session-specific, meaning they are generated anew for each communication 
round, used once, and then immediately destroyed. This automatic key rotation ensures that even if a node’s private 
key is later compromised, the encrypted data it previously transmitted remains irrecoverable and secure. The system’s 
use of quantum-safe primitives further guarantees that these protections remain valid even in the face of quantum-
enabled adversaries. 

As emphasized by Rose et al. (2020), “forward secrecy is essential in Zero Trust Architectures, especially where lateral 
movement and data replay are major threats.” QFedSecure’s commitment to forward secrecy strengthens its ability to 
maintain trust and confidentiality across dynamic, adversarial federated environments, aligning with the strictest 
standards for cryptographic hygiene and resilience. 

4.7.2. Resistance to Quantum Decryption 

QFedSecure deliberately avoids the use of classical public-key cryptographic algorithms such as RSA and Elliptic Curve 
Cryptography (ECC), which are known to be vulnerable to quantum attacks specifically, Shor’s algorithm, which can 
efficiently break these schemes on a sufficiently powerful quantum computer. Instead, QFedSecure adopts lattice-based 
encryption schemes that are resistant to both classical and quantum adversaries. 

Central to this approach are Kyber, a key encapsulation mechanism (KEM), and Dilithium, a digital signature scheme. 
Both are based on the Learning with Errors (LWE) problem, a hard mathematical problem for which no efficient 
quantum algorithm is currently known. These primitives offer strong security guarantees while remaining 
computationally practical and efficient for deployment in federated learning systems. Notably, both Kyber and Dilithium 
are included in the NIST Post-Quantum Cryptography standardization suite as of 2023, reinforcing their credibility and 
future-proof design (NIST PQC, 2023). 

By integrating quantum-resistant key encapsulation mechanisms with authenticated encryption, QFedSecure achieves 
a high level of cryptographic resilience, ensuring that communications, model updates, and trust assertions remain 
secure not only against today's threats but also against the cryptanalytic capabilities of future quantum systems. This 
positions QAIFC as a forward-compatible solution for secure, decentralized AI collaboration. 

4.7.3. Model Robustness 

Model security in federated learning is inherently vulnerable to a range of adversarial threats, including gradient 
poisoning, where manipulated updates degrade the global model’s accuracy; backdoor insertion, which introduces 
hidden triggers that cause specific misclassifications; and data reconstruction attacks, where sensitive training data is 
inferred from shared gradients. These attacks can undermine model integrity, compromise user privacy, and erode trust 
in decentralized AI systems. 

QFedSecure addresses these risks by embedding model robustness mechanisms directly into its trust and aggregation 
pipeline. One key defense is the use of Explainable AI (XAI) tools, such as SHAP, to assess the semantic validity of 
incoming model updates. By interpreting the contribution of each feature to a client's prediction behavior, the system 
can detect updates that deviate from expected attribution patterns, flagging them as potentially malicious or 
inconsistent. 

Additionally, QFedSecure implements gradient sanitization, wherein anomalous or statistically deviant updates are 
discarded or down-weighted using techniques like Isolation Forests and Kullback–Leibler (KL) divergence scoring (see 
Section 4.5). This prevents outliers from disproportionately influencing the model and reduces the effectiveness of 
poisoning and inversion strategies. 
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Together, these safeguards significantly lower the risk of the system converging on adversarial objectives, suffering 
degradation in predictive quality, or leaking private training data, thereby enhancing the overall security and reliability 
of federated model training in QAIFC. 

4.7.4. Trust Recalibration 

QFedSecure replaces traditional static access control mechanisms with a dynamic trust recalibration system that 
continuously evaluates and adjusts each client’s trust score based on real-time system behavior and verifiable evidence. 
Unlike simple cryptographic authentication or hardcoded access control lists, this approach integrates multiple 
contextual signals to make trust decisions that are adaptive, granular, and aligned with Zero Trust Architecture (ZTA) 
principles. 

Trust scores are recalculated over time using a combination of factors, including telemetry inputs such as local training 
time, model convergence patterns, and network reliability anomaly detection outputs like SHAP-based deviation scores 
and gradient inconsistencies and insights from CDOP audit trail analysis, which track behavioral trends and historical 
incidents. 

This continuous trust recalibration creates a context-aware access control system, where trust is: Continuously verified 
through behavior monitoring and cryptographic compliance, Revoked when violated, immediately limiting influence 
from compromised or unreliable nodes, and Reinforced when validated, incentivizing consistent and compliant 
participation. 

Clients that accumulate persistent trust deficits may be subjected to rate limiting, sandboxing, or full exclusion from 
future training rounds, thereby protecting the integrity of the federated model. This flexible and intelligent trust 
framework ensures that security enforcement evolves with the behavior of the federation, making QFedSecure both 
proactive and resilient in managing decentralized collaboration. 

4.7.5. Alignment with Zero Trust and Confidential Computing 

QFedSecure is fundamentally engineered around the principles of Zero Trust Architecture (ZTA) and confidential 
computing, embedding these paradigms as core design primitives rather than optional add-ons. In alignment with ZTA, 
the system operates on a “never trust, always verify” philosophy, applying per-update trust scoring to continuously 
assess the reliability of every client contribution. This is reinforced by cryptographic attestation mechanisms, such as 
zero-knowledge proofs and post-quantum certificates, which validate both identity and behavioral integrity before any 
update is accepted into the aggregation process. 

To safeguard sensitive computations, QFedSecure incorporates confidential computing techniques, enabling encrypted 
data-in-use protection through technologies like fully homomorphic encryption (FHE) and secure hardware enclaves 
(e.g., Intel SGX, AMD SEV) where infrastructure permits. These methods ensure that model parameters and gradient 
updates remain confidential even during training and aggregation, mitigating risks of leakage from memory-level 
attacks or side channels. 

Together, these features future-proof federated learning deployments by meeting the stringent security, privacy, and 
auditability requirements of high-regulation environments, such as the financial sector, national defense systems, and 
healthcare ecosystems. QFedSecure’s architecture thus enables trustworthy, scalable, and compliant decentralized AI 
collaboration in the most sensitive operational contexts. 

To facilitate real-world deployment and testing, QFedSecure integrates with a suite of open-source and enterprise-grade 
tools, which support the various cryptographic, orchestration, anomaly detection, and telemetry features of the 
protocol. 
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Table 9 Implementation Tools 

Tool Purpose 

IBM Qiskit Simulates quantum key distribution (BB84), enabling research-grade QKD protocol 
implementation and experimentation (Anis et al., 2021). 

TensorFlow 
Federated (TFF) 

Handles federated training lifecycle, including client-server coordination and aggregation 
logic. 

Kyber (Open Quantum 
Safe) 

Implements lattice-based post-quantum key exchange. Selected as part of NIST’s final PQC 
standardization set (NIST PQC, 2023). 

SHAP / PyCaret Used for anomaly detection via model explanation (SHAP) and unsupervised outlier detection 
(PyCaret). 

Prometheus + Grafana Collects, stores, and visualizes trust scores, training behavior, anomaly alerts, and system drift 
metrics. 

4.7.6. Usage Notes 

The implementation of QFedSecure relies on a modular stack of tools and frameworks that collectively support 
quantum-safe security, federated learning orchestration, confidential computing, and observability. Qiskit serves as the 
foundation for quantum simulation and cryptographic experimentation. It can be deployed via Jupyter notebooks for 
rapid prototyping or connected to live quantum hardware through IBMQ backends, enabling the simulation and testing 
of protocols such as Quantum Key Distribution (QKD) within realistic constraints. 

TensorFlow Federated (TFF) powers the federated learning logic and supports both single-machine simulation of 
multiple clients and deployment across actual distributed infrastructures, such as edge clusters or hybrid clouds. For 
secure aggregation, frameworks like OpenFHE and PALISADE can be integrated to support fully homomorphic 
encryption (FHE) pipelines or other encrypted computation methods, particularly where confidential computing is 
mandated by compliance requirements. 

To maintain transparency and operational control, Grafana dashboards interface with Prometheus and other telemetry 
sources to provide real-time visibility into federated training rounds, client trust scores, anomaly alerts, and 
performance deviations across geographical regions or network domains. 

Together, these tools form the implementation backbone of QFedSecure, enabling a reproducible, secure, and scalable 
foundation for deploying trustworthy federated intelligence in the quantum era. This toolchain supports both academic 
experimentation and enterprise-grade deployments across high-assurance sectors. 

4.8. Summary 

QFedSecure represents a next-generation protocol for secure and observable federated AI collaboration. By combining 
post-quantum encryption, explainable anomaly detection, and dynamic trust propagation, it addresses key gaps in 
current federated learning ecosystems. The protocol is designed to be modular, interoperable, and suitable for critical 
applications such as digital health, finance, and IoT. The next chapter will rigorously evaluate QFedSecure through 
simulations and metrics-based validation. 

5. Security, Privacy, and Threat Model 

5.1. Introduction 

Security in federated learning systems, particularly those spanning untrusted multi-cloud environments, must contend 
with complex attack vectors and evolving cryptographic threats. The Quantum-AI Federated Cloud (QAIFC) introduces 
layers of defense to mitigate vulnerabilities using quantum-safe cryptography, anomaly detection, and adaptive trust 
models. This chapter presents a detailed taxonomy of threats, privacy safeguards, and formal trust mechanisms within 
QAIFC. 
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Figure 7 Threat Landscape for QAIFC Federated System 

5.2. Threat Landscape for QAIFC 

The security landscape in federated learning systems is fundamentally shaped by the distribution of data, model 
updates, and computation across heterogeneous, often untrusted nodes. In the Quantum-AI Federated Cloud (QAIFC) 
environment, threats are magnified due to the increased complexity of managing secure communication, decentralized 
trust, and adversarial tolerance at scale. 

Figure 7 categorizes the core threats facing federated learning systems based on two dimensions: likelihood of 
occurrence and severity of impact. These threats interact in complex ways depending on factors such as: Federation 
topology (centralized vs. peer-to-peer), Client population size, Domain heterogeneity, Trust assignment granularity, 
Cryptographic protocol choice. 

Below are the primary threat classes: 

5.2.1. Model Poisoning 

Model poisoning occurs when adversaries intentionally manipulate their model updates—typically by injecting 
malicious gradients during local training—with the goal of degrading the performance of the global model or embedding 
a backdoor that causes targeted misclassifications. As demonstrated by Bhagoji et al. (2019), this attack vector can be 
highly effective in federated systems that lack rigorous validation mechanisms. 

Impact: Model poisoning can lead to significant degradation in overall accuracy, particularly when malicious updates 
are strategically crafted to mimic benign behavior. More insidiously, it can result in hidden misclassifications, where 
specific inputs (e.g., containing a trigger pattern) are systematically misclassified—a phenomenon often referred to as 
a Trojan attack. Such outcomes pose serious risks in safety-critical applications, such as medical diagnostics or 
autonomous driving, potentially leading to regulatory violations and liability. 

Likelihood: This threat is especially high in open or loosely regulated federations, where there is minimal or no trust 
scoring, insufficient anomaly detection, or lack of cryptographic verification. In such settings, adversaries can easily 
masquerade as legitimate clients and repeatedly contribute poisoned updates without detection, making model 
poisoning one of the most pressing threats to federated learning integrity. 

5.2.2. Sybil Attacks 

A single malicious entity creates multiple fake identities or nodes to amplify its influence in the aggregation process 
(Damaskinos et al., 2021). 
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A Sybil attack involves a single malicious actor generating multiple fake identities or nodes within a federated learning 
system to disproportionately influence the model aggregation process. As highlighted by Damaskinos et al. (2021), these 
fake clients can coordinate their updates to reinforce poisoned gradients, skew learning outcomes, or evade detection 
by distributing malicious behavior across seemingly independent participants. 

Impact: Sybil attacks can lead to overrepresentation in training, allowing a single adversary to dominate the learning 
process and distort model convergence. They also pose a risk to trust mechanisms, as each fake node may individually 
appear benign and bypass threshold-based filtering, especially in the absence of behavioral correlation. If unchecked, 
such attacks can cause model collapse, where the global model becomes biased, unstable, or functionally unusable. 

Likelihood: The likelihood of Sybil attacks is medium to high, particularly in federated systems that lack robust identity 
validation, cryptographic credentialing, or peer attestation mechanisms (e.g., blockchain-backed trust endorsements). 
Federations that rely solely on static client lists or IP-based identification are especially vulnerable, making Sybil 
resilience a critical requirement for secure federated AI deployments. 

5.2.3. Gradient Inversion 

Gradient inversion is a privacy-focused attack in which adversaries analyze shared model updates, such as gradients or 
weight deltas, to reconstruct sensitive training data from other clients. This threat was first demonstrated in depth by 
Zhu et al. (2019), who showed that even a small number of shared gradients could be used to approximate the original 
inputs such as images or textual records with alarming accuracy. 

Impact: Successful gradient inversion leads to direct violations of data privacy, potentially exposing protected attributes 
like patient health records, financial transactions, or biometric identifiers. Such leakage not only undermines the privacy 
guarantees of federated learning but can also result in severe legal consequences under regulations like HIPAA, GDPR, 
or CCPA. Furthermore, the reputational damage to organizations found leaking sensitive data even inadvertently can be 
long-lasting. 

Likelihood: The likelihood of gradient inversion attacks is medium, especially in systems where raw gradients are 
transmitted without any obfuscation. However, the risk can be significantly reduced through the application of 
Differential Privacy (DP) techniques which add calibrated noise to updates or by using encrypted gradients via 
homomorphic encryption or secure multiparty computation. In QFedSecure, both approaches are employed to ensure 
that even if updates are intercepted or inspected, the underlying data remains unrecoverable. 

5.2.4. Quantum Decryption 

Future adversaries equipped with quantum computers pose a profound threat to the foundations of classical encryption 
by exploiting algorithms such as Shor’s algorithm (Shor, 1994), which enables efficient factorization of large integers 
and the computation of discrete logarithms: two core problems underpinning widely used cryptosystems like RSA, DSA, 
and ECC. 

Impact: A successful quantum attack could lead to the exposure of all past communications and model updates, 
especially in systems lacking forward secrecy, where session keys are derived from long-term keys. This would allow 
adversaries to retrospectively decrypt archived data, violating the confidentiality of sensitive training records and 
model parameters. Additionally, private key compromise could enable impersonation attacks, breaking authentication 
mechanisms and leading to system-wide trust failures that invalidate previously established security guarantees. 

Likelihood: While the likelihood is currently low, due to the limited availability of large-scale, fault-tolerant quantum 
computers, the risk is extremely high in the long term. This is particularly concerning for archived data, which could be 
harvested today and decrypted years later a threat often referred to as "harvest now, decrypt later." As such, adopting 
quantum-resistant cryptography and forward secrecy mechanisms now, as implemented in QFedSecure, is essential to 
preemptively protect federated systems from inevitable future quantum threats. 

5.2.5. Data Drift 

Data drift refers to the gradual or sudden shift in the underlying data distribution over time, often caused by changes in 
user behavior, environmental conditions, or operational contexts. In federated learning settings—especially those 
deployed in dynamic, real-world environments—data drift is an ever-present challenge that can significantly degrade 
model performance if not promptly detected and addressed. 
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Impact: When data drift occurs, it can lead to model obsolescence, where the model no longer generalizes well to current 
data, resulting in increased rates of false positives or false negatives. For example, in a smart city traffic monitoring 
system, shifts in traffic patterns due to construction or seasonal behavior may render historical models inaccurate. 
Moreover, if trust scores or anomaly detection systems fail to account for drift, it may cause misalignment between 
model behavior and trust metrics, undermining both the model’s reliability and the system’s security assumptions. 

Likelihood: The likelihood of data drift is high in long-running or real-world federated applications, particularly those 
involving IoT networks, smart cities, finance, or consumer behavior modeling. In QFedSecure, data drift is mitigated 
through continuous monitoring using KL divergence-based drift detectors and adaptive trust recalibration, ensuring 
that the system remains context-aware and responsive to distributional shifts over time. This capability is essential to 
preserving both model validity and operational trustworthiness in evolving environments. 

5.3. Formal Adversary Model 

QAIFC formalizes a tri-level adversary taxonomy based on capability, intent, and operational knowledge. Understanding 
adversary profiles helps guide protocol hardening, anomaly scoring thresholds, and trust score dynamics. 

5.3.1. Semi-Honest (Passive) Adversaries 

• Follow the protocol correctly but seek to infer private data by analyzing gradients, weights, or telemetry logs. 
As an example: A hospital in a healthcare FL setting that tries to reconstruct competitor patient demographics. 

5.3.2. Mitigation 

• Use of differential privacy, homomorphic encryption, and gradient clipping. 

5.3.3. Malicious (Active) Adversaries 

• Intentionally deviate from the protocol to: Inject poisoned updates, Forge credentials, Simulate Sybil nodes, 
Submit misaligned data. 

5.3.4. Mitigation 

• Explainable AI for update validation, 
• Trust-based access control, 
• Secure aggregation protocols. 

5.3.5. Quantum-Enhanced Adversaries 

• Employ quantum algorithms (e.g., Shor’s or Grover’s) to: Break classical encryption (RSA, ECC), Decrypt model 
updates in transit, Compromise key exchange mechanisms. 

5.3.6. Mitigation 

• Quantum Key Distribution (QKD), 
• Lattice-based encryption (Kyber, FrodoKEM), 
• Session key rotation and forward secrecy. 

Equation 5.1: Quantum Break Factor (QBF) 

To quantify cryptographic risk, we define: 

𝑄𝐵𝐹 =
𝑇𝑐

𝑇𝑞
 

Where: 

• 𝑇𝑐: Time to break encryption with classical hardware, 𝑇𝑞 ∶ Time to break encryption with quantum hardware. 

A QBF >> 1 signifies urgent need for quantum-resilient upgrades, especially in critical infrastructure or long-term data 
retention scenarios (Mosca, 2018). 
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5.4. Privacy Guarantees Using Differential Privacy (DP) 

In QAIFC, Differential Privacy (DP) is implemented to ensure that model outputs remain statistically indistinguishable 
whether or not any single individual's data is included in the training set. 

This is crucial for regulatory compliance (e.g., GDPR, HIPAA), and it provides provable privacy bounds even in the 
presence of adversarial post-processing. 

Formula 5.1: ε-Differential Privacy 

𝜖 = ln (
𝑃[𝑀(𝐷) = 𝑜]

𝑃[𝑀(𝐷′) = 𝑜]
) 

Where: 

• 𝐷 , 𝐷′ : Neighboring datasets differing in one record, 𝑀 : Mechanism (e.g., model training algorithm), and 𝑜 : 
Output (e.g., model parameters or predictions). 

Smaller ϵ\epsilonϵ values denote stronger privacy, typically in the range of 0.1 to 1.0 depending on application domain 
(Dwork & Roth, 2014). 

Table 10 DP Techniques in QFedSecure 

Technique Description 

Gaussian Noise Addition Randomized noise is added to gradients before transmission to obfuscate 
exact data contribution. 

DP-SGD (Differentially Private Stochastic 
Gradient Descent) 

Noise is added during the local training process, with clipping to limit the 
sensitivity of each update (Abadi et al., 2016). 

Per-Round Budget Tracking Privacy budget ϵ\epsilonϵ is monitored across rounds to ensure cumulative 
leakage remains bounded. 

5.4.1. Advantages in QAIFC 

In QAIFC, differential privacy and gradient sanitization provide critical defense-in-depth benefits. They complement 
anomaly detection and trust scoring, enhancing the detection of malicious behavior while protecting legitimate updates. 
These methods also act as a privacy-preserving fallback, ensuring security even if encryption or trust mechanisms fail. 
Additionally, by obscuring fine-grained gradient details, they mitigate gradient inversion and passive auditing risks, 
protecting sensitive client data from reconstruction or unauthorized inference. 

5.5. Zero-Knowledge Proofs for Secure Participation 

As federated systems scale and include untrusted participants, ensuring secure participation becomes a core 
requirement. QAIFC adopts Zero-Knowledge Proofs (ZKPs) to allow nodes to prove the legitimacy of their computations 
or credentials without revealing sensitive internal details, such as raw data or gradient vectors. 

5.5.1. ZKP Concept 

A Zero-Knowledge Proof (ZKP) is a cryptographic protocol that allows a prover to demonstrate possession of a secret 
such as a valid model update or compliant training process without revealing any information about the secret itself. 
This is especially important in federated learning, where maintaining privacy and integrity is paramount. 

In the QAIFC context, ZKPs are crucial because clients must avoid transmitting gradients in plaintext to protect sensitive 
data. Yet, aggregators or peer verifiers still need assurance that the submitted updates were computed honestly and 
follow agreed-upon protocols. ZKPs bridge this gap by enabling validation without exposure, effectively preventing data 
leakage, free-riding behaviors, and model tampering, all while preserving confidentiality and compliance in 
decentralized training environments. 
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5.5.2. ZKP Protocols in Federated Learning 

• zkSNARKs (Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge) zkSNARKs are a powerful 
class of zero-knowledge proofs that are both non-interactive requiring no back-and-forth communication 
between prover and verifier and succinct, meaning that the generated proofs are compact and can be verified 
quickly. In QFedSecure, zkSNARKs are used to validate the structural correctness of model updates, ensure that 
computations remain within predefined bounds, and attest to encrypted training logs, all without revealing 
sensitive training data (Ben-Sasson et al., 2014). 

• Bulletproofs 
Bulletproofs are optimized for range proofs, enabling a prover to demonstrate that a hidden value lies within a 
specific range without revealing the value itself. Within QAIFC, Bulletproofs are particularly useful for ensuring 
that gradient magnitudes remain within acceptable limits, a critical measure to detect and prevent gradient 
manipulation or poisoning all while preserving privacy (Bu nz et al., 2018). These proofs enhance verifiability 
in federated learning without imposing significant computational or bandwidth overhead. 

5.5.3. Script (Conceptual): zkSNARK Signature Verification 

#Pseudocode assumes cryptographic backend and prover/verifier keys 
 
def verify_gradient_update(commitment, proof): 
 assert zkSNARK.verify(commitment, proof) 
 return True 

 

Here: commitment refers to a cryptographic hash of the gradient update; proof is generated using zkSNARK tooling and 
attached to each update; verify ensures the update adheres to pre-agreed conditions (e.g., loss bounds, convergence 
status) without disclosing the actual data. 

Table 11 ZKP Tools for QAIFC 

Tool Purpose 

libsnark Low-level zkSNARK implementation in C++. 

ZoKrates High-level DSL for creating ZKP circuits in FL pipelines. 

zkInterface Standard interface for integrating ZKPs into external systems like TensorFlow or PySyft. 

 

These tools enable privacy-preserving proof-of-work or proof-of-compliance mechanisms, aligning QAIFC with privacy, 
compliance, and verifiability goals. 

5.6. Game-Theoretic Trust Modeling 

In distributed federated ecosystems, where participants are autonomous and have asymmetric incentives, maintaining 
system reliability depends on incentive-aligned behavior. QAIFC uses game-theoretic models to ensure that rational 
clients find honest behavior more rewarding than attacks or defection. 

5.6.1. Repeated Trust Game Framework 

Each participant in QAIFC engages in a repeated game, where cooperation (i.e., honest model updates) yields positive 
trust rewards, and defection (e.g., model poisoning) leads to penalties and possible exclusion. 

5.6.2. Utility Function for Federated Participants 

𝑈𝑖(𝑡) = 𝛼𝑅𝑖(𝑡) − 𝛽𝑃𝑖(𝑡) 

Where: 

𝑈𝑖(𝑡): Net utility for client iii at round t, 𝑅𝑖(𝑡): Reward based on the quality and impact of contribution, 𝑃𝑖(𝑡): Penalty 
for misbehavior (detected via anomaly scores, drift), 𝛼, 𝛽: Scaling factors that define the relative importance of reward 
vs. punishment. 
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Over multiple rounds, clients seek to maximize cumulative utility, leading rational actors to prefer honest participation 
to avoid cumulative penalties or trust decay. 

5.6.3. Trust Adjustment Algorithm 

For each round: 
 Compute impact score Iᵢ for each client i (e.g., using SHAP, loss, or alignment) 
 If Iᵢ < threshold: 
 Penalize trust: Tᵢ ← Tᵢ × γ # γ < 1 
 Else: 
 Reward trust: Tᵢ ← min(1, Tᵢ + δ) # δ is small positive increment 

 

This feedback loop creates a self-regulating trust environment: Low-impact or malicious updates quickly reduce client 
trust, High-quality, verifiable updates gradually restore or maintain trust, and Long-term deviation is statistically 
unprofitable, deterring Sybil or collusion strategies. 

Table 12 Strategic Outcomes 

Strategy Long-Term Outcome 

Consistent cooperation High trust score, full model participation 

Occasional defection Probationary trust decay, reduced influence 

Persistent misbehavior Blacklisting, update exclusion, audit trigger 

5.7. Tools and Frameworks for Security Evaluation 

QAIFC incorporates a comprehensive security evaluation pipeline designed to test and validate its resilience against a 
wide range of adversarial conditions. This includes the simulation of network-level attacks, such as Sybil impersonation, 
model poisoning, and message tampering, using tools like NS-3 or custom event-driven simulators that model federated 
environments and communication behavior. 

For assessing privacy and cryptographic assurance, QAIFC integrates with libraries such as OpenFHE, PALISADE, and 
IBM Qiskit, enabling testing of post-quantum encryption schemes, secure multiparty computations, and quantum key 
distribution protocols. These tools help verify that encryption primitives maintain confidentiality and integrity even 
under quantum-capable adversaries. 

Additionally, QAIFC includes system-wide monitoring of trust and anomaly metrics, leveraging Prometheus for metric 
collection and Grafana for real-time visualization. These platforms enable administrators to track evolving trust scores, 
flag anomalies based on SHAP outputs or gradient deviation, and perform post-event audits via tamper-evident logs. 
Together, these tools provide a scalable and reproducible framework for validating the security posture of federated 
deployments under QAIFC. 

Table 13 Security & Evaluation Tools 

Tool/Framework Description 

TensorFlow Privacy Implements DP-SGD with configurable ε, noise, and clipping for private FL. 

Qiskit Simulates quantum attacks on encrypted communication (e.g., key leakage). 

NS-3 + FL Extensions Network simulation to test Sybil attacks, latency spoofing, DoS, etc. 

Zeek Open-source network traffic analyzer for intrusion detection. 

Prometheus + Grafana Real-time telemetry collection and dashboarding of trust and anomaly scores. 

libsnark / ZoKrates For compiling and verifying ZKP proofs from federated model updates. 
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These tools help QAIFC validate the following: Cryptographic integrity (via lattice-based proofs), Data confidentiality 
(via DP noise calibration), Federated robustness (via simulated adversarial interactions), and Real-time trust evolution 
(via Grafana-based monitoring). 

5.8. Summary 

The QAIFC security model addresses contemporary and future-proof threats through a blend of cryptographic 
guarantees, behavioral modeling, and trust-aware aggregation. By incorporating differential privacy, lattice encryption, 
ZKPs, and game-theoretic deterrents, it offers a comprehensive defense-in-depth strategy for federated AI. Figure 5.1 
contextualizes the relative risk profile of attacks, helping to guide the design of adaptive defense mechanisms described 
in the implementation chapters to follow. 

6. Simulation and Experimental Validation 

6.1. Introduction 

To validate the feasibility and performance of the QFedSecure protocol, we conducted a comprehensive series of 
simulations that integrated federated learning orchestration with quantum-secure communication, dynamic trust 
modeling, and AI-driven anomaly detection. These experiments were designed to emulate cross-domain interactions in 
both cooperative and adversarial environments, reflecting real-world conditions across distributed cloud and edge 
infrastructures. 

The experimental setup encompassed multiple dimensions of federated system behavior. We selected image 
classification and intrusion detection as representative federated learning tasks to evaluate model accuracy and 
robustness. The testbed was subjected to a range of attack models, including model poisoning, gradient inversion, Sybil 
node injection, and quantum key leakage, to assess how QFedSecure responds under stress. 

To support these simulations, we employed TensorFlow Federated for implementing the federated learning logic, Qiskit 
for simulating quantum key exchange and testing post-quantum cryptographic schemes, NS3 for emulating complex 
network topologies and threat scenarios, and PyCaret for deploying unsupervised anomaly detection pipelines. This 
toolchain enabled a controlled yet realistic environment for evaluating the end-to-end resilience, adaptability, and 
performance of the QFedSecure protocol. 

6.2. Experimental Setup 

To empirically validate the security, robustness, and efficiency of the QFedSecure protocol, a multi-layered experimental 
environment was configured. This environment integrates federated learning simulations, quantum key generation 
emulation, and adversarial network modeling. The goal was to evaluate the protocol’s capability to withstand threats 
under realistic constraints, such as communication bottlenecks and trust volatility. 

6.2.1. Federated Learning Configuration 

The primary machine learning task used to validate the QFedSecure protocol was image classification on the MNIST 
dataset, a widely accepted benchmark for evaluating neural network performance on digit recognition. The dataset 
consists of 60,000 grayscale images of handwritten digits for training and 10,000 images for testing, with each image 
measuring 28×28 pixels and representing one of 10 output classes (digits 0–9). This task provides a balanced 
challenge in terms of model complexity and interpretability, making it ideal for stress-testing federated architectures in 
a controlled environment. 

• Client Configuration: The simulation included 50 federated clients, each representing an independent 
training node. To reflect realistic non-uniform data distributions, each client was assigned a non-IID subset of 
the MNIST data, with digit distributions skewed differently per client. This setup mimicked real-world 
heterogeneity where data silos differ significantly in content and size. 

Clients were logically grouped into three cloud domains to simulate regulatory and geographic partitions: North 
America, Europe, Asia 

Each domain was subject to different access policies, trust thresholds, and observability conditions, replicating the 
fragmented nature of cross-domain federated learning. 
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Training Procedure: Federated training was executed using TensorFlow Federated (TFF), which provided a 
programmable and reproducible simulation framework. The training process consisted of: 

• 100 global communication rounds, where the server aggregated updates and redistributed the model, 
• 1 local epoch per client per round, simulating lightweight, decentralized computation, 
• Stochastic Gradient Descent (SGD) as the optimizer, configured with a learning rate of 0.01. 

To secure client-server communication and protect gradient integrity, lattice-based encryption using Kyber 
primitives was applied to all gradient updates. This ensured that the model training process remained secure and 
quantum-resilient, even under adversarial surveillance. 

Evaluation Context 

This federated setup recreated a realistic environment of heterogeneous, partially trusted, and asynchronous nodes. 
By distributing clients across multiple administrative and geopolitical domains and introducing data non-uniformity, 
the experiment was well-positioned to assess QFedSecure's resilience in enforcing secure communication, dynamic 
trust recalibration, and privacy-preserving learning core requirements outlined in federated learning literature 
(Kairouz et al., 2021). 

6.2.2. Quantum Key Distribution 

To secure inter-node communication and gradient transport, each client-server interaction was initialized using a 
simulated Quantum Key Distribution (QKD) handshake, modeled on the BB84 protocol. 

Protocol 

• BB84 QKD implemented via IBM Qiskit, 
• Quantum simulator used: qasm_simulator from Aer backend. 

QKD Parameters 

• Qubits generated: 1024 per session, Measurement bases: Randomly sampled for both Alice (client) and Bob 
(server), and Error reconciliation and privacy amplification: Emulated via post-processing filters. 

Python Simulation: BB84 QKD (Qiskit) 

from qiskit import QuantumCircuit, Aer, execute 
 
qc = QuantumCircuit(1, 1) 
qc.h(0) # Create superposition state 
qc.measure(0, 0) # Measure in computational (Z) basis 
 
backend = Aer.get_backend('qasm_simulator') 
result = execute(qc, backend, shots=1024).result() 
print("BB84 QKD bits:", result.get_counts()) 

 

The QKD simulation ensures fresh, session-specific symmetric keys, maintaining forward secrecy even under 
retrospective attacks (Pirandola et al., 2020). 

6.2.3. Network Simulation 

To emulate real-world federated systems, network characteristics were modeled using NS-3 (Network Simulator 3) 
extended for FL communication patterns. 

Parameters: 

• Bandwidth variance: Simulated between 2–10 Mbps across nodes, representing fluctuating home/edge network 
connections. 

• Latency profile: Edge nodes: 5–30 ms simulated latency, and Cloud domain backhaul: Variable jitter between 50–
100 ms to reflect cross-region cloud transfers. 

• Packet loss and congestion: Modeled using drop-tail queuing to simulate contention and delay. 
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6.3. Attack Scenarios 

To test QFedSecure's resilience, we simulated five adversarial strategies commonly encountered in federated systems. 
Each attack was introduced during different training intervals, with client behavior manipulated using injected logic 
and synthetic payloads. 

QFedSecure employs a layered defense strategy to mitigate key threats in federated learning. To counter model 
poisoning, it combines trust scoring, anomaly detection, and differential privacy to identify and neutralize malicious 
updates. Against gradient inversion, Kyber encryption and DP-SGD prevent the leakage of sensitive input data. 

For Sybil attacks, QFedSecure uses zkSNARK-based identity proofs and behavior-based trust decay to limit influence 
from fake nodes. In the case of quantum decryption threats, it replaces vulnerable schemes like RSA with post-quantum 
Kyber encryption to secure communications. 

To handle data drift, it applies KL-divergence monitoring through the CDOP pipeline, dynamically adjusting trust scores 
to maintain model reliability. These mechanisms ensure privacy, resilience, and trust across diverse and potentially 
adversarial environments. 

Each attack scenario was monitored for model performance degradation, trust adaptation, and recovery dynamics to 
determine QFedSecure’s containment efficacy. 

6.4. Performance Metrics 

To evaluate QFedSecure across security, performance, and accuracy dimensions, four key metrics were continuously 
tracked. 

6.4.1. Metrics Monitored 

• Trust Calibration Delay (TCD):Trust Calibration Delay refers to the number of federated training rounds required 
for the trust orchestration system to detect and downgrade a malicious client after the onset of an attack. It captures 
the system's responsiveness to emerging threats. Measured in rounds, an ideal TCD falls between 2–5 rounds, 
allowing for prompt mitigation of poisoning or other adversarial behaviors before they significantly impact the 
global model. 

• Detection Accuracy: Detection Accuracy represents the percentage of malicious clients correctly identified as 
anomalous or untrustworthy by the system's anomaly detection and trust evaluation mechanisms. High detection 
accuracy indicates that the system can reliably differentiate between benign and adversarial participants, 
contributing to the overall robustness and integrity of the federated learning process. 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
True Positives

True Positives + False Negatives
 

Target: >90% under all attack types. 

• Model Accuracy: This metric captures the final test accuracy on the MNIST dataset after 100 training rounds. 
QFedSecure aims to stay within ±2% of the baseline FL model accuracy (approximately 97%), ensuring that added 
security features do not significantly degrade model performance. 

• Communication Overhead: Communication overhead reflects the extra bandwidth and latency from encryption, 
QKD handshakes, and zkSNARK proof transmission. It is measured as a percentage increase over baseline FL 
communication, indicating the protocol’s efficiency impact. 

Table 14 Monitoring Tools 

Tool Metric Captured 

Prometheus Time-series logging of TCD, bandwidth usage 

Grafana Visualization of trust score evolution 

TFF Metrics API Client update convergence and loss rates 

Qiskit Logger QKD handshake success/failure reports 
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6.5. Results and Analysis 

The results of our simulation trials provide empirical validation for QFedSecure's effectiveness in threat detection, trust-
based mitigation, and model robustness under attack. Three distinct configurations were compared: 

System Configurations Compared: 

• Baseline FL: Traditional federated learning with no encryption, trust scoring, or anomaly detection, and exposed to 
all attack vectors. 

• QFedSecure (without Trust): Incorporates Kyber-based post-quantum encryption and differential privacy (DP), and 
“No dynamic trust score modulation or SHAP-based anomaly assessment.” 

• QFedSecure Full Stack: Integrates the complete QFedSecure suite which are: 
o Quantum-safe encryption, anomaly detection pipeline (SHAP + Isolation Forest), and Trust-Orchestration 

layer for dynamic scoring and access regulation. 
 

Table 15 Monitoring Tools 

Metric Baseline FL QFedSecure w/o Trust QFedSecure Full Stack 

Trust Calibration Delay (rounds) >12 7 3–5 

Detection Accuracy (%) 62% 81% 93% 

Final Model Accuracy (%) 90.4% 94.2% 96.9% 

Communication Overhead (%) 0% 23% 38% 

 

The full-stack deployment, while introducing moderate overhead (~38%), significantly improved security 
responsiveness and accuracy while preserving utility validating its efficacy in mission-critical federated contexts. 

6.5.1. Trust Calibration Delay (TCD) 

Trust Calibration Delay (TCD) measures how quickly the system demotes a malicious client after detecting adversarial 
behavior. In baseline FL, such clients often remained active for over 12 rounds, enabling sustained model poisoning. 
With QFedSecure, this delay dropped to 3–5 rounds, thanks to the real-time integration of anomaly detection, telemetry, 
and trust score adjustment. This rapid response improves system resilience under adversarial conditions (Sharma et 
al., 2022). 

6.5.2. Detection Accuracy 

Detection accuracy measures the percentage of malicious clients correctly identified and penalized during training. In 
the baseline FL setup, detection accuracy was 62%, limited by the absence of outlier detection mechanisms. With 
QFedSecure (without trust scoring), accuracy improved to 81%, benefiting from encrypted gradient transport and 
differential privacy, though still affected by noise and obfuscation. 

The QFedSecure Full Stack achieved 93% detection accuracy, leveraging a combination of SHAP-based feature 
attribution, Isolation Forest anomaly scoring, and dynamic trust modulation. This high accuracy confirms the value of 
integrating XAI-driven detection into federated learning systems for enhanced security and reliability. 

Algorithmic Flow of Validation 

To structure the simulation, we implemented the QFedSecure lifecycle under adversarial stress tests using the following 
algorithm: 
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Algorithm 6.1: Federated Simulation Under Attack 

For each round t in [1, T]: 
 For each client i: 
 Encrypt gradients Gᵢ using Kyber key Kᵢ 
 Transmit Gᵢ to server 
 Compute anomaly score Aᵢ ← SHAP + Isolation Forest 
 Update trust score Tᵢ based on Aᵢ and history logs 
 Aggregator: 
 Compute global model Wₜ ← Σ (Tᵢ * Gᵢ) / Σ Tᵢ 
 If client i is adversarial: 
 Record: 
 - Time of first anomaly flag 
 - Trust decay rate 
 - Detection success or false negative 

 

This simulation enables real-time recording of Trust score evolution, Detection delays, Aggregation integrity, and Model 
accuracy fluctuations. 

6.6. Observability and Logging 

The observability layer was built using a modern telemetry stack to offer real-time visibility into model performance, 
trust dynamics, attack vectors, and system diagnostics. 

Table 16 Monitoring Stack Components 

Component Function 

Prometheus Metric scraping from federated clients and server nodes. 

Grafana Time-series visualization of metrics and dashboard alerts. 

ELK Stack Full audit log ingestion, indexing, and search (Elasticsearch, Logstash, Kibana). 

CDOP Hooks Telemetry streams for drift detection and anomaly triggers. 

6.6.1. Dashboard Metrics 

The QAIFC dashboard delivers concise, real-time insights into system behavior and security status. A trust score 
histogram visualizes client trust levels, where sudden spikes or drops signal behavioral anomalies. When a client’s trust 
score drops by more than 30% within three rounds, trust drop alerts are triggered, highlighting the client ID and 
providing supporting SHAP-based evidence for further inspection. 

To monitor model consistency, model drift heatmaps leverage Jensen–Shannon (JS) divergence to detect statistical shifts 
in prediction distributions over time. Additionally, throughput and latency charts capture the communication overhead 
associated with security operations such as Kyber encryption, QKD handshakes, and zkSNARK proof exchanges, helping 
administrators track performance impact and system scalability. 

6.7. Tools and Libraries 

To support reproducibility and modular validation, the experiment suite was implemented using industry-standard 
open-source tools and domain-specific libraries. 
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Table 17 Tools and Libraries Used 

Tool / Library Purpose 

TensorFlow Federated Federated model orchestration, simulation, and evaluation. 

IBM Qiskit BB84 QKD simulation and quantum entropy sampling. 

NS-3 with FL Extensions Simulation of communication bottlenecks, Sybil attacks, and latency dynamics. 

Kyber (liboqs / PQClean) Post-quantum gradient encryption and key exchange. 

PyCaret + SHAP XAI-based anomaly detection pipeline and feature explanation. 

Prometheus + Grafana Real-time observability, alerts, and telemetry dashboards. 

ELK Stack Federated audit trail logging and searchability. 

 

6.8. Summary 

The simulation and evaluation of QFedSecure across adversarial and cooperative settings confirm its effectiveness in: 

• Mitigating gradient manipulation attacks, 
• Improving trust calibration speed by 60%, 
• Increasing detection accuracy by over 30% compared to baseline FL, 
• Maintaining robust encryption under simulated quantum conditions. 

These results support QFedSecure as a secure and trust-aware protocol for federated AI in quantum-capable 
environments. Future experiments will extend to real hardware environments using QKD testbeds and open-source 
cloud federations. 

7. Discussion,  

7.1. Observations from Simulation Results 

The experimental validation of QFedSecure, as outlined in Chapter 6, clearly illustrates the advantages of integrating 
trust-awareness and quantum-safe cryptography into federated learning systems. Compared to baseline FL 
deployments, QFedSecure demonstrated substantial improvements in multiple key performance metrics. Notably, 
anomaly detection accuracy improved by 31% when combining explainable AI methods such as SHAP with outlier 
detection algorithms like isolation forests. This synergy enabled the system to better distinguish between benign and 
adversarial behavior, even in non-IID and noisy data environments. 

Additionally, the trust orchestration engine responded swiftly to malicious activity, recalibrating trust scores within 
three to five communication rounds. This responsiveness sharply contrasts with the 12+ round delays observed in 
systems without dynamic trust scoring. The ability to rapidly contain threats mitigates their propagation and 
cumulative influence on the global model. 

Moreover, the integration of post-quantum cryptography using Kyber and quantum key exchange (QKD) simulated via 
IBM Qiskit proved both feasible and efficient. Despite the cryptographic complexity, latency impacts remained modest, 
averaging 1.3 seconds per round an acceptable trade-off given the level of security assurance provided. This result 
underscores the protocol’s suitability for real-world, time-sensitive federated learning environments where both 
confidentiality and responsiveness are paramount. 

7.2. Security and Trust Trade-offs 

While QFedSecure demonstrates robust performance and security resilience, its deployment is not without trade-offs. 
The integration of multiple security layers including encryption, differential privacy, zero-knowledge proofs, and trust 
feedback loops inevitably increases the computational overhead, particularly on edge devices with limited processing 
capabilities. Clients are tasked with not only local model training but also secure encryption, key negotiation, and real-
time telemetry reporting, which can tax constrained environments. 
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Aggregation latency also rises due to the additional communication steps required for secure exchange and verification. 
The presence of encrypted gradients, zkSNARK-based update proofs, and observability telemetry logging all contribute 
to delays in reaching consensus on the global model. In large-scale federations, particularly those involving clients 
across multiple geographic and regulatory domains, these latencies can affect round synchronization and scheduling. 

System complexity is another concern. Deploying QFedSecure in production requires orchestration of tools such as 
TensorFlow Federated, OpenFHE, PyCaret, IBM Qiskit, and Prometheus/Grafana, along with support for post-quantum 
libraries like Kyber. In environments lacking cloud-native infrastructure or robust DevOps pipelines, this complexity 
could pose an adoption barrier. 

Nevertheless, in domains where data sensitivity, auditability, and system integrity are non-negotiable such as finance, 
defense, and health diagnostics these trade-offs are warranted. The incremental performance costs are outweighed by 
the critical security guarantees that QFedSecure provides. 

7.3. Trust, Transparency, and Fairness 

One of the most transformative outcomes of the QAIFC architecture is its support for trust quantification, system 
transparency, and participant fairness. Unlike conventional federated learning systems, which often operate as black-
box models with limited insight into client behavior, QAIFC introduces an auditable trust framework grounded in 
observable metrics and explainable outputs. 

By leveraging SHAP-based attribution, isolation forest classifiers, and dynamic trust scoring, the system moves toward 
a federated intelligence ecosystem where decisions are explainable and traceable. Clients are not only evaluated on the 
quality of their updates but also on the consistency, behavior history, and cryptographic compliance of their 
contributions. 

This framework allows the system to fairly evaluate contributions from underpowered or low-data clients who may 
otherwise be excluded in traditional federated schemes. By using proportional trust metrics rather than rigid 
performance-based filters, QAIFC encourages inclusive participation without sacrificing system integrity. In effect, it 
introduces a governance model for collaborative AI that balances security, equity, and accountability  

8. Conclusion 

This research introduced and evaluated a next-generation federated learning framework: the Quantum-AI Federated 
Cloud (QAIFC), anchored by its secure orchestration protocol, QFedSecure. The design of QAIFC addresses pressing 
challenges in distributed AI such as adversarial behavior, quantum-vulnerable encryption, trust asymmetry, and lack of 
observability through a deliberate integration of AI explainability, post-quantum cryptography, and real-time trust 
intelligence. 

The architecture presented in this study is layered, modular, and resilient, incorporating critical components such as: 

• A federated learning coordination layer that supports gradient aggregation across untrusted domains, 
• A trust-orchestration engine that adapts in real time based on explainable model behaviors, 
• Quantum-safe encryption mechanisms, including lattice-based schemes and simulated quantum key 

distribution, 
• Observability frameworks that allow for system-wide transparency and continuous threat monitoring. 

At the heart of this architecture is the QFedSecure protocol, which coordinates encrypted gradient exchanges, anomaly 
evaluation, and trust-weighted aggregation under a unified and extensible model. Its validation through simulation 
using TensorFlow Federated, NS-3, Qiskit, and real-world datasets like MNIST demonstrates its viability in achieving 
strong security guarantees, preserving model accuracy, and responding effectively to diverse adversarial strategies. 

In conclusion, QFedSecure confirms that secure, transparent, and trustworthy federated intelligence is not only possible 
but practical, especially when informed by cryptographic rigor, AI explainability, and system observability. This work 
paves the way for deploying federated AI in highly regulated, adversarial, and multi-domain environments where trust 
cannot be assumed, and security must be proven.  
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