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Abstract 

This thesis presents a comprehensive study on the construction of conservation laws and the application of double 
reduction techniques to obtain exact solutions for the ill-posed boussinesq equation 

Conservation laws are utilized to perform a double reduction of the original PDE. This reduction process involves two 
key stages: firstly, the application of the derived conservation laws to convert the PDE to ODE then reduction of the 
order of the ODE and secondly, the further simplification of the reduced equation by exploiting additional symmetries 
to obtain the exact solutions. The exact solutions are analyzed and graphically demonstrated to gain insight into the 
underlying physical and mathematical properties of the original PDE. The dissertation contributes to the field of applied 
mathematics by providing a rigorous framework for constructing conservation laws and applying reduction techniques 
to nonlinear PDEs. The exact solutions obtained not only advance the theoretical understanding of the equation but also 
offer potential applications in areas such as fluid dynamics, nonlinear optics, and other fields where similar equations 
arise. 
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1. Introduction

Partial Differential Equations (PDEs) play a pivotal role in the modeling and analysis of various physical phenomena 
across disciplines such as physics, engineering, and applied mathematics [2,11,12]. These equations describe how 
physical quantities such as heat, sound, fluid flow, and electromagnetic fields change over space and time. The study of 
PDEs is fundamental to understanding the behavior of systems governed by the laws of nature, and their solutions 
provide insights into the dynamics of these systems. 

Among the vast array of PDEs, nonlinear equations, in particular, pose significant challenges due to their complexity 
and the rich variety of behaviors they can exhibit. Nonlinear PDEs often describe processes where the effects of 
interactions cannot be simply added together, leading to phenomena such as shock waves, solitons, and turbulence [12]. 
Finding exact solutions to these equations is crucial, as they can serve as benchmarks for numerical simulations and 
offer deep insights into the underlying physical processes. 

The Boussinesq equation, first derived by Joseph Boussinesq [1]  is a nonlinear partial differential equation (PDE) that 
has far-reaching implications in various fields, including physics, engineering, and mathematics. Boussinesq[1], a 
French mathematician, presented his work in a paper titled "Théorie des ondes et des remous qui se propagent le long 
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d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement 
pareilles de la surface au fond" (Theory of waves and ripples that propagate along a horizontal rectangular channel, 
communicating to the liquid contained in this channel speeds that are roughly equal from the surface to the bottom). 
Lord Rayleigh [8], an English physicist, independently derived a similar equation in 1876, now known as the Rayleigh-
Boussinesq equation. The renowned work done by Korteweg and de Vries [3] led to the derivation of the KdV equation, 
a simplified version of the Boussinesq equation, to model shallow water waves. 

The Boussinesq equation has found applications in various fields, including shallow water waves and coastal 
engineering, nonlinear optics and fiber optics, and plasma physics and ion-acoustic waves.The generalized Boussinesq 
(GB) equation with a damping term is given by  𝑢𝑡𝑡 = 2𝑘𝑢𝑥𝑥𝑡 + 𝑞𝑢𝑥𝑥𝑥𝑥 + 𝑐 𝑢𝑛

𝑥𝑥, where k, q, c are constants and n is a 
nonzero real number[11]. This equation is widely used as a model to describe natural phenomena in many scientific 
fields, such as plasma waves, solid physics, and fluid mechanics. 

A special case of the Boussinesq equation is the modified Boussinesq equation, which is obtained when k = 0, q = 1, c = 
-1, and n = 3. This equation is used to model the temporal evolution of nonlinear finite amplitude waves on a density 
front in a rotating fluid. Exact traveling wave solutions for the generalized Boussinesq equation have been studied using 
various methods, including the extended tanh method and the direct method. The Boussinesq equation appears in 
different forms, depending on the values of the constants k, q, c, and n. For example, if 𝑢𝑥𝑥𝑡  is replaced by 𝑢𝑥𝑥  , the 
general form of the Boussinesq equation becomes𝑢𝑡𝑡 = 𝑢𝑥𝑥 + 𝑞𝑢𝑥𝑥𝑥𝑥 + 𝑢2

𝑥𝑥 for n = 2, k = 1, and c = 1. This equation is 
known as the good Boussinesq or well-posed equation when q = -1, and the bad or ill-posed Boussinesq equation when 
q = 1. 

Therefore, the equation under investigation in this dissertation is the ill-posed nonlinear PDE  

𝑢𝑡𝑡 = 𝑢𝑥𝑥 + 𝑢2
𝑥𝑥 + 𝑢𝑥𝑥𝑥𝑥         …………..   (1.0) 

This equation is characterized by its combination of second-order time derivatives and a mix of second and fourth-order 
spatial derivatives, along with a nonlinear term involving the square of the dependent variable. Such equations often 
arise in the study of wave propagation in nonlinear media, including the analysis of elastic waves, fluid dynamics, and 
other areas where higher-order dispersion effects and non-linearities are significant. Despite the challenges 
encountered in finding solutions to the (1.0), researchers have made significant progress in solving the ill-posed 
Boussinesq equation using various numerical methods. Recent advances in symmetry analysis and conservation laws 
through the multiplier method have provided new insights into solving the ill-posed Boussinesq equation[11,12]. This 
method has been successfully applied to other nonlinear PDEs, and researchers are hopeful that it will provide a 
breakthrough in solving the ill-posed Boussinesq equation. 

1.1. Statement of problem  

The ill-posed Boussinesq equation (1.0) poses significant challenges due to its non-integrable nature, which makes it 
difficult to find exact solutions. Furthermore, the equation's ill-posedness leads to numerical instability, making it 
challenging to obtain accurate numerical solutions. Due to the crucial role played by this equation, finding its exact 
solutions becomes significant as it throws more light into the physical features and intricate behavior of the system 

1.2. Significance of the study 

The significance of this study lies in its contribution to the theory and application of nonlinear PDEs. By constructing 
conservation laws and performing double reductions, this research advances the understanding of complex nonlinear 
systems and provides a methodology that can be applied to other PDEs with similar structures. The exact solutions 
obtained in this study offer valuable insights into the behavior of the equation and can serve as benchmarks for future 
analytical and numerical studies.   

1.3. Scope of the study 

This study is focused on the mathematical analysis of (1.0). The research is divided into four main components: the 
construction of conservation laws and Lie point symmetries, the reduction of the PDE using these laws, solving the 
reduced equations to get exact solutions and analysis of the solutions obtained 
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2. Methodology 

lie point symmetry method were used for the derivation of the Lie symmetries while the conservation laws which serve 
as integral in-variants under the dynamics described by the PDE.associated are systematically constructed using 
multiplier method. We chose to use the multipliers method to construct the conservation laws of the equation (1.0) for 
the first time because of its numerous advantages over other methods. The method of multipliers helps to find 
conserved integrals and local continuity equations of PDES. The conserved vectors and lie symmetry vectors derived in 
turn serves as tools or approach to perform double reduction of the PDE under consideration  

2.1. Lie point symmetry method 

Lie point symmetries admitted by equation (1.0) are generated by a vector field of the form  

V= 𝜉( 𝑥, 𝑡, 𝑢)
𝜕

𝜕𝑥
+  𝜏(𝑥, 𝑡, 𝑢)

𝜕

𝜕𝑡
 + 𝜙( 𝑥, 𝑡, 𝑢)

𝜕

𝜕𝑢
                …………… ..    (2.0) 

and we need to solve for the coefficient functions 𝜉(x,t,u), 𝜏(x,t,u), 𝜙 (x,t,u). 

V must satisfy Lie’s symmetry condition (1. 3), that is 

V[4] [𝑢𝑡𝑡 − 𝑢𝑥𝑥 − 𝑢2
𝑥𝑥 − 𝑢𝑥𝑥𝑥𝑥 =0]|(1.0)  =0,               …………………..  (2.1) 

where V[4] is the fourth prolongation of the operator V defined by 

V[4] =V+ ҁ𝑥
𝜕

𝜕𝑢𝑥
 +ҁ𝑡 

𝜕

𝜕𝑢𝑡
＋ ҁ𝑥𝑥 

𝛿

𝜕𝑢𝑥𝑥
  + ҁ𝑡𝑡 

𝜕

𝜕𝑢𝑡𝑡
 + ҁ𝑥𝑥 

𝜕

𝜕𝑢𝑥
＋  ҁ𝑥𝑥𝑥 

𝜕

𝜕𝑢𝑥𝑥𝑥
＋ҁ𝑥𝑥𝑥𝑥

𝜕

𝜕𝑢𝑥𝑥𝑥𝑥
 

and the coefficients ҁ𝑥, ҁ𝑡 ,  ҁ𝑥𝑥 ,  ҁ𝑡𝑡 ,  ҁ𝑥𝑥𝑥  and ҁ𝑥𝑥𝑥𝑥  are given by  

 ҁ𝑥 = Dx(ϕ) − utDx(ξ) − uxDx(τ), 

 

ҁ𝑡   =  Dt(ϕ) −utDt(ξ) − uxDt(τ), 
 

   ҁ𝑥𝑥  = Dx (ζx) − uxtDx(ξ) − uxx Dx(τ), 

 ҁ𝑡𝑡  = Dt (ζt) – uttDx(ξ) – utx Dx((τ), 

 ҁ𝑥𝑥𝑥  
= Dx(ζxx) − uxxt Dx(ξ) − uxxx Dx((τ), 

ҁ𝑥𝑥𝑥𝑥 = Dx(ζxxx) − Uxxxt Dx(ξ) − Uxxxx Dx((τ). 

Here Dx , Dt  denote the total derivative operators defined by 

Dx = 
∂

∂x
＋𝑢x 

∂

∂u
＋𝑢tx 

∂

∂ut
＋..., Dt = 

∂

∂t
 ＋𝑢t 

∂

∂u
＋𝑢xt 

∂

∂ux
＋…                 …………    (2.2) 

Expansion and separation of (2.1) with respect to the powers of different derivatives of u yields an over determined 
system in the unknown coefficients 𝜉, 𝜏 and 𝜙. However the over determined system cannot be presented here due to 
its lengthy calculations. We present only the result and refer the reader to [8] for details. Solving the over determined 
system for arbitrary parameters we obtain thee coefficients 

𝜉(𝑥, 𝑡, 𝑢) =
1

2
𝑐1𝑥 + 𝑐3, 𝜏(𝑥, 𝑡, 𝑢) = 𝑐1𝑡 + 𝑐2, 𝜙(𝑥, 𝑡, 𝑢) = −𝑐1(𝑢 +

1

2
), 

where 𝑐1, 𝑐2 and 𝑐3 are constants. Without loss of generality, 
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taking𝑐3 = 1, 𝑐1 = 0, 𝑐2 = 0,  we obtain the symmetry vector 𝑉1 =
𝜕

𝜕𝑥
. 

 Similarly, we obtain the rest as 𝑉2 =
𝜕

𝜕𝑡
, 𝑉3 =

1

2
𝑥

𝜕

𝜕𝑥
+ 𝑡

𝜕

𝜕𝑡
− (𝑢 +

1

2
)

𝜕

𝜕𝑢
                              

These 3 symmetry vectors, 𝑣1, 𝑣2 and 𝑣3 will be used to reduce equation (1.0) to simpler and solvable form.  

2.2. Conservation laws via multiplier approach 

 A conserved vector corresponding to a conservation law of the equation (1.0) is a 2−tuple (𝑇𝑡 , 𝑇𝑥) such that 

 𝐷𝑡 𝑇𝑡 + 𝐷𝑥𝑇
𝑥 = 0 

along the solutions of the equation. We derive the conservation laws using the multiplier approach [9,10] 

 Consider the multiplier 𝛬 of order up to two, viz. 𝛬 = (𝑡, 𝑥, 𝑢, 𝑢𝑥, 𝑢𝑡 , 𝑢𝑥𝑡 , 𝑢𝑥𝑥, 𝑢𝑡𝑡, 𝑢𝑥𝑥𝑥𝑥) for eqn.(1.0). The conserved 
vector (𝑇𝑡 , 𝑇𝑥)  of eqn.(1.0) satisfies the divergence relation 

   𝐷𝑡 𝑇𝑡 + 𝐷𝑥𝑇
𝑥 = 𝛬(𝑢𝑡𝑡 = 𝑢𝑥𝑥+ (𝑢2)𝑥𝑥 + 𝑢𝑥𝑥𝑥𝑥) = 0 . Moreover, we have  

𝛿

𝛿𝑢
(𝛬)(𝑢𝑡𝑡 = 𝑢𝑥𝑥+ (𝑢2)𝑥𝑥 + 𝑢𝑥𝑥𝑥𝑥) = 0.                                                                                                            

(2.3) 

After a lengthy calculation with the help of maple software we obtain the following conserved vectors with their 
corresponding multipliers: 

𝛬 1 = 1 

𝑇1
𝑡 = −𝑢𝑡 , 𝑇1

𝑥 = 2𝑢𝑢𝑥 + 𝑢𝑥 + 𝑢𝑥𝑥𝑥 

𝛬 2 = 𝑥 

𝑇2
𝑡 = −𝑥𝑢𝑡, 𝑇2

𝑥 = 2𝑥𝑢𝑢𝑥 − 𝑢2 + 𝑥𝑢𝑥 + 𝑥𝑢𝑥𝑥𝑥 − 𝑢 − 𝑢𝑥𝑥   ……………    (2.4) 

𝛬 3 = 𝑡 

𝑇3
𝑡 = −𝑢𝑡𝑡 + 𝑢, 𝑇3

𝑥 = 2𝑡𝑢𝑢𝑥 + 𝑡𝑢𝑥 + 𝑡𝑢𝑥𝑥𝑥 

𝛬 4 = 𝑥𝑡 

𝑇4
𝑡 = −𝑥𝑡𝑢𝑡 + 𝑥𝑢, 𝑇4

𝑥 = 2𝑥𝑡𝑢𝑢𝑥 − 𝑡𝑢2 + 𝑥𝑡𝑢𝑥 + 𝑥𝑡𝑢𝑥𝑥𝑥 − 𝑡𝑢 − 𝑡𝑢𝑥𝑥 

2.3. Definition 

Consider a scalar PDE F = 0 with n = 2,(x1,x2) = (t,x) which admits a symmetry X associated with a conserved vector (TT, 

TX ). In terms of the canonical variables r,s obtained by mapping X to Y = 
𝜕

𝜕𝑠
 the conservation laws can be expressed as[5] 

 DrTr + DsTs = 0,  

with Tr and Ts given as 

, 

. 
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This now allows for a double reduction of the PDE. 

2.4. Double reduction of equation  (1.0)  

 We firstly show that the lie vector symmetries are associated with the conserved vectors. This happens if 

 Vi
[3]

(
Ti

t

Ti
x) + (Dt𝜉 + Dxτ) (

Ti
t

Ti
x) − (

Ti
t

Ti
x) (

Dt𝜉 Dx𝜉
Dt𝜏 Dxτ

) = (
0
0
) , i = 1,2,3 

  Ti
x and Ti

t i = 1, 2, 3 and 4 are  conserved vectors and Vi
[3]

  is the third prolongation of the Vi , i = 1, 2 and 3  

and Vi
[3]

 = Vi  + ҁ𝑥 
𝜕

𝜕𝑢𝑥
 +ҁ𝑡 

𝜕

𝜕𝑢𝑡
＋ ҁ𝑥𝑥 

𝜕

𝜕𝑢𝑥𝑥
  + ҁ𝑡𝑡 

𝜕

𝜕𝑢𝑡𝑡
 + ҁ𝑥𝑥 

𝜕

𝜕𝑢𝑥
＋  ҁ𝑥𝑥𝑥 

𝜕

𝜕𝑢𝑥𝑥𝑥
      

since V1 and V2  are trivial symmetries, they are associated with T1 = (
T1

t

T1
x) with its multiplier Λ1.  

Next, we verify if  V3 is associated with  (
T1

t

T1
x) 

𝑉3 =
1

2
𝑥

𝜕

𝜕𝑥
+ 𝑡

𝜕

𝜕𝑡
− (𝑢 +

1

2
)

𝜕

𝜕𝑢
, 

𝜉(𝑥, 𝑡, 𝑢) =
1

2
𝑥, 𝜏(𝑥, 𝑡, 𝑢) = 𝑡, 𝜙 (𝑥, 𝑡, 𝑢) =  −(𝑢 + 

1

2
 ). 

Dt(𝜙) = −ut, , Dt(𝜏) = 1, Dt(𝜉) = 0, Dx(𝜙)= – ux , Dx(𝜉) = 
1

2
, Dx(𝜏) = 0 

ζx = Dx(ϕ) − utDt(ξ) − uxDx(τ) = – ux – ut .0– ux .0= -ux 

ζt  = ζt =Dt(ϕ) − utDt(ξ) − uxDt(τ)= -ut -ut.0 – ux .1= -ut - ux 

ζtt = Dt (ζt ) - utt Dx (ξ ) - utx Dx (τ)=  -utt - utx - 
1

2
utt - utx. 0= - 

3

2
 utt -utx 

ζxx = Dx (ζx) – uxt Dx (ξ ) – uxx Dx (τ) = -uxx- 
1

2
uxt - uxx . 0 = -uxx- 

1

2
uxt 

ζxxx = Dx (ζxx) – uxxt Dx (ξ ) – uxxx Dx (τ) =  -uxxx- 
1

2
uxxt- 

1

2
uxxt- 

1

2
uxxx.0= -uxxx-uxxt 

Substituting (1.) we obtain the third prolongation of 𝑉3 as 

V3
(3)

= 
1

2
x

∂

∂x
+ t

∂

∂t
− (u +

1

2
)

∂

∂u
 -ux

∂

∂ux
+ (-ut - ux )

∂

∂ut
＋(-uxx- 

1

2
uxt)

δ

∂uxx
  +(−

3

2
𝑢𝑡𝑡 − 𝑢𝑥𝑡 )

∂

∂utt
 + (-uxx- 

1

2
uxt)

∂

∂ux
＋( - uxxx- 

uxxt)
∂

∂uxxx
                             

Also substituting into                                                                            

( 
1

2
x

∂

∂x
+ t

∂

∂t
− (u +

1

2
)

∂

∂u
 − ux

∂

∂ux
+ (−ut −  ux )

∂

∂ut
＋(−uxx − 

1

2
uxt)

δ

∂uxx
 + (−

3

2
𝑢𝑡𝑡 − 𝑢𝑥𝑡 )

∂

∂utt
 +  (−uxx

− 
1

2
uxt)

∂

∂ux
＋ ( − uxxx −  uxxt)

∂

∂uxxx
  ) (

−ut

2uux + ux + uxxx
) + ( 

1

2
     +   1) (

−ut

2uux + ux + uxxx
)

− (
1 0

0
1

2

) (
−ut

2uux + ux + uxxx
)  ≠ (

0
0
) 

Therefore 𝑉3 is not associated with (
T1

t

T1
x)  with multiplier Λ1 . The table below shows the relationship between the 3 

vector symmetries and the conserved vectors with their multipliers. 
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Table 1 Relationship between the point symmetry vectors and conserved vectors 

Multipliers Conserved Vectors Symmetry Vectors Association 

Λ1 = 1 𝑇1
𝑡 ,  𝑇1

𝑥 V1 , V2 ,   V3 x 

Λ2 = 𝑥 𝑇2
𝑡 ,  𝑇2

𝑥 V1 , V2 ,   V3 x 

Λ3 = 𝑡 𝑇3
𝑡 ,  𝑇3

𝑥 V1 , V2 ,  V3 x 

Λ4 = 𝑥𝑡  𝑇4
𝑡 ,  𝑇4

𝑥 V1 , V2, V₃ x 

We now use the lie point symmetries which are associated with the conserved vector (
T1

t

T1
x) to transform the variables 

of the Boussinesq equation (1.0) into new similarity variables. we consider the linear combination V2 + cV1 where c is a 
non - zero constant. solving the characteristic equation. 

𝑑𝑡

1
=  

𝑑𝑥

𝑐
=  

𝑑𝑢

0
=  

𝑑𝑟

0
=  

𝑑𝑠

1
=  

𝑑𝑤

0
 

            we obtain the canonical coordinates  

s = 𝑡, 𝑟 = 𝑥 − 𝑐𝑡, 𝑤 (𝑟) = 𝑢 

In the new canonical coordinates, the conservation law 𝐷𝑡 𝑇1
𝑡 + 𝐷𝑥 𝑇1

𝑠 = 0  is rewritten as 

𝐷𝑟  𝑇1
𝑟 + 𝐷𝑠 𝑇1

𝑠 = 0 

We can find 𝑇1
𝑟  and 𝑇1

𝑠 by 

                                                               T1
r = 

𝑇1
𝑡𝐷𝑡 (𝑟)+ 𝑇1

𝑥𝐷𝑥 (𝑟) 

𝐷𝑡 (𝑟) 𝐷𝑥 (𝑠)−𝐷𝑥 (𝑟) 𝐷𝑡 (𝑠)
                   ……………..    (2.5) 

T1
s = 

𝑇1
𝑡𝐷𝑡 (𝑠) + 𝑇1

𝑥𝐷𝑥 (𝑠) 

𝐷𝑡 (𝑟) 𝐷𝑥 (𝑠) − 𝐷𝑥 (𝑟) 𝐷𝑡 (𝑠)
 

                                                            

 Substituting the canonical variables, their derivatives and the conserved vectors into (2.5) we obtain 

                                                   T1
r = −𝑐𝑢𝑡 − 2𝑢𝑢𝑥 − 𝑢𝑥 − 𝑢𝑥𝑥𝑥         ………….  (2.6) 

T1
s = −𝑢𝑡 

Now,                    

𝑢𝑡 = 
𝑑𝑢

𝑑𝑡
= 

𝑑𝑤

𝑑𝑡
 =  

𝜕𝑤

𝜕𝑟
. 
𝜕𝑟

𝜕𝑡
 = − 𝑐𝑤𝑟  

𝑢𝑥 = 
𝑑𝑢

𝑑𝑥
= 

𝑑𝑤

𝑑𝑥
 =  

𝜕𝑤

𝜕𝑟
 .
𝜕𝑟

𝜕𝑥
 = 1.𝑤𝑟= 𝑤𝑟  

Similarly,                                

𝑢𝑥𝑥= 
𝑑𝑢𝑥

𝑑𝑥
  
𝑑𝑤𝑟

𝑑𝑥
 = 

𝜕𝑤𝑟

𝜕𝑟
 .
𝜕𝑟

𝜕𝑥
= 𝑤𝑟𝑟  

𝑢𝑥𝑥𝑥=  𝑤𝑟𝑟𝑟 

  using (2.6) we  obtain  

   T1
r = (1 − 𝑐2)𝑤𝑟 +  2𝑤𝑤𝑟 +  𝑤𝑟𝑟𝑟              ………………….  (2.7) 

       T1
s =  𝑐𝑤𝑟                             ………………   (2.8) 
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Where 𝑤𝑟  is total derivative with respect to 𝑟. Since (2.8) does not depend on s, we deduce from that  

𝐷𝑟  𝑇1
𝑟 = 0 

This means that  𝑇1
𝑟  is a constant. That is m  

(1 − 𝑐2)𝑤𝑟 +  2𝑤𝑤𝑟 +  𝑤𝑟𝑟𝑟  = 𝑘1              ……………..       (2.9) 

where 𝑘1 is a constant. Equation (2.9) is a third order ODE which is a double reduction of the fourth order ill-posed 
boussinesq equation (1.0). 

3. Results and Discussions 

By integrating (2.9) once with respect to r, while setting the constant of integration to zero gives rise to 

(1 − 𝑐2)𝑤 + 𝑤2 +  𝑤𝑟𝑟  = 0 

Further integration results to  

(1-𝑐2)
 𝑤2

2
 + 

 𝑤3

3
 + 

 𝑤𝑟
2

2
  = 𝑘3w 

where  𝑘3 is a constant. This implies 

𝑤𝑟
2 =(𝑐2 − 1)𝑤2 - 

2 𝑤3

3
  + 2w𝑘3 

𝑤𝑟 = √(𝑐2 − 1)𝑤2  −  
2 𝑤3

3
  +  2w𝑘3   

 𝑑𝑤

𝑑𝑟
  = √(𝑐2 − 1)𝑤2  −  

2 𝑤3

3
  +  2w𝑘3         

 𝑑𝑟

𝑑𝑤
 = 

 1

√(𝑐2−1)𝑤2 − 
2 𝑤3

3
  + 2w𝑘3

 

 𝑑𝑤

 √(𝑐2−1)𝑤2 − 
2 𝑤3

3
  + 2w𝑘3

 = dr 

∫   
 𝑑𝑤

 √(𝑐2−1)𝑤2 − 
2 𝑤3

3
  + 2w𝑘3

 =r+ 𝑘4 

where 𝑘4 is constant. In terms of the original variables, we obtain  

∫   
 𝑑𝑢

 √(𝑐2−1)𝑢2 − 
2 

3
𝑢3  + 2u𝑘3

  = 𝑥 − 𝑐𝑡 + 𝑘4                  ………….. (3.0) 

 Equation (1.12) is the integral solution of the ill-posed Boussinesq equation (1.0).  

4. Exact solutions by improved generalised Riccati equation mapping method 

Here, we solve the reduced equation (2.9) using improved generalized Riccati equation mapping method [4]. Our main 
aim is to obtain exact or at least approximate solutions if possible for the reduced equation (2.9). We express the 
solution, w(r) of equation (2.9) in the finite series 

w(r) =  ∑ 𝑎𝑖𝜓
𝑖 ,𝑚

𝑖=−𝑚            ………………   (3.1) 
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where 𝑎𝑖 are constants to be determined and 𝜓 satisfies the Riccatti equation  

𝜓𝐼 = 𝜇 + 𝛽𝜓 + (𝜈 − 1)𝜓2          ……………    (3.2) 

We determine the positive integer 𝑚 in equation (3.1) by balancing the highest order derivative, 𝑤𝑟𝑟 and the nonlinear 
term, 𝑤2 by solving  

𝑚 + 2 = 2𝑚 ⇒  𝑚 = 2, 

so that the solution of equation (4.36) can be written as  

w(r) =  𝑎−2𝜓
−2 + 𝑎−1𝜓

−1 + 𝑎0 + 𝑎1𝜓 + 𝑎2𝜓
2              …………    (3.3) 

After substituting and collecting all the terms of the same power, 𝜓𝑖 , 𝑖 = −2,−1, 0, 1, 2 and equating them to zero, we 
obtain a system of an algebraic equations ( Due to the size of the equations we decided not to display the equation for 
simplicity). Solving the system of the algebraic equations for 𝑎−2, 𝑎−1, 𝑎0, 𝑎1, 𝑎2, 𝑐,  using symbolic computation 
software, Mathematica 9, we obtain  

𝑎1 = 𝑎2 = 0, 𝑎0 = −6𝜇(𝜈 − 1), 𝑎−1 = −6𝛽𝜇, 𝑎−2 = −6𝜇2        …………….      (3.4) 

Substituting equation (3.4) into the solution formula (3.3), we obtain  

w(r) =  −6𝜇2𝜓−2 − 6𝛽𝜇𝜓−1 − 6𝜇(𝜈 − 1)        …………….. (3.5) 

Substituting the known solutions, 𝜓(𝑟) of the Riccati equation (3.2) into equation (3.5) and simplifying the resulting 
equation in terms of the original variable, 𝑢(𝑥, 𝑡), we obtained the following new types of solutions:  

TYPE 1: Ω = 𝛽2 − 4𝜇(𝜈 − 1) > 0, 𝛽(𝜈 − 1) ≠ 0, (𝑜𝑟 𝜇(𝜈 − 1) ≠ 0), Soliton like solutions 

𝑢1(𝑥, 𝑡) =  −6𝜇(𝜈 − 1) +  12𝛽𝜇(𝜈 − 1) [𝛽 + √Ω 𝑇𝑎𝑛ℎ (
√Ω 

2
(𝑥 − 𝜆𝑡)) ]

−1

 

−24(𝜇(𝜈 − 1))2 [𝛽 + √Ω 𝑇𝑎𝑛ℎ (
√Ω 

2
(𝑥 − 𝜆𝑡)) ]

−2

 

𝑢2(𝑥, 𝑡) =  −6𝜇(𝜈 − 1) +  12𝛽𝜇(𝜈 − 1) [𝛽 + √Ω 𝐶𝑜𝑡ℎ (
√Ω 

2
(𝑥 − 𝜆𝑡)) ]

−1

 

−24(𝜇(𝜈 − 1))2 [𝛽 + √Ω 𝐶𝑜𝑡ℎ (
√Ω 

2
(𝑥 − 𝜆𝑡)) ]

−2

 

𝑢3(𝑥, 𝑡) = −6𝜇(𝜈 − 1) +  12𝛽𝜇(𝜈 − 1) [𝛽 + √Ω (𝑇𝑎𝑛ℎ (√Ω (𝑥 − 𝜆𝑡)) ± 𝑖𝑆𝑒𝑐ℎ (√Ω (𝑥 − 𝜆𝑡))) ]
−1

   −24(𝜇(𝜈 −

1))2 [𝛽 + √Ω (𝑇𝑎𝑛ℎ (√Ω (𝑥 − 𝜆𝑡)) ± 𝑖𝑆𝑒𝑐ℎ (√Ω (𝑥 − 𝜆𝑡))) ]
−2

 

𝑢4(𝑥, 𝑡) =  −6𝜇(𝜈 − 1) +  12𝛽𝜇(𝜈 − 1) [𝛽 + √Ω (𝐶𝑜𝑡ℎ (√Ω (𝑥 − 𝜆𝑡)) ± 𝐶𝑠𝑐ℎ (√Ω (𝑥 − 𝜆𝑡))) ]
−1

 −24(𝜇(𝜈 − 1))2 [𝛽 +

√Ω (𝐶𝑜𝑡ℎ (√Ω (𝑥 − 𝜆𝑡)) ± 𝐶𝑠𝑐ℎ (√Ω (𝑥 − 𝜆𝑡)))]
−2

 𝑢5(𝑥, 𝑡) =  −6𝜇(𝜈 − 1) +  24𝛽𝜇(𝜈 − 1) [2𝛽 + √Ω (𝑇𝑎𝑛ℎ (
√Ω 

4
(𝑥 −

𝜆𝑡)) ± 𝐶𝑜𝑡ℎ (
√Ω 

4
(𝑥 − 𝜆𝑡)))]

−1

  −96(𝜇(𝜈 − 1))2 [2𝛽 + √Ω (𝑇𝑎𝑛ℎ (
√Ω 

4
(𝑥 − 𝜆𝑡)) ± 𝐶𝑜𝑡ℎ (

√Ω 

4
(𝑥 − 𝜆𝑡)))]

−2
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𝑢6(𝑥, 𝑡) =  −6𝜇(𝜈 − 1) − 12𝛽𝜇(𝜈 − 1) [−𝛽 +
√(𝐴2 + 𝐵2)Ω − 𝐴√Ω 𝐶𝑜𝑠ℎ (√Ω (𝑥 − 𝜆𝑡))

𝐴 𝑆𝑖𝑛ℎ (√Ω (𝑥 − 𝜆𝑡)) + 𝐵
]

−1

 

−24(𝜇(𝜈 − 1))2 [−𝛽 +
√(𝐴2 + 𝐵2)Ω − 𝐴√Ω 𝐶𝑜𝑠ℎ (√Ω (𝑥 − 𝜆𝑡))

𝐴 𝑆𝑖𝑛ℎ (√Ω (𝑥 − 𝜆𝑡)) + 𝐵
]

−2

 

𝑢7(𝑥, 𝑡) =  −6𝜇(𝜈 − 1) − 12𝛽𝜇(𝜈 − 1) [−𝛽 −
√(𝐴2 + 𝐵2)Ω + 𝐴√Ω 𝐶𝑜𝑠ℎ (√Ω (𝑥 − 𝜆𝑡))

𝐴 𝑆𝑖𝑛ℎ (√Ω (𝑥 − 𝜆𝑡)) + 𝐵
]

−1

 

−24(𝜇(𝜈 − 1))2 [−𝛽 −
√(𝐴2 + 𝐵2)Ω + 𝐴√Ω 𝐶𝑜𝑠ℎ (√Ω (𝑥 − 𝜆𝑡))

𝐴 𝑆𝑖𝑛ℎ (√Ω (𝑥 − 𝜆𝑡)) + 𝐵
]

−2

 

where A and B are two non-zero constants and satisfies 𝐵2 − 𝐴2 > 0. 

𝑢8(𝑥, 𝑡) =  −6𝜇(𝜈 − 1) − 3𝛽

[
 
 
 
 
 𝐶𝑜𝑠ℎ (

√Ω 
2

(𝑥 − 𝜆𝑡))

√Ω  𝑆𝑖𝑛ℎ (
√Ω 
2

(𝑥 − 𝜆𝑡)) − 𝛽𝐶𝑜𝑠ℎ (
√Ω 
2

(𝑥 − 𝜆𝑡))
]
 
 
 
 
 
−1

 

−
3

2

[
 
 
 
 
 𝐶𝑜𝑠ℎ (

√Ω 
2

(𝑥 − 𝜆𝑡))

√Ω  𝑆𝑖𝑛ℎ (
√Ω 
2

(𝑥 − 𝜆𝑡)) − 𝛽𝐶𝑜𝑠ℎ (
√Ω 
2

(𝑥 − 𝜆𝑡))
]
 
 
 
 
 
−2

 

𝑢9(𝑥, 𝑡) =  −6𝜇(𝜈 − 1) + 3𝛽

[
 
 
 
 
 𝑆𝑖𝑛ℎ (

√Ω 
2

(𝑥 − 𝜆𝑡))

𝛽 𝑆𝑖𝑛ℎ (
√Ω 
2

(𝑥 − 𝜆𝑡)) − √Ω  𝐶𝑜𝑠ℎ (
√Ω 
2

(𝑥 − 𝜆𝑡))
]
 
 
 
 
 
−1

 

−
3

2

[
 
 
 
 
 𝑆𝑖𝑛ℎ (

√Ω 
2

(𝑥 − 𝜆𝑡))

𝛽 𝑆𝑖𝑛ℎ (
√Ω 
2

(𝑥 − 𝜆𝑡)) − √Ω  𝐶𝑜𝑠ℎ (
√Ω 
2

(𝑥 − 𝜆𝑡))
]
 
 
 
 
 
−2

 

𝑢10(𝑥, 𝑡) =  −6𝜇(𝜈 − 1) − 3𝛽

[
 
 
 
 
 𝐶𝑜𝑠ℎ (

√Ω 
2

(𝑥 − 𝜆𝑡))

√Ω  𝑆𝑖𝑛ℎ (
√Ω 
2

(𝑥 − 𝜆𝑡)) − 𝛽𝐶𝑜𝑠ℎ (
√Ω 
2

(𝑥 − 𝜆𝑡)) ± 𝑖√Ω 
]
 
 
 
 
 
−1

 

−
3

2

[
 
 
 
 
 𝐶𝑜𝑠ℎ (

√Ω 
2

(𝑥 − 𝜆𝑡))

√Ω  𝑆𝑖𝑛ℎ (√Ω (𝑥 − 𝜆𝑡)) − 𝛽𝐶𝑜𝑠ℎ (√Ω (𝑥 − 𝜆𝑡)) ± 𝑖√Ω 

]
 
 
 
 
 
−2
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𝑢11(𝑥, 𝑡) =  −6𝜇(𝜈 − 1) − 3𝛽

[
 
 
 
 
 𝑆𝑖𝑛ℎ (

√Ω 
2

(𝑥 − 𝜆𝑡))

−𝛽 𝑆𝑖𝑛ℎ (√Ω (𝑥 − 𝜆𝑡)) + √Ω  𝐶𝑜𝑠ℎ (√Ω (𝑥 − 𝜆𝑡)) ± √Ω 

]
 
 
 
 
 
−1

 

−
3

2

[
 
 
 
 
 𝑆𝑖𝑛ℎ (

√Ω 
2

(𝑥 − 𝜆𝑡))

−𝛽 𝑆𝑖𝑛ℎ (√Ω (𝑥 − 𝜆𝑡)) + √Ω  𝐶𝑜𝑠ℎ (√Ω (𝑥 − 𝜆𝑡))
± √Ω 

]
 
 
 
 
 
−2

 

𝑢12(𝑥, 𝑡) =  −6𝜇(𝜈 − 1) −
3

2
𝛽

[
 
 
 
 
 𝑆𝑖𝑛ℎ (

√Ω 
4

(𝑥 − 𝜆𝑡))𝐶𝑜𝑠ℎ (
√Ω 
4

(𝑥 − 𝜆𝑡))

−2𝛽𝑆𝑖𝑛ℎ (
√Ω 
4

(𝑥 − 𝜆𝑡))𝐶𝑜𝑠ℎ (
√Ω 
4

(𝑥 − 𝜆𝑡)) + 2√Ω 𝐶𝑜𝑠ℎ2 (
√Ω 
2

(𝑥 − 𝜆𝑡)) − √Ω 
]
 
 
 
 
 
−1

 

−
3

8

[
 
 
 
 
 𝑆𝑖𝑛ℎ (

√Ω 
4

(𝑥 − 𝜆𝑡))𝐶𝑜𝑠ℎ (
√Ω 
4

(𝑥 − 𝜆𝑡))

−2𝛽𝑆𝑖𝑛ℎ (
√Ω 
4

(𝑥 − 𝜆𝑡))𝐶𝑜𝑠ℎ (
√Ω 
4

(𝑥 − 𝜆𝑡)) + 2√Ω 𝐶𝑜𝑠ℎ2 (
√Ω 
2

(𝑥 − 𝜆𝑡)) − √Ω 
]
 
 
 
 
 
−2

 

TYPE 2:Ω = 𝛽2 − 4𝜇(𝜈 − 1) < 0, 𝛽(𝜈 − 1) ≠ 0, (𝑜𝑟 𝜇(𝜈 − 1) ≠ 0,Periodic form solutions 

𝑢13(𝑥, 𝑡) =  −6𝜇(𝜈 − 1) − 12𝛽𝜇(𝜈 − 1) [−𝛽 + √Ω 𝑇𝑎𝑛 (
√Ω 

2
(𝑥 − 𝜆𝑡)) ]

−1

 

−24(𝜇(𝜈 − 1))2 [−𝛽 + √Ω 𝑇𝑎𝑛(
√Ω 

2
(𝑥 − 𝜆𝑡)) ]

−2

 

𝑢14(𝑥, 𝑡) =  −6𝜇(𝜈 − 1) +  12𝛽𝜇(𝜈 − 1) [𝛽 + √Ω 𝐶𝑜𝑡 (
√Ω 

2
(𝑥 − 𝜆𝑡)) ]

−1

 

−24(𝜇(𝜈 − 1))2 [𝛽 + √Ω 𝐶𝑜𝑡 (
√Ω 

2
(𝑥 − 𝜆𝑡))]

−2

 

𝑢15(𝑥, 𝑡) = −6𝜇(𝜈 − 1) −  12𝛽𝜇(𝜈 − 1) [−𝛽 + √Ω (𝑇𝑎𝑛 (√Ω (𝑥 − 𝜆𝑡)) ± 𝑖𝑆𝑒𝑐 (√Ω (𝑥 − 𝜆𝑡))) ]
−1

   −24(𝜇(𝜈 −

1))2 [−𝛽 + √Ω (𝑇𝑎𝑛 (√Ω (𝑥 − 𝜆𝑡)) ± 𝑖𝑆𝑒𝑐 (√Ω (𝑥 − 𝜆𝑡)))]
−2

 

𝑢16(𝑥, 𝑡) =  −6𝜇(𝜈 − 1) +  12𝛽𝜇(𝜈 − 1) [𝛽 + √Ω (𝐶𝑜𝑡 (√Ω (𝑥 − 𝜆𝑡)) ± 𝐶𝑠𝑐 (√Ω (𝑥 − 𝜆𝑡))) ]
−1

 −24(𝜇(𝜈 − 1))2 [𝛽 +

√Ω (𝐶𝑜𝑡 (√Ω (𝑥 − 𝜆𝑡)) ± 𝐶𝑠𝑐 (√Ω (𝑥 − 𝜆𝑡)))]
−2
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𝑢17(𝑥, 𝑡) =  −6𝜇(𝜈 − 1) − 24𝛽𝜇(𝜈 − 1) [−2𝛽 + √Ω (𝑇𝑎𝑛 (
√Ω 

4
(𝑥 − 𝜆𝑡)) − 𝐶𝑜𝑡 (

√Ω 

4
(𝑥 − 𝜆𝑡)))]

−1

  −96(𝜇(𝜈 −

1))2 [−2𝛽 + √Ω (𝑇𝑎𝑛 (
√Ω 

4
(𝑥 − 𝜆𝑡)) − 𝐶𝑜𝑡 (

√Ω 

4
(𝑥 − 𝜆𝑡)))]

−2

 

𝑢18(𝑥, 𝑡) =  −6𝜇(𝜈 − 1) − 12𝛽𝜇(𝜈 − 1) [−𝛽 +
±√(𝐴2 + 𝐵2)Ω − 𝐴√Ω 𝐶𝑜𝑠 (√Ω (𝑥 − 𝜆𝑡))

𝐴 𝑆𝑖𝑛 (√Ω (𝑥 − 𝜆𝑡)) + 𝐵
]

−1

 

−24(𝜇(𝜈 − 1))2 [−𝛽 +
±√(𝐴2 + 𝐵2)Ω − 𝐴√Ω 𝐶𝑜𝑠 (√Ω (𝑥 − 𝜆𝑡))

𝐴 𝑆𝑖𝑛 (√Ω (𝑥 − 𝜆𝑡)) + 𝐵
]

−2

 

𝑢19(𝑥, 𝑡) =  −6𝜇(𝜈 − 1) − 12𝛽𝜇(𝜈 − 1) [−𝛽 −
±√(𝐴2 + 𝐵2)Ω + 𝐴√Ω 𝐶𝑜𝑠 (√Ω (𝑥 − 𝜆𝑡))

𝐴 𝑆𝑖𝑛 (√Ω (𝑥 − 𝜆𝑡)) + 𝐵
]

−1

 

−24(𝜇(𝜈 − 1))2 [−𝛽 −
±√(𝐴2 + 𝐵2)Ω + 𝐴√Ω 𝐶𝑜𝑠 (√Ω (𝑥 − 𝜆𝑡))

𝐴 𝑆𝑖𝑛 (√Ω (𝑥 − 𝜆𝑡)) + 𝐵
]

−2

 

where A and B are two non-zero constants and satisfies 𝐴2 − 𝐵2 > 0 

𝑢20(𝑥, 𝑡) =  −6𝜇(𝜈 − 1) − 3𝛽

[
 
 
 
 
 𝐶𝑜𝑠 (

√Ω 
2

(𝑥 − 𝜆𝑡))

√Ω  𝑆𝑖𝑛 (
√Ω 
2

(𝑥 − 𝜆𝑡)) + 𝛽𝐶𝑜𝑠 (
√Ω 
2

(𝑥 − 𝜆𝑡))
]
 
 
 
 
 
−1

 

−
3

2

[
 
 
 
 
 𝐶𝑜𝑠 (

√Ω 
2

(𝑥 − 𝜆𝑡))

√Ω  𝑆𝑖𝑛 (
√Ω 
2

(𝑥 − 𝜆𝑡)) + 𝛽𝐶𝑜𝑠 (
√Ω 
2

(𝑥 − 𝜆𝑡))
]
 
 
 
 
 
−2

 

𝑢21(𝑥, 𝑡) =  −6𝜇(𝜈 − 1) + 3𝛽

[
 
 
 
 
 𝑆𝑖𝑛 (

√Ω 
2

(𝑥 − 𝜆𝑡))

−𝛽 𝑆𝑖𝑛 (
√Ω 
2

(𝑥 − 𝜆𝑡)) + √Ω  𝐶𝑜𝑠 (
√Ω 
2

(𝑥 − 𝜆𝑡))
]
 
 
 
 
 
−1

 

−
3

2

[
 
 
 
 
 𝑆𝑖𝑛 (

√Ω 
2

(𝑥 − 𝜆𝑡))

−𝛽 𝑆𝑖𝑛 (
√Ω 
2

(𝑥 − 𝜆𝑡)) + √Ω  𝐶𝑜𝑠 (
√Ω 
2

(𝑥 − 𝜆𝑡))
]
 
 
 
 
 
−2
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Figure 1 Graph of the cuspon solution 𝒖𝟏(𝒙, 𝒕) for 𝜷= 1, 𝝁= -1, v = 2 with  -10≤ 𝒙, 𝒕≤ 10 

Solutions 𝑢23(𝑥, 𝑡)and 𝑢24(𝑥, 𝑡)are bell shaped sech2 solitary traveling wave solutions. Solutions 𝑢2(𝑥, 𝑡) and 𝑢4(𝑥, 𝑡)are 

singular soliton solutions. Figure 2 shows the shape of exact soliton traveling wave solution 𝑢2(𝑥, 𝑡) of equation (4.36). 

The shape of  figures of the solution  𝑢4(𝑥, 𝑡) is similar to  𝑢2(𝑥, 𝑡). The solution𝑢5(𝑥, 𝑡)is a singular kink solution. Figure 

3 shows the shape of exact singular kink-type solution (shown here is only the shape of the solution  𝑢5(𝑥, 𝑡)with 𝛽= 1, 

𝜇= -1, v = 2 with  -10≤ 𝑥, 𝑡≤ 10 

 

Figure 2 Graph of the soliton traveling wave solution 𝒖𝟔(𝒙, 𝒕)for 𝜷= 1, 𝝁= -1, v = 2 with -10≤ 𝒙, 𝒕≤ 10 
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Figure 3 Graph of singular kink traveling wave solution 𝒖𝟓(𝒙, 𝒕)for 𝜷= 1, 𝝁= -1, v = 2 with -10≤ 𝒙, 𝒕≤ 10 

Solutions 𝑢6(𝑥, 𝑡) to 𝑢11(𝑥, 𝑡), 𝑢23(𝑥, 𝑡)and 𝑢24(𝑥, 𝑡)describe the soliton, which is a special type of solitary wave, The 
soliton solution is specially localized solution; hence 𝑢′,𝑢" tends to zero as ξ tends to ±∞ and ξ=𝑥 − 𝑐𝑡. The soliton has a 
remarkable property in that it keeps its identity upon interaction with other solutions. Solutions 𝑢12(𝑥, 𝑡), 𝑢14(𝑥, 𝑡), 
𝑢15(𝑥, 𝑡), 𝑢17(𝑥, 𝑡), 𝑢19(𝑥, 𝑡) and 𝑢21(𝑥, 𝑡)represent the exact traveling wave solution. The periodic solutions are exact 
traveling wave solution that are periodic such as cos(𝑥 − 𝑡). Figure 4 below shows the periodic solution u12(x,t). The 
graph of the periodic solution 𝑢12(𝑥, 𝑡) for v = 1𝛽= 1, 𝜇= -1, v = 2 with -1≤ 𝑥, 𝑡≤ 1 is omitted for convenience. Solutions 
𝑢13(𝑥, 𝑡), 𝑢16(𝑥, 𝑡), 𝑢18(𝑥, 𝑡), 𝑢20(𝑥, 𝑡), 𝑢22(𝑥, 𝑡) are exact singular period solutions. Figure 5 shows the shape of 𝑢13(𝑥, 𝑡) 
with v = 1,𝛽= 1, 𝜇= 1, v = 2 and -1≤ 𝑥, 𝑡≤ 1  

 

Figure 4 Graph of the periodic traveling wave solution 𝒖𝟏𝟐(𝒙, 𝒕) for 𝜷= 1, 𝝁= -1, v = 2 with -10≤ 𝒙, 𝒕≤ 10 
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Figure 5 Graph of the singluar periodic traveling wave solution 𝒖𝟏𝟑(𝒙, 𝒕) 

5. Conclusion 

The symmetry generators and conservation laws derived using the multiplier method were used to reduce the original 
fourth-order Boussinesq equation to a second-order ordinary differential equation (ODE). This was achieved by 
identifying the symmetry variables and using them to reduce the order of the equation. The reduced second-order ODE 
was solved exactly, yielding new solutions to the ill-posed Fourth-order Boussinesq PDE. The exact solutions obtained 
provide insight into the physical behavior of the system modeled by the equation and can be used to verify the accuracy 
of numerical simulations, study the stability, chaotic and asymptotic behavior of the system. The technique used helps 
to advances the understanding of complex nonlinear systems and provides a methodology that can be applied to other 
PDEs with similar structures. The exact solutions also offer valuable insights into the behavior of the equation and can 
serve as benchmarks for future analytical and numerical studies. The exact solutions obtained were graphically 
displayed and analyzed, providing a visual representation of the behavior of the solutions. It revealed the structure of 
the solutions, including the formation of solitary waves and shock waves, and also the effect of the parameters on the 
behavior of the solutions. 

Recommendations 

Based on the findings of this research, we recommend that symmetry analysis and conservation law derivation 
techniques developed in this research can be applied to other nonlinear partial differential equations, and simulations 
can be performed to verify the accuracy of the exact solutions obtained in this research and to explore the behavior of 
the equation in different regimes. Furthermore future research should aim to generalize the methodology employed in 
this study to encompass all nonlinear PDEs that lack lie point symmetries and  conserved vectors, thereby broadening 
its applicability and scope. 
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