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Abstract 

Diesel fuel price (DFP) modeling and prediction are important to an economy since fuel price has direct consequences 
on retail commodity prices, transportation, and the successful implementation of government policies. In this study, an 
attempt has been made to propose a DFP prediction model using the wavelet transform backpropagation neural 
network (WTBPNN) approach. The proposed WTBPNN approach was compared with the following benchmark 
methods: BPNN, radial basis function neural network (RBFNN), and wavelet transform radial basis function neural 
network (WTRBFNN). The developed prediction models used interest and inflation rates as the input parameters and 
DFP as the output parameter. A total of 95 data points obtained from the Ghana National Petroleum Authority and the 
Bank of Ghana were considered. Thus, 67 served as the training set and 28 were used as the testing set. Model validation 
was performed using dimensioned error statistic indicators of mean absolute deviation (MAD), mean absolute 
percentage error (MAPE), coefficient of determination (R2), and Pearson’s product-moment correlation coefficient (R). 
Overall, the statistical results revealed that the proposed WTBPNN approach gave the best performance and thus could 
be used to predict DFP.  
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1. Introduction

With the technological progression and expansion of global economic integration, the demand and supply of crude oil 
are being influenced by many complex events and various market participants worldwide. These, together with many 
influential factors like weather conditions, political stability, economic prospects, consumer expectations, and business 
indicators, to mention a few, have led to the enormous fluctuating price movement in the crude oil market. In recent 
years, these problems have aggravated in addition to the wave of liberalisation and globalisation, which are beyond the 
exploratory abilities of the traditional model-based methods (Zhu et al., 2014; Lescaroux and Mignon, 2008; Stevens, 
1995; Hagen, 1994, and references therein). 

As a distinctive nonlinear and dynamic system, crude oil price fluctuations are difficult to predict and its challenging 
accurate prediction remains a well-researched topic for its supposed increasingly significant role in the macroeconomic 
performance of the world economy (Malik, 2016; Wang and Wang, 2016; Zhu et al., 2014; Shaari et al., 2013). Statistical 
and econometric models have traditionally been the normal approach to forecasting crude oil prices. The autoregressive 
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moving average (ARMA) represents the distinctive time series approach, while the regression and vector autoregressive 
(VAR) models represent the distinctive multivariate approaches. In general, these methods face several limitations, 
particularly in handling the complexities in the crude oil market, and offer satisfactory performance over the medium 
to long time horizons, but fail over the short time horizons and cannot meet practical needs in predicting crude oil prices 
since they often assume linear relationship and satisfactory data. This indication reveals that the characteristics of 
prices in the crude oil market comprise unknown nonlinear interrelationships with other macroeconomic factors in the 
case of multivariate models. These current approaches alone can only offer insufficient clarification and predictive 
power for the crude oil price movement (Chiroma, 2016; Morana, 2001; Abramson and Finizza, 1995; Huntington, 1994 
and references therein). 

Usually, the traditional model-based methods can provide good prediction results when the price series under study is 
linear or near linear (Shi and Zhuang, 2019). However, in real-world crude oil price series, a great deal of unpredictable 
nonlinearity and irregularity exists. According to Weigend and Gershenfeld (1994), crude oil price prediction 
performance might remain very poor if one continues to use these traditional models, since they are built on linear 
assumptions and cannot capture the nonlinear patterns in the crude oil price series (Shi and Zhuang, 2019). 

Due to the numerous limitations of the traditional model-based methods, nonlinear and artificial intelligence (AI) 
models are the alternative methods available for researchers and crude oil industry practitioners because the methods 
provide powerful solutions to the nonlinear crude oil price prediction (Shambora and Rossiter, 2007; Mirmirani and Li, 
2004; Tang and Hammoudeh 2002 and references therein). From the existing literature, many AI-based models often 
had some advantages over the traditional model-based methods (Chiroma, 2016; Kulkarni and Haidar, 2009, and 
references therein). However, these AI models also have their shortcomings and disadvantages. For example, artificial 
neural networks (ANN) often suffer from local minima and overfitting, while some AI models, including ANN, are 
sensitive to parameter selection (Shi and Zhuang, 2019; Sheela and Deepa, 2013; Bashiri and Geranmayeh, 2011; Liu et 
al., 2019, and references therein). 

To improve on the shortcomings to overcome the drawbacks of single ANN models and to generate a synergetic effect 
in prediction, hybrid models have been proposed recently to predict crude oil and its constituents’ prices. Such an 
innovative and advanced approach of blending the robustness of traditional statistical methods with the sophistication 
of modern computational techniques is designed to leverage the strengths of both paradigms to produce more accurate, 
reliable, and adaptable predictions. Results from existing empirical literature showed that the hybrid models performed 
better than the single ANN models and are also suitable for accurate crude oil and its constituents’ price prediction 
(Mahdiani, 2017; Zhang, 2003; Zhang et al., 2014, and references therein). In this regard, it is imperative to know the 
long-term trend in crude oil prices because it is essential for ensuring global future economic stability. Consequently, 
the modeling and prediction of crude oil useful information will assist government agencies and policymakers in 
planning and managing their economic resources more efficiently (Lee and Huh, 2017; Ahmad, 2012). As a result, this 
study will employ the hybrid technique to develop an effective hybrid denoising ANN reliable model for accurate diesel 
fuel price (DFP) prediction, and its prediction performance will be compared with some existing single ANN models as 
well as some hybrid ANN models.  

2. Generation of the data 

In developing the various models, the monthly data set of seven years and eleven months was obtained from the Ghana 
National Petroleum Authority (GNPA) and the Bank of Ghana (BoG). Table 1 shows the specific parameters, their units 
of measurement, and the respective statistical measures of the data set. 

Table 1 Statistical Description of the Data Set 

Parameters Minimum Maximum   Average Standard Deviation 

Inflation Rate (%) 8.3900 20.7400   13.1651 3.9271 

Exchange Rate (₵) 8.8000 435.5750  173.2754 79.6525 

Diesel Fuel Price (₵) Per Litre 85.0100 330.4999  170.7023 71.2596 
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3. Overview of methods applied 

3.1. The Wavelet Transform 

The wavelet transform (WT) is one of the methods used to catch smooth functions by decomposing the time series into 
detail and approximation parts through multi-level multi-resolution analysis (Moosavi and Riazi, 2018; Yousefi et al., 
2005); and it has broad applications for stationary and nonstationary signals. These applications include the removal 
of electrical noise from signals, the detection of abrupt discontinuities, and the compression of large amounts of data. 
The use of WT in crude oil price prediction is no exception (Zou et al., 2015; Jin and Kim, 2015; Shabri and Samsudin, 
2014; He et al., 2012).  

With the WT, signal decomposition into a group of constituent signals called wavelets is possible; each with a well-
defined dominant frequency analogous to the Fourier transform (FT). Here, the representation of a signal is by sine and 
cosine functions of unlimited duration. In WT, signals consist of different features in time and frequency, but their high-
frequency components would have a shorter time duration than the low-frequency components. To attain good time 
resolution for high-frequency transients and good frequency resolution for low-frequency components, the idea of 
wavelets as short-duration transient functions of a single function called a mother wavelet was presented, and it is 
defined as Equation (1) (Qunli et al., 2009): 

( ),
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,    , ,  0a b

t b
t a b a

aa
 

− 
=   

 
 ……………… (1) 

where a  is the scaling parameter that measures the degree of compression or scale, b  is the translation parameter 
that determines the time location of the wavelet.  

The problem with FT is that when passing from the time domain to the frequency domain, the information about what 
happens in time is lost. Thus, observing the frequency spectrum obtained using the FT reveals the frequency content of 
the signal being analysed, but it is not possible to deduce at what time the components of the signal of the frequency 
spectrum appear or disappear. Unlike the FT, the WT allows an analysis in both time and frequency domains, giving 
information on the evaluation of the frequency content of a signal over time (Ramos, 2017). 

As in the case of FT, the WT is discretised and it is called discrete wavelet transform (DWT); and it presents an important 
advantage over the traditional FT methods. The WT decomposes a data set into several scales representing different 
frequency bands, and at each scale, the position of the WT can be determined at the important time characteristic at 
which the data set noise can be known and efficiently removed. Short-time wavelets allow information to be extracted 
from high-frequency components. Consequently, this information helps to eliminate the noise in the dataset since it 
exhibits high-frequency fluctuations (Lahmiri, 2014). On the other hand, long-term wavelets allow for information 
extraction from low frequencies. With the information of the high and low frequencies, a threshold is defined and zero 
the frequencies below the undesired threshold of the data set noise (Cheng et al., 2000).  

The pioneering work of removing noise from crude oil price data set using the WT has its origin in the works of Donoho 
and Johnson (1994), which proposed the use of a threshold for the removal of Gaussian white crude oil price data set 
noise. In this study, we employed DWT, a method for analysing irregularities in data sets to decompose the inflation and 
foreign exchange rate data sets into four Daubechies levels comprising low and high frequencies. Figure 1 shows the 
DWT modeling procedure flowchart. 
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Figure 1 DWT Model Flowchart 

3.2. The Backpropagation Neural Network 

The backpropagation neural network (BPNN) is a multi-layered, feed-forward neural network that was first proposed 
by Paul Werbos in the 1970s. However, it was rediscovered by Rumelhart and McClelland in 1986, and it is the most 
extensively used neural network for forecasting purposes (Suliman and Zhang, 2015). BPNN is also considered one of 
the simplest and most universal approaches used for supervised training for multi-layered neural networks (Rene et 
al., 2013). Neural networks obtained their name from the simple processing units in the brain called neurons, which are 
interconnected by a network that transmits signals between them. These can be thought of as a black box device that 
receives inputs and produces a desired output (Zihni et al., 2020; Benitez et al., 1997).  

The multilayer perceptron is the most common neural network model, and it is known as a supervised network since it 
requires a desired output to learn. In general, they are characterized by a network topology comprising the following: 
input, hidden, and output layers, as shown in Figure 2. The basic principle of this type of network is to create a model 
that maps the input perfectly to the output using a historical data set so that the model can then be used t produce the 
output when the desired output is unknown (Zahraa, 2019; Sheela and Deepa, 2013; Chukwu and Nwachukwu, 2012). 

In the backpropagation algorithm, a series of input and output data sets is fed to the network. Each hidden layer neuron 
and output layer neuron process the input data set by multiplying it with its corresponding interconnection weights 
and then applying a transfer function to process it one last time in the output layer to generate the neural network 
output (Chukwu and Nwachukwu, 2012; Haider et al., 2008). The work of the backpropagation approximates the 
nonlinear relationship between the input and the output data set by adjusting the weights of the connections in the 
network repeatedly. minimise the measure of the difference between the actual output vector of the network and the 
desired output vector. Due to the weight adjustments, internal hidden units, which are not part of the input or output, 
come to represent important features of the task domain, and the regularities in the task are captured by the interactions 
of these units (Rumelhart et al., 1986). 
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Figure 2 Three-layer BPNN Architecture 

In the algorithm phase, a bias term 
j  is provided to introduce a threshold for the activation of neurons. The input data 

iX  is presented to the network through the input layer, which is then passed to the hidden layer along with the weights. 

Consequently, the neuron input ,jI  a weighted sum in the output layer, which passes through an activation function 

( )jf I  to produce the desired output 
jY  is given as Equation (2) (Rene et al., 2013) 
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The most commonly used activation function is the logistic sigmoid function (Equation (3)), which takes the form (Rene 
et al., 2013; Rumelhart et al., 1986): 
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In Figure 2, 1 ,...,m m

N   is the input parameter and 1 ,..., Mx x  is the output. Figure 3 shows the BP modeling 

flowchart. 
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Figure 3 BP Training Algorithm Flowchart 

3.3. Radial Basis Function Neural Network 

The radial basis function neural networks (RBFNNs) are another class of artificial neural networks (ANN) that uses 
RBFs as activation functions. It was first proposed by Powell in the 1980s to solve interpolation problems in multi-
dimensional space. This method has experienced unprecedented development with continuous updates in computing 
kits. Compared with other neural networks, it has a simple architecture, less training time, faster learning convergence, 
is not dependent on initial guesses for the network weights, and always provides global minima when minimisation of 
error is carried out. RBFNNs offer efficient mechanisms for complex nonlinear function approximation, pattern 
recognition, modeling, and controlling dynamic systems. Besides its superior worldwide approximation ability, it can 
approximate any continuous network, and it has a good noise tolerance. Consequently, it is widely used in practice 
(Mansor et al., 2020; Zhao et al., 2019; Basak et al., 2014; Han et al., 2010). 

Similar to ANN architecture, the special three-layer RBFNN consists of a single or more hidden layers, each containing 
three important parameters: output weights, widths, and centers, as shown in Figure 4. For the RBF network to achieve 
greater learning rate performance, these parameters must be selected appropriately. The advantage of the RBFNN 
architecture is, that once the centers are determined, the network estimation reduces to a linear least squares problem. 
Generally, the parameter values are unknown and may be determined during the network learning process. The number 
of nodes in the input and output layers is decided by the research objectives. The nodes in the input and output layers 
represent the vector from an input space and a desired network response, respectively. Through a defined learning 
algorithm, the error between the actual response is minimised by optimisation criteria (Mansor et al., 2020; Pislaru and 
Shebani, 2014; Leung et al., 2001).  
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Input data to the network is done via the input layer and it is locally transferred directly to the hidden layer by a 
nonlinear activation function and this results in their unsupervised faster training. Finally, with a linear transformation 
function, the network response is attained in the output layer.  

             Input Layer              Hidden Layer                    Output Layer 

 

Figure 4 RBFNN Architecture 

Several nonlinear activation functions can be used to transfer the input data to the hidden layer. For the RBF network, 
activation of the hidden units is controlled by the distance between the input vector and the center. That is, by 
computing the Euclidean distance between them using the Gaussian function. The training process of the network 
parameters between the hidden layers and the output layer is supervised with learning algorithms. Besides the 
adjustment of the weights, modifying the center of the activation function is needed in training the network 
(Mansourkhaki et al., 2018; Markopoulos et al., 2016). The weights and the center of activation functions are adjusted 
by using the gradient descent method to minimise the sum of squared errors.  

In this study, the Gaussian function as defined in Equation (4) was used (Mansourkhaki et al., 2018; Ji et al., 2016; Gullu, 

2010). The 
thi  output ˆ

iy  is a linear combination of neurons in the hidden layer and it is computed in Equation (1) as 

(Basak et al., 2014; Han et al., 2010): 
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1
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where  1 2, ,...,
T

nx x x x=  is an input value; n  is the number of input nodes; kv  is the position of the center vector 

for neuron k and N is the number of neurons in the hidden layer. 
kx v−  denotes the Euclidean distance between kv  

and x , ( )k •  is the nonlinear transfer function of the 
thk  RBF node, ikw  is the weighting value between the 

thk  

RBF node and the 
thi  output node, and m  is the number of output nodes. 

This study employed a supervised learning algorithm to train the RBFNN. A written MatLab code was used to carry out 
the RBFNN training. The Gaussian activation function as shown in Equation (5) was also applied (Basak et al., 2014; Han 
et al., 2010): 
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where   and   are the parameters of the center values of the basis function and width of the RBF nodes respectively. 
The most commonly used activation function for classification and regression problems is the Gaussian function because 
it is continuous and differentiable. Besides it provides a softer output and improves the interpolation capabilities (Han 

et al., 2010). The final output classification of the RBFNN ( )kf x v−  is expressed as Equation (6) (Mansor et al., 

2020): 
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Figure 5 shows the RBFNN modeling flowchart. 

 

Figure 5 RBFNN Using Supervised Learning Flowchart 

4. Model performance assessment 

The evaluation of model suitability is an indispensable step of the modeling process because it indicates the level of 
precision and accuracy of the model predictions. Thus, the developed model's usefulness depends on how near its 
predictions fit well with the observed dataset. In that regard, the following statistical performance indicators were used 
to assess the rightness and promote the acceptance and usability of the AI prediction models: mean absolute deviation 
(MAD), Mean absolute percentage error (MAPE), coefficient of determination (R2) and Pearson’s product moment 
correlation coefficient (R) (Obilor and Amadi, 2018; Kim and Kim, 2016; Ren and Ren, 2016; Montgomery et al., 2006). 
Equations (7) – (10) show their mathematical notations respectively. 

Figure 5 shows the RBFNN modeling flowchart. 
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where for Equations (7) - (10), e  is the modeling error and it is the difference between the actual and the predicted 

variable, n  is the number of sample data and it assumes values from i  to n ,  and x y  are the input variables, and ŷ  

is the predicted variable. 

5. Results 

5.1. Pre-Processing of Data 

During the DFP model development, the 95-sample data set was partitioned into 67 (approximately 70%) training set 
and the remaining 28 (approximately 30%) testing set was used as unseen data to check the reliability of the trained 
models. The most extensively used hold-out cross-validation method was applied in the data partitioning process, and 
ensured that the percentage division conformed to practices in literature (Swingler, 1996; Taheri et al., 2017; Awwalu 
and Nonyelum, 2019; Sayevand et al., 2019, and references therein). To circumvent under- and overfitting situations, 
which prevent models from generalising well on the testing data set, the mean square error (MSE) criterion was utilised. 
Thus, a trained model whose errors are minimised for the testing data set with a marginal error difference between the 
training and testing sets, was classified as an efficient model.  

In the model formulation, inflation and exchange rates served as input variables, and the DFP was used as an output 
variable. Normalisation of the data set was performed by using Equation (11) to find new data ranges from the existing 
one, and this technique minimised the impact of bigger input values on the smaller ones. As a result, the method 
improves the convergence speed of the developed AI models (Patro et al., 2015). 

( )( )

( )

Highest Lowest Y Min
X Lowest

Max Min

− −
= +

−
 ………….(11) 

where,  

Y  is the current position; 

Max  is the maximum value of a column; 

Min  is the minimum value of a column; 

Highest  is the higher value of a chosen range; and 

Lowest  is the lower value of a chosen range. 

The Min  and Max  values ranged from -1 to 1. 
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5.2. Models Formed 

5.2.1. BPNN Model 

The optimal generalisation BPNN model that predicted the best DFP was [2-30-1]. That is two inputs, thirty-six hidden 
neurons, and one output. The choice of the model was based on the statistical performance indicators applied in 
Equations (7) - (10). In the BPNN model formulation, one hidden layer that has been proven by scholars (Hornik et al., 
1989; Park and Sandberg, 1991) to approximate very well on any data was used. The scaled conjugate backpropagation 
(Møller, 1993) was also used as the training algorithm. The hyperbolic tangent and linear transfer functions were 
respectively utilised in the hidden and output layers.  

5.2.2. RBFNN Model 

The optimal generalisation RBFNN model that produced the best performance was [2-50-1] with a width parameter of 
0.21. The optimal structure is two inputs, fifty neurons, and one output. It must be noted that the width parameter and 
the maximum number of neurons were the only adjustable parameters that needed to be set to monitor the model’s 
performance.  

5.2.3. WT-BPNN Model 

The optimal generalisation WT-BPNN model that predicted the best DFP was [2-11-1]. That is two inputs, eleven hidden 
neurons, and one output. The choice of the model was based on the statistical performance indicators applied in 
Equations (7) - (10). In the BPNN model formulation, one hidden layer that has been proven by scholars (Hornik et al., 
1989; Park and Sandberg, 1991) to approximate very well any data was used. The scaled conjugate backpropagation 
(Møller, 1993) was also used as the training algorithm. The hyperbolic tangent and linear transfer functions were 
respectively utilised in the hidden and output layers. 

5.2.4. WT-RBFNN Model 

The optimal generalisation WT-RBFNN model that produced the best performance was [2-10-1] with a width parameter 
of 0.21. The optimal structure is two inputs, ten neurons, and one output. It must be noted that the width parameter and 
the maximum number of neurons were the only adjustable parameters that needed to be set to monitor the model’s 
performance. 

5.3.  Model Comparison 

Table 2 Summary of Test Results 

Model  MAD  MAPE (%)    R   R2 

BPNN 25.5664  9.3097 0.9707 0.9423 

RBFNN 30.3956 11.1967 0.6575 0.4323 

WT-BPNN 25.3746  8.4709 0.9849 0.9700 

WT-RBFNN 27.1116 10.9729 0.9201 0.8466 

Table 2 shows the proposed model's statistical performance indicators and test results. WT-BPNN had the least MAPE 
and MAD values of 8.4709 and 25.3746, and higher r and R2 values of 0.9849 and 0.9700, respectively, than the other 
models. This implies that lower values of MAPE and MAD are an indication that the proposed model prediction errors 
are reduced to a very minimal. Due to this, the proposed model is considered to have good prediction power. An 

0.6r   is an indication of a strong positive relationship between the two input macroeconomic variables, exchange 
and inflation rates. Thus, a positive change in one variable strongly influences the other variable positively and vice 
versa. Finally, an R2 value of 0.9700 means that exchange and inflation rates simultaneously explained 97% of the DFP 
prediction. Consequently, this is a clear indication that WT-BPNN is a very good and efficient model. 

6. Conclusion 

As DFP prediction requires precision and frequent checks for varying parameters, researchers have worked on 
numerous AI models to enhance the performance of the existing forecasting approaches. This research has presented a 
comprehensive study of notable single methods and delineated the state-of-the-art for constructing hybrid models. The 
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combination of two or more predictive models has been shown in the literature to construct hybrid models for 
demanding accuracy. BPNN and RBNN and their relevant models have proven fruitful, as these schemes have showcased 
excellent opportunities in achieving a well-organised model where the DFP can be predicted with minimum error. 

In this study, an attempt has been made to apply the hybrid WT-BPNN as a novel technique to predict DFP, and it has 
been compared with two standard single AI methods (BPNN and RBFNN) and a hybrid WT-RBFNN method. The hybrid 
WT-BPNN approach gave superior results as compared to the BPNN, RBFNN, and WT-RBFNN approaches applied. This 
was evident from the statistical analysis performed, where WT-BPNN had low values of MAPE (8.4709 %) and MAD 
(25.3746) as well as high R (0.9849) and R2 (97%) values. These results showed that the hybrid WT-BPNN can be used 
to predict DFP with some reliable level of accuracy. This paper may prove quite useful for researchers who need to 
model and predict DFP through the use of AI technology.  
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