
 Corresponding author: Shafi Shaik.

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0.

Technical review: Server-side Composition vs. Client-side Composition

Shafi Shaik *

Independent Researcher, USA.

World Journal of Advanced Research and Reviews, 2025, 26(02), 3037-3046

Publication history: Received on 12 April 2025; revised on 19 May 2025; accepted on 21 May 2025

Article DOI: https://doi.org/10.30574/wjarr.2025.26.2.1941

Abstract

Micro frontend architecture has emerged as a transformative paradigm for building scalable and maintainable web
applications by extending microservices principles to the frontend. This technical review explores the fundamental
dichotomy between server-side and client-side composition strategies within micro frontend implementations. Server-
side composition assembles page fragments before delivery to the browser, while client-side composition delegates this
process to JavaScript in the client's browser. The document examines implementation mechanisms for both approaches,
including Server-Side Includes (SSI), Edge-Side Includes (ESI), and Backend for Frontend (BFF) patterns for server-side
composition, alongside Web Components, Module Federation, and framework-specific solutions for client-side
composition. Performance characteristics are thoroughly evaluated, highlighting how server-side composition typically
delivers faster initial page loads and improved SEO, while client-side composition excels at subsequent interactions and
developer autonomy. The review also addresses development workflows, testing strategies, and deployment
considerations that significantly differ between approaches. Through case studies in e-commerce and enterprise
dashboards, it demonstrates how each strategy suits different application types. A decision framework is presented to
guide architects in selecting appropriate composition approaches based on performance requirements, team structures,
and business contexts, with many modern applications benefiting from hybrid implementations that strategically
combine both paradigms.

Keywords: Micro Frontends; Server-Side Composition; Client-Side Composition; Web Architecture; Component
Integration

1. Introduction

Micro frontend architecture has emerged as a significant approach for building scalable and maintainable web
applications, with adoption rates increasing substantially in recent years. According to industry research, 72% of
enterprises are now implementing or planning to implement micro frontend architectures for their web applications
[1]. This architectural pattern extends the microservices concept to the frontend, allowing teams to develop, test, and
deploy UI components independently. While traditional monolithic frontends become increasingly complex and difficult
to maintain as applications grow, micro frontends provide a solution by breaking down the user interface into smaller,
more manageable parts that can be developed by independent teams.

A critical decision when implementing micro frontends is choosing between server-side composition and client-side
composition. These two approaches represent fundamentally different strategies for assembling application fragments
into a cohesive user experience. Server-side composition assembles page fragments on the server before delivery to the
client, while client-side composition delegates this assembly process to the browser using JavaScript. Performance
metrics indicate that server-side composition typically results in faster initial page loads, while client-side composition
offers improved interactivity for complex applications after the initial load.

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjarr.com/
https://doi.org/10.30574/wjarr.2025.26.2.1941
https://crossmark.crossref.org/dialog/?doi=10.30574/wjarr.2025.26.2.1941&domain=pdf

World Journal of Advanced Research and Reviews, 2025, 26(02), 3037-3046

3038

The micro frontend approach addresses several key challenges in modern web development, including scalability issues
in large teams, technology stack limitations, and deployment complexities [2]. By decomposing the frontend into
smaller, independent units, organizations can achieve greater development velocity, with teams working in parallel on
different sections of the application without coordination bottlenecks. This architectural style also enables incremental
upgrades to both technology stacks and user interfaces, allowing for gradual modernization rather than risky complete
rewrites.

Implementation data shows that organizations adopting micro frontends typically experience reduced time-to-market
for new features and improved ability to scale development teams effectively [1]. However, this approach introduces
its own complexity in terms of integration, consistency, and performance optimization. The choice between server-side
and client-side composition significantly impacts these factors, with each approach offering distinct advantages and
trade-offs for different use cases.

This technical review analyzes both approaches in depth, examining their implementation mechanisms, performance
implications, development workflows, and appropriate use cases to help technical teams make informed architectural
decisions. As web applications continue to grow in complexity and importance to business operations, understanding
these architectural options becomes increasingly critical for organizations seeking to maintain development agility
while delivering optimal user experiences.

2. Technical Foundations of Composition Approaches

2.1. Server-side Composition Mechanisms

Server-side composition relies on server infrastructure to combine micro frontend fragments before sending the final
HTML to the client. Recent studies indicate this approach significantly reduces initial page load times compared to
client-side implementations across enterprise applications [3]. Several implementation mechanisms enable this
approach:

2.1.1. Server-Side Includes (SSI)

SSI directives, supported by web servers like Nginx and Apache, allow including content from one file into another
during server processing. These are among the oldest and simplest forms of server-side composition. Using special
directive syntax, SSI enables servers to include fragments from various sources directly into the HTML before delivery
to the client. Despite their age, SSI remains widely used due to its simplicity and efficiency for static content integration
[3].

2.1.2. Edge-Side Includes (ESI)

ESI provides a more sophisticated inclusion mechanism that operates at the CDN level, enabling fragment-level caching.
With ESI, content delivery networks can assemble page fragments with different caching requirements, optimizing both
performance and freshness of content. ESI syntax allows developers to specify different time-to-live (TTL) values for
various fragments on the same page, which research shows can substantially reduce server load and bandwidth usage
for high-traffic websites [3].

2.1.3. Server-Side Rendering (SSR) Frameworks

Modern frameworks like Next.js, Nuxt.js, and Remix facilitate server-side composition through component-based
rendering pipelines. These frameworks serve as composition layers that aggregate data and render complete pages.
Industry surveys show that a majority of developers use SSR frameworks for micro frontend composition, with
improved SEO performance frequently cited as the primary motivation [4].

2.1.4. Backend for Frontend (BFF) Pattern

BFF implementations often serve as composition layers, aggregating data and markup from multiple backend services
before delivering complete pages to specific frontend clients. The adoption of the BFF pattern has grown substantially
in recent years, with many organizations implementing micro frontends now utilizing BFF approaches for their
composition needs [4].

World Journal of Advanced Research and Reviews, 2025, 26(02), 3037-3046

3039

2.2. Client-side Composition Techniques

Client-side composition delegates the assembly of micro frontends to the browser runtime. This approach has evolved
considerably with modern JavaScript frameworks. Analysis shows that while client-side composition tends to enhance
developer productivity, it often requires more careful performance optimization compared to server-side approaches
[4].

2.2.1. Web Components

Custom elements provide a standards-based approach for creating encapsulated, reusable components. Web
Components use a combination of Custom Elements, Shadow DOM, and HTML Templates to create independent,
reusable UI elements that can be composed together at runtime in the browser. These components maintain their own
styling and functionality, making them ideal building blocks for client-side composition. Studies indicate adoption of
Web Components for micro frontend architectures has increased significantly in recent years [4].

2.2.2. JavaScript Module Federation

Webpack 5's Module Federation enables runtime sharing of JavaScript modules across independently deployed
applications. This technology allows multiple separate builds to form a single application, with one build being able to
dynamically import code from another at runtime. Module Federation creates a type of "distributed require()" that can
be used to import modules from remote sources, enabling true decoupling of micro frontends while maintaining
efficient code sharing [3].

2.2.3. Framework-specific Solutions

Various frameworks provide specialized solutions for client-side composition, including Single-SPA, which enables
multiple frameworks to coexist in a single page; qiankun, which extends Single-SPA with additional features for React,
Vue, and Angular applications; and Luigi, a micro frontend framework that supports UI composition with a central
navigation concept.

2.2.4. Iframes and Web Workers

Figure 1 Micro Frontend Composition Approaches: Server-side vs Client-side [3, 4]

Traditional techniques like iframes provide strong isolation between components, while Web Workers enable
background processing without blocking the main thread. Despite newer alternatives, iframes still account for a
significant portion of client-side micro frontend implementations, primarily in highly regulated industries where strict
isolation is required for security compliance [3].

World Journal of Advanced Research and Reviews, 2025, 26(02), 3037-3046

3040

3. Performance considerations

3.1. Server-side Composition Performance Profile

3.1.1. Initial Load Performance

Server-side composition typically delivers faster Time to First Contentful Paint (FCP) as it sends pre-rendered HTML to
the browser. Research across e-commerce websites confirms that server-side composed pages achieve significantly
better FCP times compared to client-side composed equivalents [5]. For content-focused applications, this provides
substantial user experience benefits, particularly on slower networks or devices. Mobile users on 3G connections
experience even more dramatic improvements, with server-side composition substantially reducing initial render times
and decreasing bounce rates proportionally to improved loading time [5].

3.1.2. Backend Processing Overhead

The composition process consumes server resources and can introduce latency in page delivery. This becomes
particularly significant with complex scenarios. Analysis of high-traffic websites implementing server-side composition
reveals that each additional fragment increases server processing time, with the effect compounding non-linearly as
fragments increase [5].

Complex compositions involving many fragments can increase server response time depending on implementation
quality. In comparative benchmarks, applications with more numerous distinct fragments showed additional server
processing time compared to simpler compositions.

High request volumes significantly impact performance, with server-side composition facing scaling challenges at high
traffic thresholds. During peak traffic events, ESI implementations typically show better resilience than SSI approaches,
maintaining better performance at multiple times normal traffic volumes.

Dynamic, personalized content that cannot be effectively cached presents the greatest challenge, with personalized
server-side composed pages requiring substantially more CPU resources than their cached counterparts. User-specific
content fragments increase page generation time proportionally to the number of personalized components [6].

3.1.3. Caching Strategies

Server-side composition enables sophisticated fragment-level caching at the edge, allowing different parts of a page to
have different cache lifetimes based on their update frequency. Effective implementation of ESI with fragment-specific
TTLs demonstrates better cache hit ratios for partially dynamic pages compared to traditional full-page caching
approaches [6]. Analysis of high-traffic e-commerce platforms found that fragment caching reduces origin server load
and decreases average response time during peak traffic periods. The most sophisticated implementations dynamically
adjust fragment cache durations based on content volatility, achieving optimal freshness-versus-performance balance
[6].

3.2. Client-side Composition Performance Considerations

3.2.1. Initial Load vs. Subsequent Interactions

Client-side composition typically involves performance trade-offs between initial and subsequent page views. Research
across production SPA implementations reveals several patterns:

Client-side composed applications deliver significantly larger JavaScript payloads compared to server-side equivalents.
Module Federation implementations can reduce this overhead compared to non-shared dependency approaches [5].

Time to Interactive (TTI) measurements show client-side composed applications require additional time to become
fully interactive compared to server-rendered counterparts, especially on mid-range mobile devices.

Subsequent navigation performance due to client-side caching provides significant advantages after initial load.
Navigation between routes in client-side composed applications requires much less time compared to traditional multi-
page server-rendered applications [6].

World Journal of Advanced Research and Reviews, 2025, 26(02), 3037-3046

3041

3.2.2. Progressive Loading Patterns

Client-side approaches can implement sophisticated loading strategies that mitigate initial performance concerns. Code
splitting to load only necessary JavaScript reduces initial bundle sizes and improves First Input Delay (FID) metrics [6].
Lazy loading components when they enter the viewport shows substantial benefits for long-scrolling pages, decreasing
initial page weight while maintaining equivalent conversion rates. Priority-based loading of critical vs. non-critical
components demonstrates significant optimization potential, achieving FCP and TTI improvements compared to
standard client-side rendering approaches [5].

3.2.3. Runtime Resource Consumption

Multiple JavaScript frameworks running concurrently in client-side composition led to increased memory usage and
potentially cause performance degradation on resource-constrained devices. Multi-framework compositions increase
memory consumption compared to single-framework equivalents [5]. JavaScript execution time on mobile devices
increases proportionally for each additional framework included in the same page, with particularly severe impacts on
devices with limited RAM. Applications using three or more distinct frameworks on a single page trigger browser crash
on low-end devices more frequently than single-framework implementations and exhibit significant visual stuttering
during user interactions [6].

Figure 2 Server-side vs. Client-side Composition: Key Performance Factors [5, 6]

4. Development and Operational Implications

4.1. Team Autonomy and Development Workflow

4.1.1. Server-side Composition Workflows

Server-side composition often requires more coordinated development approaches. Research across engineering teams
implementing micro frontends indicates that those using server-side composition report higher levels of centralized
governance [7]. The development workflows typically include centralized deployment coordination, which remains
necessary for most server-side composition implementations. Organizations with larger frontend development teams
spend significantly more time on cross-team deployment coordination compared to client-side approaches [7].

World Journal of Advanced Research and Reviews, 2025, 26(02), 3037-3046

3042

Shared implementation standards for fragment interfaces are critical, with most surveyed teams mandating
organization-wide conventions for server-side fragment contracts. These standards typically cover HTTP headers,
content negotiation mechanisms, and error handling protocols. Integration testing of the composition layer represents
a substantial portion of quality assurance efforts in server-side composition projects. Organizations implementing
comprehensive automated testing for composition layers report fewer production incidents related to fragment
integration failures [8].

Potential bottlenecks for deployment emerge when multiple teams contribute to the same compositional surface.
Analysis of deployment frequency across micro frontend implementations revealed that server-side composition teams
deployed less frequently on average than their client-side counterparts, with many citing cross-team dependencies as
the primary limiting factor [7].

4.1.2. Client-side Composition Workflows

Client-side composition typically enables greater team autonomy but introduces different operational complexities.
Among surveyed engineering organizations, a majority reported higher team velocity after adopting client-side
composition approaches [7]. Independent deployment of micro frontends becomes significantly more feasible, with
most client-side implementations achieving deployment independence between teams. Organizations experience
increased deployment frequency after transitioning from monolithic frontends to client-side composed micro frontends
[8].

Team autonomy in technology selection is a primary benefit, with most client-side implementation teams having
authority to select their own framework and tools. In diversified technology environments, teams use various
frameworks including React, Vue.js, Angular, and others within the same application [8]. Decentralized deployment
processes are implemented by most client-side micro frontend teams, with organizations reporting reduced
deployment lead time after transitioning to decentralized CI/CD pipelines. Interestingly, many organizations maintain
some form of centralized monitoring despite decentralized deployment [7].

Contract-based integration between components becomes essential as autonomy increases. Teams employing formal
contract testing report fewer integration issues compared to those relying solely on manual testing approaches. The
implementation of standardized contract testing tools corresponds with a decrease in integration-related incidents
across surveyed organizations [8].

4.2. Testing Strategies

4.2.1. Server-side Testing Approaches

Testing for server-side composition focuses on different aspects than client-side approaches. Research indicates that
server-side testing strategies require more test coverage to achieve equivalent quality assurance [7]. Server-side
integration tests for fragment assembly form the foundation of quality assurance, comprising a substantial portion of
testing efforts in server-side composition projects. Organizations implementing automated integration testing at the
composition layer report fewer production incidents related to fragment integration failures [8].

Performance testing of the composition process is critical, with most server-side implementations conducting regular
load testing specifically for the composition layer. Organizations that implement comprehensive performance testing
detect potential bottlenecks before production deployment more effectively than teams without dedicated composition
performance testing [7].

4.2.2. Client-side Testing Approaches

Client-side composition testing emphasizes different concerns, with organizations reporting higher test automation
complexity compared to server-side equivalents [7]. Browser compatibility testing becomes significantly more complex,
with client-side micro frontend teams testing across more browser/device combinations than server-side
implementations. Organizations implementing automated cross-browser testing report capturing most compatibility
issues before production [8].

Integration testing in realistic runtime environments is critical, with nearly all client-side implementations requiring
specialized approaches for testing component interactions. Performance testing across various device profiles is
essential, with most client-side teams conducting testing on multiple distinct device profiles. Contract testing between

World Journal of Advanced Research and Reviews, 2025, 26(02), 3037-3046

3043

independently deployed components becomes a cornerstone of quality assurance, with most client-side teams
employing formalized contract testing approaches [7].

4.3. Deployment and Release Management

4.3.1. Server-side Deployment Considerations

Server-side composition creates distinct deployment challenges that require specific strategies. Orchestrated releases
of the composition layer are necessary for most server-side implementations, with organizations typically employing
dedicated release coordination teams [7]. Canary releases by controlling fragment selection offers significant risk
mitigation, with many organizations utilizing fragment-level canary deployments. Blue-green deployment strategies for
the composition infrastructure are implemented by a majority of organizations using server-side composition, resulting
in reduced user-perceived downtime during deployments [8].

4.3.2. Client-side Deployment Considerations

Client-side composition introduces different deployment challenges but offers greater flexibility. Client-side approaches
demonstrate higher deployment frequency but require more sophisticated runtime management [8]. Independent
versioning and deployment of micro frontends is achieved by most client-side implementations, with organizations
reporting numerous independent deployments per week across frontend teams. Version compatibility management
across components becomes crucial, with most organizations implementing explicit version compatibility verification.
Feature flags and runtime configureuration to control component behavior are employed by the vast majority of client-
side micro frontend implementations, enabling faster feature rollout velocity and more granular control over feature
availability [7].

Figure 3 Implementation Characteristics: Server-side vs. Client-side [7, 8]

5. Use Cases and Decision Frameworks

5.1. Optimal Use Cases for Server-side Composition

Server-side composition excels in specific scenarios where performance and accessibility are paramount. Industry
surveys of micro frontend implementations indicate that server-side composition is predominantly selected for
content-focused applications and e-commerce platforms [9]. This approach demonstrates particular advantages in
scenarios requiring maximum initial page load performance, with server-side composed sites achieving significantly
faster First Contentful Paint metrics than equivalent client-side implementations.

World Journal of Advanced Research and Reviews, 2025, 26(02), 3037-3046

3044

Search engine optimization without complex SSR solutions provides significant ranking advantages. Analysis of e-
commerce sites reveals that server-side composed pages achieve higher organic search visibility and better conversion
rates from organic traffic compared to client-side rendered equivalents [10]. Support for low-powered devices with
minimal JavaScript capabilities remains critical for global audiences, with performance testing showing that server-side
composition reduces CPU utilization on entry-level smartphones and extends battery life during browsing sessions.

Reduced client-side JavaScript payloads represent a substantial benefit, with server-side implementations delivering
considerably less JavaScript on initial page load compared to client-side alternatives. Content-heavy applications where
rendering performance is critical show the most dramatic benefits, with news and media sites implementing server-
side composition reporting lower bounce rates and longer average session durations [9].

5.1.1. Case Study: E-commerce Product Pages

E-commerce platforms often leverage server-side composition to optimize product page loading times, combining
fragments like headers, product details, recommendations, and reviews while applying appropriate caching strategies
to each section. Major online retailers implementing server-side composition with Edge-Side Includes report increased
conversion rates after migration from client-side architecture. Such implementations allow different page fragments to
be cached independently, with static elements cached for longer periods while dynamic content has shorter cache
lifetimes [10].

This granular caching approach reduces origin server load during peak shopping periods while improving Time to
Interactive. Transaction volumes typically increase following implementation, with mobile conversions showing
particularly significant improvements [9].

5.2. Optimal Use Cases for Client-side Composition

Client-side composition is particularly effective for applications requiring rich interactivity and developer flexibility.
Frontend architects predominantly select client-side composition for application-centric interfaces requiring extensive
user interaction [10]. Highly interactive, application-like experiences benefit most from client-side composition, with
the majority of SaaS products and enterprise applications implementing this approach. User interface testing reveals
that client-side composed applications achieve better response times for user interactions after initial load and
smoother transitions between interface states.

Dashboard interfaces with multiple interactive widgets show particular affinity for client-side approaches. Studies of
enterprise analytics platforms find that client-side composed dashboards support more concurrent interactive
visualizations with lower latency for data manipulation operations compared to server-rendered equivalents [10].
Scenarios where teams need complete technology independence benefit substantially, with organizations reporting
higher developer satisfaction and faster feature delivery when implementing client-side composition.

Applications requiring sophisticated state management across components show faster development cycles with client-
side composition, with engineering teams spending less time implementing complex interaction patterns and
troubleshooting state synchronization issues. Progressive enhancement of existing applications proves more feasible
with client-side composition, allowing organizations to modernize legacy applications incrementally without disrupting
core business operations [9].

5.2.1. Case Study: Enterprise Dashboard Applications

Enterprise dashboards frequently employ client-side composition to allow different teams to independently develop
and deploy widgets for analytics, reporting, and monitoring, while maintaining a cohesive user experience. Financial
services corporations implementing client-side composition using Web Components and Module Federation for internal
analytics platforms can support numerous distinct teams contributing to a unified dashboard interface [10].

Such implementations enable deployment frequency to increase from periodic to daily releases, with individual teams
deploying updates regularly. Time-to-market for new analytics capabilities decreases substantially, while cross-team
dependencies diminish. These platforms can integrate multiple data visualization libraries across various teams while
maintaining consistent design systems, resulting in increased system development velocity in the months following
implementation [9].

World Journal of Advanced Research and Reviews, 2025, 26(02), 3037-3046

3045

5.3. Hybrid Approaches

Many modern architectures combine both approaches to leverage their respective strengths. Analysis of large-scale web
applications reveals that a significant portion now implement hybrid composition strategies, showing an increasing
trend compared to previous years [10]. These hybrid approaches typically implement server-side composition for the
initial page shell and critical content, with most hybrid implementations using server-side rendering for the application
shell to improve First Contentful Paint while still enabling rich client-side interactivity for the application core.

Client-side composition for interactive elements and personalized content remains common in hybrid approaches.
Progressive enhancement strategies that work with both models allow graceful fallbacks for less capable devices, with
organizations implementing layered enhancement reporting support for more device profiles effectively [9]. Edge
workers that enable composition closer to the user have emerged as a powerful hybrid pattern, with implementations
leveraging edge computing for composition showing lower latency across global markets and more consistent
performance across varying network conditions.

5.4. Decision Framework

When evaluating composition strategies, performance requirements and metrics should be clearly defined and
weighted. Organizations that establish specific performance budgets before implementation are more likely to achieve
their optimization goals [10]. Team structure and governance model significantly impact appropriate composition
strategies, with centralized governance models showing greater success with server-side composition, while
decentralized teams demonstrate higher productivity with client-side approaches.

Technology ecosystem and existing investments shape migration paths, while deployment infrastructure and
capabilities directly influence optimal composition models. User device profiles and network conditions often dictate
the most suitable approach, with applications targeting emerging markets with limited connectivity showing higher
user engagement with server-side composition [9]. Content update frequency and caching requirements affect
composition efficiency, while SEO and accessibility requirements remain crucial considerations. Development velocity
and team autonomy needs must be balanced with performance requirements to select the most appropriate
composition strategy for specific use cases.

Figure 4 Micro Frontend Decision Framework [9, 10]

World Journal of Advanced Research and Reviews, 2025, 26(02), 3037-3046

3046

6. Conclusion

The architectural decision between server-side and client-side composition for micro frontends represents a nuanced
balance of performance, development efficiency, and organizational considerations rather than a binary choice. Server-
side composition delivers compelling advantages for content-focused applications prioritizing initial load performance,
SEO visibility, and support for diverse device capabilities. Meanwhile, client-side composition offers superior benefits
for highly interactive applications where developer autonomy, frequent deployments, and sophisticated state
management are paramount. The emergence of hybrid approaches demonstrates the industry's maturation, with many
organizations implementing server-side composition for critical initial content while leveraging client-side techniques
for interactive elements. As web technologies continue evolving, innovative patterns like edge computing, streaming
server-side rendering, and island architecture are further blurring the boundaries between these approaches. Forward-
thinking organizations should establish clear performance metrics, team boundaries, and integration contracts before
selecting composition strategies. The most successful implementations align architectural decisions with specific
business requirements and user experience goals while maintaining flexibility to adapt as requirements evolve. By
understanding the strengths and trade-offs of each approach, technical teams can implement micro frontend
architectures that balance optimal user experiences with sustainable development practices across complex application
landscapes.

References

[1] Sourav Bandyopadhyay, "Microfrontends: Why 72% of Enterprises Are Adopting This Architecture," CoreCraft,
2025. [Online]. Available: https://corecraft.substack.com/p/microfrontends-why-72-of-
enterprises?utm_campaign=post&utm_medium=web

[2] GeeksforGeeks, "What are Micro Frontends?" 2024. [Online]. Available: https://www.geeksforgeeks.org/what-
are-micro-frontends/

[3] Daniel Azevedo, “Understanding Server-Side Composition and Client-Side Composition in Microservices," DEV
Community, 2024. [Online]. Available: https://dev.to/dazevedo/understanding-server-side-composition-and-
client-side-composition-in-microservices-4gi9

[4] Harish Reddy Bonikela and Siddharth, "MICRO FRONTENDS IN FINTECH: CASE STUDY ON IMPLEMENTATION
AND TRANSACTION THROUGHPUT IMPACT," INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN
ENGINEERING MANAGEMENT AND SCIENCE, 2025. [Online]. Available:
https://www.ijprems.com/uploadedfiles/paper//issue_3_march_2025/39311/final/fin_ijprems1744208557.p
df

[5] Veeranjaneyulu Veeri, "MICRO-FRONTEND ARCHITECTURE WITH REACT: A COMPREHENSIVE GUIDE,"
ResearchGate, 2024. [Online]. Available: https://www.researchgate.net/publication/385698951_MICRO-
FRONTEND_ARCHITECTURE_WITH_REACT_A_COMPREHENSIVE_GUIDE

[6] Zignuts Technolab, "Server-Side Rendering vs Client-Side Rendering," 2024. [Online]. Available:
https://www.zignuts.com/blog/server-side-vs-client-side-rendering-comparison

[7] Severi Peltonen, Luca Mezzalir, and Davide Taibi, "Motivations, benefits, and issues for adopting Micro-
Frontends: A Multivocal Literature Review," Information and Software Technology, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584921000549

[8] Fernando Rodrigues de Moraes, et al., "Micro Frontend-Based Development: Concepts, Motivations,
Implementation Principles, and an Experience Report," In Proceedings of the 26th International Conference on
Enterprise Information Systems, 2024. [Online]. Available:
https://www.scitepress.org/Papers/2024/126273/126273.pdf

[9] Neha Kaushik, Harish Kumar & Vinay Raj, "Micro Frontend Based Performance Improvement and Prediction for
Microservices Using Machine Learning," Journal of Grid Computing, 2024. [Online]. Available:
https://link.springer.com/article/10.1007/s10723-024-09760-8

[10] Gokul Ramakrishnan, "Scaling Modern Frontend Development: Strategies and Methodologies," International
Journal of Computer Applications, 2025. [Online]. Available:
https://www.ijcaonline.org/archives/volume186/number65/ramakrishnan-2025-ijca-924446.pdf

