
 Corresponding author: Narendra Reddy Sanikommu

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0.

Real-time stream processing engines: Architectural analysis and implementation
considerations

Narendra Reddy Sanikommu *

Smartzip Inc, USA.

World Journal of Advanced Research and Reviews, 2025, 26(02), 3006-3016

Publication history: Received on 07 April 2025; revised on 18 May 2025; accepted on 20 May 2025

Article DOI: https://doi.org/10.30574/wjarr.2025.26.2.1916

Abstract

This article provides an in-depth architectural analysis of three leading stream processing engines: Apache Spark
Streaming, Apache Flink, and Kafka Streams. As organizations increasingly rely on real-time data processing capabilities
to drive decision-making, understanding the fundamental architectural differences between these technologies has
become crucial for successful implementation. The analysis explores how Spark Streaming's micro-batch approach
prioritizes throughput and integration with the Spark ecosystem, while Flink's true streaming design enables minimal
latency and sophisticated event-time processing. Kafka Streams represents a distinctly different architectural approach
as a client-side library rather than a cluster computing framework, offering significant operational simplicity for Kafka-
centric environments. Through examination of performance characteristics, fault tolerance mechanisms, state
management approaches, and real-world applications, this article provides a conceptual framework for technology
selection based on specific use case requirements, existing infrastructure investments, and operational constraints. The
findings highlight that no single framework optimally addresses all streaming requirements, with organizations
increasingly adopting multi-architecture approaches tailored to specific data processing needs.

Keywords: Stream Processing Architecture; Real-Time Analytics; Event Processing Models; State Management; Fault
Tolerance Mechanisms

1. Introduction: The Evolving Stream Processing Landscape

In today's data-driven ecosystem, the ability to process and analyze streaming data in real-time has become a critical
competitive advantage. As organizations increasingly rely on immediate insights to drive decision-making, the
architectural choices around stream processing technologies have significant implications for system performance,
scalability, and developer productivity. The recent paradigm shift from batch to stream processing represents one of
the most significant architectural evolutions in modern data infrastructure, propelled by growing demands for
instantaneous analytics and decision making. Recent market analysis indicates substantial growth in the streaming
analytics sector, with projections showing continued expansion in the coming years [2].

Across sectors, adoption rates vary considerably, with financial services leading in implementation, followed by
telecommunications, retail, and healthcare. This wide-ranging adoption speaks to the versatility and critical nature of
stream processing technologies across diverse industry applications. Market research also reveals a significant trend
toward multi-architecture implementations, with many organizations employing more than one streaming technology
to address varying latency, throughput, and processing semantics requirements [2].

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjarr.com/
https://doi.org/10.30574/wjarr.2025.26.2.1916
https://crossmark.crossref.org/dialog/?doi=10.30574/wjarr.2025.26.2.1916&domain=pdf

World Journal of Advanced Research and Reviews, 2025, 26(02), 3006-3016

3007

This article provides an in-depth technical analysis of three leading stream processing engines—Apache Spark
Streaming, Apache Flink, and Kafka Streams—exploring their architectural differences, performance characteristics,
and optimal use cases based on empirical performance testing and real-world deployment metrics.

2. The Evolution of Stream Processing: From Batch to Real-Time

Traditional batch processing systems operate on static datasets with high throughput but significant latency. As
business requirements shifted toward real-time analytics, stream processing frameworks emerged to handle
continuous data flows, enabling organizations to react to events as they occur rather than after the fact. Comprehensive
research into stream processing evolution reveals that batch-oriented architectures dominated until the early 2010s,
after which true streaming models gained prominence, reducing typical processing latencies from seconds or minutes
to milliseconds. The architectural transformation has been driven primarily by use cases in fraud detection, predictive
maintenance, and real-time recommendation systems, where decision windows have progressively shrunk from hours
to sub-second intervals [1].

Modern stream processing engines must balance multiple competing requirements including latency optimization,
throughput maximization, fault tolerance, processing semantics guarantees, and state management capabilities.
Laboratory testing across these dimensions demonstrates significant architectural trade-offs between the examined
frameworks, with empirical testing showing considerable latency differences between frameworks, and memory
utilization varying significantly per processing node depending on the underlying architecture and processing model
[1].

Table 1 Core Architecture and Processing Model [1]

Framework Processing Model Primary Abstraction Deployment Model Integration

Spark Streaming Micro-batch DStreams with RDDs Cluster Spark ecosystem

Flink True streaming Dataflow graph Cluster Standalone

Kafka Streams Client-library KStream/KTable Application embedded Kafka native

2.1. Apache Spark Streaming: Micro-Batch Processing at Scale

2.1.1. Architecture and Processing Model

Spark Streaming extends the core Spark batch processing engine by introducing the concept of Discretized Streams
(DStreams). This architecture divides the continuous data stream into micro-batches of configurable time intervals
(typically ranging from milliseconds to several seconds). The primary processing abstraction in Spark Streaming is the
Resilient Distributed Dataset (RDD), which allows for in-memory processing across a cluster of machines. This
architectural approach prioritizes throughput and processing consistency over absolute latency, making it particularly
well-suited for analytical workloads that benefit from Spark's broader ecosystem.

Input Stream → DStream → Micro-batches → Spark RDDs → Processing → Output

Detailed performance analysis conducted using standardized benchmark tests with large datasets and high message
rates demonstrated that Spark Streaming can process substantial volumes of events with a multi-node cluster under
optimal conditions. However, latency metrics revealed considerable processing delay, with higher average and
percentile latency measurements compared to true streaming alternatives. Resource utilization during these tests
showed relatively high CPU utilization and memory consumption per node on average [3].

World Journal of Advanced Research and Reviews, 2025, 26(02), 3006-3016

3008

Figure 1 Apache Spark Streaming Architecture

2.1.2. Key Technical Features and Limitations

Spark Streaming offers a unified programming model where the same codebase can handle both batch and streaming
workloads, facilitating seamless integration with Spark SQL, MLlib, and GraphX components. The framework guarantees
exactly once semantics for record processing with automatic backpressure handling that adapts to varying data rates.
However, these advantages come with notable technical trade-offs in several critical areas.

The micro-batch model introduces inherent latency constraints, with minimum processing delays tied directly to batch
interval configuration. Memory overhead represents another significant consideration, as maintaining RDDs in memory
requires substantial resources in production deployments. State management introduces additional complexity, with
stateful operations requiring explicit checkpointing that incurs overhead for stateful operations compared to stateless
processing [4].

Recovery capabilities, while robust, exhibit relatively slower restoration times compared to alternative frameworks,
with testing revealing longer average recovery durations following system failures. This recovery time becomes
especially significant in high-availability use cases where even brief processing interruptions can impact business
operations [3].

2.1.3. Real-World Applications

Spark Streaming has demonstrated particular effectiveness in scenarios where integration with existing Spark
infrastructure is paramount, or where analytical complexity outweighs strict latency requirements. Industry research
indicates it has achieved near-linear scaling to many nodes in production environments before encountering significant
coordination overhead. Framework usage statistics show that it remains among the most widely deployed of the
frameworks analyzed [2]. The platform excels particularly in complex analytical pipelines requiring machine learning
integration, with moderate support for event-time processing when using watermarks in temporal ordering tests [4].

2.2. Apache Flink: True Streaming with Event Time Processing

2.2.1. Architecture and Processing Model

Flink was built from the ground up as a true streaming engine, processing events individually rather than in batches. Its
core abstraction is the dataflow graph, where operators are connected through data streams. This architectural
approach enables substantially lower latency processing compared to micro-batch alternatives, while maintaining
robust state management capabilities.

Source → Transformation → Sink (with Event Time Processing and State Management)

World Journal of Advanced Research and Reviews, 2025, 26(02), 3006-3016

3009

Flink's architecture separates the runtime from the programming model, allowing for diverse APIs (DataStream,
ProcessFunction, Table, SQL) atop the same execution engine. This separation provides implementation flexibility while
maintaining consistent processing semantics. Extensive performance testing demonstrates that Flink achieves
substantially lower latency than batch-oriented alternatives, with impressive average and percentile latency
measurements. Throughput capabilities remain substantial while resource utilization measurements show moderated
consumption of CPU and memory per node [3].

2.2.2. Key Technical Features and Advantages

Flink offers true event-by-event processing with sub-millisecond latencies, coupled with sophisticated event time
processing that enables built-in windowing based on event timestamps rather than processing time. This temporal
awareness proves particularly valuable in applications where event ordering and timing must be preserved despite
processing or transmission delays. The framework provides robust stateful computation through multiple state
backends (RocksDB, heap memory) with savepoints for application state preservation and migration.

Flink guarantees end-to-end exactly-once semantics through transactional sinks, with performance testing showing
moderate overhead for exactly-once semantics compared to weaker guarantees. The checkpointing mechanism
employs lightweight, asynchronous barrier-based approaches that significantly reduce operational impact. Detailed
evaluation of state management capabilities reveals that Flink's incremental checkpoints reduce overhead substantially
compared to other frameworks for comparable stateful operations [4].

Figure 2 Apache Flink Architecture

The framework excels in backpressure handling, with operators naturally propagating pressure through the processing
pipeline, preventing system overload while maximizing throughput. Advanced state management with incremental
checkpoints substantially reduces state persistence overhead compared to full snapshots. Process functions provide a
low-level API for fine-grained control over event timing and state, enabling complex event processing logic
implementation. Recovery capabilities demonstrate excellent resilience with faster average recovery times following
system failures [3].

2.2.3. Real-World Applications

Flink has demonstrated particular excellence in scenarios requiring precise event timing, complex stateful processing,
and low-latency responses. Usage statistics indicate it maintains significant market presence, though with lower
adoption compared to Spark Streaming [2]. Scalability testing confirms linear scaling capabilities to many nodes before
encountering network bottlenecks, making it suitable for large-scale deployments. The framework exhibits native

World Journal of Advanced Research and Reviews, 2025, 26(02), 3006-3016

3010

support for event-time processing with high accuracy using watermarks, substantially outperforming alternatives in
temporal ordering precision [4].

2.3. Kafka Streams: Lightweight Client-Side Processing

2.3.1. Architecture and Processing Model

Kafka Streams offers a fundamentally different architectural approach as a client library rather than a cluster computing
framework. It leverages Kafka's partitioning model for parallelism and its consumer group mechanism for fault
tolerance, creating a lightweight, embeddable processing solution that requires no separate computing infrastructure
beyond existing Kafka deployments.

Kafka Topic → KStream/KTable → Processor Topology → Kafka Topic

The architecture revolves around two core abstractions: KStream represents an unbounded, continuous data stream,
while KTable represents a changelog stream viewed as an evolving table. This design facilitates straightforward
implementation of both stateless transformations and stateful aggregations within the same processing topology.

Performance analysis reveals balanced characteristics, with Kafka Streams offering moderate throughput per core with
competitive average and percentile latency values. Resource efficiency represents a particular strength, with testing
showing modest consumption of CPU and memory per node. Recovery capabilities demonstrate excellent resilience
with rapid average recovery durations following system failures [3].

Figure 3 Kafka Streams Architecture

2.3.2. Key Technical Features and Advantages

As a lightweight client library, Kafka Streams requires no separate cluster infrastructure beyond Kafka itself,
dramatically simplifying deployment and operations. State management is provided through local RocksDB instances
for stateful operations, achieving good compression ratios for typical time-series data. The library supports interactive
queries for direct access to state stores, enabling point lookups without additional database dependencies.

Exactly-once processing leverages native Kafka transactions for end-to-end guarantees, with benchmarks showing
lower overhead compared to weaker consistency models than other frameworks. This lightweight processing approach
yields simplified deployment that runs within the application process rather than requiring external cluster
orchestration. Native partitioning model alignment with Kafka topic partitions ensures natural scalability and load
distribution, while incremental rebalancing provides minimal disruption during scaling operations [4].

World Journal of Advanced Research and Reviews, 2025, 26(02), 3006-3016

3011

2.3.3. Real-World Applications

Kafka Streams has demonstrated particular effectiveness in environments already heavily invested in Kafka
infrastructure, where the simplified deployment model and native integration provide substantial operational
advantages. Usage statistics indicate it has a smaller but growing market share compared to the other frameworks
examined [2].

Scalability testing confirms linear scaling with Kafka partitions, with documented deployments successfully operating
with many instances in production environments. The framework provides moderate support for event-time processing
with good accuracy in temporal ordering tests, positioning it between Spark Streaming and Flink in this capability
dimension [4].

3. Performance Comparison: Empirical Evaluation Results

Comprehensive performance evaluation conducted on standardized benchmarks reveals significant differences in
processing characteristics across the examined frameworks [3]. These differences manifest across multiple dimensions
including latency distribution, throughput capacity, resource utilization, and recovery behavior.

Latency measurements reveal substantial architectural differences, with Spark Streaming demonstrating higher
average latency and percentile values, reflecting the inherent delay introduced by its micro-batch approach. Flink
achieves substantially lower latency with excellent average and percentile measurements, highlighting its true
streaming design. Kafka Streams occupies a middle ground with moderate latency values, balancing its lightweight
architecture with processing overhead.

Table 2 Performance and Resource Characteristics [3]

Framework Latency Throughput Resource Usage Recovery Speed

Spark Streaming Higher Very high High Slow

Flink Very low High Medium Medium

Kafka Streams Moderate Moderate Low Fast

Throughput capacity similarly reflects architectural design priorities, with Spark Streaming demonstrating exceptional
batch processing capabilities across multi-node clusters. Flink achieves impressive throughput while maintaining low
latency per core, while Kafka Streams processes a moderate number of events per second per core, reflecting its
optimization for integration rather than raw processing power.

Resource utilization patterns further illustrate architectural differences, with Spark Streaming consuming significant
resources in terms of CPU utilization and memory per node during benchmark processing. Flink demonstrates more
moderate utilization of CPU and memory per node, while Kafka Streams exhibits the most efficient resource pattern,
reflecting its lightweight design philosophy.

Recovery capabilities after simulated failures show substantial variance, with Spark Streaming requiring longer average
time to restore processing following system interruption. Flink achieves faster recovery on average, while Kafka
Streams demonstrates the most rapid restoration, leveraging Kafka's native partition reassignment mechanisms. This
recovery performance has significant implications for high-availability requirements in production environments [3].

Table 3 Feature and Capability Comparison [4]

Framework Event Time
Processing

State
Management

Exactly-Once
Semantics

Interactive
Queries

Spark
Streaming

Limited Checkpointing Yes Via Spark SQL

Flink Advanced Multiple backends Yes Limited

Kafka Streams Moderate Local RocksDB Yes Native support

World Journal of Advanced Research and Reviews, 2025, 26(02), 3006-3016

3012

4. Architectural Decision Factors: Framework Selection Guidance

When selecting a stream processing technology, organizations must consider multiple factors including latency
requirements, scalability patterns, existing infrastructure investments, and recovery characteristics. Each framework
demonstrates particular strengths aligned with specific use case requirements and operational constraints.

Latency requirements often serve as a primary selection factor, with ultra-low latency needs strongly favoring Flink's
true streaming architecture. Moderate latency requirements can be effectively addressed through Kafka Streams, while
higher latency tolerance aligns well with Spark Streaming's micro-batch approach. These distinctions become
particularly relevant in use cases such as algorithmic trading (requiring very fast responses), fraud detection (typically
requiring quick decisions), and analytical reporting (often tolerating longer latency).

Scalability patterns represent another critical selection dimension, with each framework exhibiting different scaling
characteristics. Spark Streaming has demonstrated near-linear scaling to many nodes in production environments,
making it well-suited for vertical scaling with complex analytical operations. Flink achieves linear scaling to a
substantial number of nodes before encountering network coordination bottlenecks, providing effective horizontal
scaling with distributed state. Kafka Streams scales directly with Kafka partitions, having been successfully deployed
across many instances in production, offering straightforward scalability for Kafka-aligned processing topologies.

Existing infrastructure investments significantly influence framework selection economics, with organizations heavily
invested in the Spark ecosystem typically benefiting from leveraging Spark Streaming's unified programming model.
Kafka-centric architectures often derive substantial operational advantages from Kafka Streams' simplified deployment
model and native integration. Greenfield implementations without significant existing investments can prioritize
functionality alignment, with Flink typically offering the greatest flexibility across diverse processing semantics.

Recovery characteristics impact availability guarantees and operational resilience, with Spark Streaming requiring
longer times for typical recovery operations. Flink achieves faster restoration from the latest checkpoint state, while
Kafka Streams typically recovers quickly through partition reassignment. These differences directly influence
achievable uptime metrics and recovery time objectives in production deployments.

Table 4 Use Case Alignment [5]

Use Case Spark Streaming Flink Kafka Streams

Complex analytics Excellent Good Limited

Low-latency events Limited Excellent Good

Edge computing Poor Moderate Excellent

Kafka-centric apps Moderate Good Excellent

Machine learning Excellent Good Limited

4.1. Performance Characteristics and Processing Guarantees

Performance evaluation across multiple standardized benchmarks reveals that Kafka Streams achieves balanced
performance characteristics that emphasize operational stability over absolute throughput maximization:

Throughput Capacity: Measurement across varying processing complexity shows Kafka Streams achieves substantial
events-per-second throughput for stateless processing tasks, with throughput decreasing for more complex operations
such as machine learning model scoring. This throughput scales linearly with instance count up to infrastructure limits,
showing consistent per-core performance as deployments expand [7].

Latency Profile: Instrumented testing under standardized loads reveals a moderate latency distribution for typical
processing operations. These values position Kafka Streams as providing acceptable latency characteristics, suitable for
a wide range of operational use cases while avoiding the complexity associated with ultra-low-latency frameworks [6].

Processing Guarantees: Exactly-once processing semantics are achieved by leveraging Kafka's transactional
capabilities, with moderate performance overhead compared to at-least-once semantics. This efficiency advantage

World Journal of Advanced Research and Reviews, 2025, 26(02), 3006-3016

3013

derives from the tight integration with Kafka's native transaction protocol, which enables atomic writes across multiple
topics with minimal coordination overhead [6].

State Management: The local state store approach employed by Kafka Streams provides excellent performance for
state access, with measurements showing low latency for local state queries and acceptable performance for remote
state access when using the Interactive Queries API. State management overhead contributes a small portion to total
processing costs, compared to higher overhead for Flink, reflecting the efficiency of the local storage approach [8].

4.2. Fault Tolerance and Recovery Characteristics

The fault tolerance model in Kafka Streams differs fundamentally from cluster-based alternatives, leveraging Kafka's
partition reassignment protocol rather than implementing custom recovery mechanisms. When an instance fails, its
assigned partitions are automatically redistributed to remaining instances through the consumer group rebalancing
protocol, with state restored from changelog topics.

This approach yields industry-leading recovery performance, with comparative measurements showing swift average
recovery times for Kafka Streams, compared to longer recovery periods for Flink and substantially extended restoration
for Spark Streaming under comparable failure scenarios. In production environments, recovery times typically remain
brief depending on state size and partition count [5][7].

The reliability of this recovery mechanism derives from Kafka's mature consumer group protocol and the local nature
of state storage, which eliminates the need for coordination during recovery. Each instance independently restores its
assigned state from changelog topics, enabling parallel recovery across the deployment. This architecture results in
recovery times that scale sub-linearly with deployment size, maintaining reasonable recovery durations even in large-
scale deployments [7].

4.3. Deployment Scale and Production Experience

Deployment experience across various industries demonstrates that Kafka Streams scales effectively to substantial
production workloads while maintaining its operational advantages. In financial services environments, documented
deployments have successfully operated with many Kafka Streams instances processing real-time trading and
transaction data. Scaling patterns show linear throughput increases up to infrastructure limits, with independent
instances automatically balancing processing load through Kafka's partition assignment mechanism [6].

For IoT applications, empirical testing shows that Kafka Streams scales linearly to many instances before network
communication becomes the primary bottleneck, with each instance efficiently processing its assigned subset of the
overall dataflow. This scaling pattern makes Kafka Streams particularly well-suited for edge and near-edge processing
scenarios where deployment simplicity represents a significant operational advantage [8].

Market adoption metrics indicate growing recognition of these advantages, with industry surveys across many
organizations showing Kafka Streams adoption grew substantially year-over-year, reflecting strong validation of its
architectural approach. This growth rate exceeds general stream processing adoption, indicating favorable outcomes
from initial deployments and expanding use cases [6].

4.4. Development Experience and Productivity

The developer experience associated with Kafka Streams emphasizes simplicity and alignment with standard Java
application development patterns. Code complexity metrics derived from standard processing patterns indicate that
Kafka Streams implementations require fewer lines of code than equivalent functionality in cluster-based frameworks.
This reduction results primarily from the elimination of cluster coordination code and the declarative nature of the
Streams DSL [8].

Developer productivity surveys indicate faster time-to-production with Kafka Streams compared to alternatives, with
particular advantages in deployment and operational phases of the development lifecycle. The embedded nature of the
library eliminates the need for separate cluster management and monitoring infrastructure, reducing operational
complexity for development teams [8].

The operational simplicity extends to configuration and tuning, with Kafka Streams requiring adjustment of far fewer
primary configuration parameters compared to cluster-based alternatives like Flink. This reduced parameter space

World Journal of Advanced Research and Reviews, 2025, 26(02), 3006-3016

3014

simplifies deployment and makes performance tuning more accessible to development teams without specialized
expertise in distributed systems [8].

4.5. Comparative Framework Analysis

When evaluated against alternative stream processing frameworks, Kafka Streams demonstrates distinctive
characteristics that derive directly from its architectural approach:

Kafka Streams vs. Flink: While Flink achieves superior raw performance with lower latency and higher maximum
throughput, it requires dedicated cluster infrastructure and significantly more complex configuration. Operational
complexity measurements indicate Flink requires tuning of substantially more parameters compared to the simpler
requirements for Kafka Streams, representing significantly higher operational overhead. Deployment experience
indicates Kafka Streams excels in scenarios prioritizing operational simplicity and direct integration with Kafka, while
Flink provides advantages for use cases requiring absolute minimum latency or advanced event time processing
capabilities [5].

Kafka Streams vs. Spark Streaming: Comparative analysis shows Kafka Streams requires substantially fewer
resources than Spark Streaming, with memory utilization measurements indicating much lower average memory use
per Kafka Streams instance compared to Spark Streaming. Recovery time comparisons are particularly striking, with
Kafka Streams recovering much more quickly than Spark Streaming. These differences reflect the fundamental
architectural distinction between Kafka Streams' lightweight embedded approach and Spark's batch-oriented
processing model [6][7].

Resource Efficiency: Across all evaluated frameworks, Kafka Streams demonstrates superior resource efficiency, with
significantly lower JVM garbage collection overhead compared to Flink and Spark. This efficiency advantage translates
directly to infrastructure cost reduction, with organizations reporting substantial infrastructure cost savings when
implementing equivalent processing logic in Kafka Streams compared to cluster-based alternatives [7][8].

4.6. State Management Approaches

State management represents a critical aspect of stream processing architectures, with significant implications for
performance, recovery, and operational complexity:

Local State Store Model: Kafka Streams implements state through local RocksDB instances, with state changes backed
by Kafka changelog topics for durability and recovery. This approach provides excellent performance for state access,
with low latencies for local state queries, while enabling efficient recovery through changelog replay. The local nature
of state storage eliminates coordination overhead during normal operation, contributing to the framework's overall
efficiency [8].

Compression and Efficiency: Performance analysis reveals that RocksDB state stores achieve good compression ratios
for typical machine learning feature data, substantially reducing storage requirements compared to in-memory
alternatives. This compression capability enables Kafka Streams to efficiently handle larger state sizes than would
otherwise be possible within reasonable memory constraints [7].

Interactive Queries: The Interactive Queries API represents a particularly valuable capability unique to Kafka Streams,
enabling direct access to state stores for lookups without requiring additional database systems. This feature allows
applications to expose their state for external querying, with measurements showing good latency characteristics for
both local state access and remote state access across the network. This capability eliminates the need for separate
query infrastructure in many use cases, substantially reducing architectural complexity [8].

4.7. Decision Framework for Technology Selection

The distinct characteristics of Kafka Streams make it particularly well-suited for specific deployment scenarios and use
cases:

Kafka-Centric Architectures: Organizations with existing investments in Kafka derive substantial advantages from
Kafka Streams' native integration, with infrastructure cost assessments showing significant reduction compared to
deploying separate processing clusters. The elimination of data movement between systems results in both
performance advantages and operational simplicity [8].

World Journal of Advanced Research and Reviews, 2025, 26(02), 3006-3016

3015

Operational Simplicity Priority: When operational simplicity represents a primary concern, Kafka Streams provides
significant advantages through its embedded deployment model. The reduction in configuration parameters and
elimination of cluster management substantially reduces operational overhead, particularly valuable for organizations
with limited specialized operations resources [5][8].

Moderate Latency Requirements: Performance characteristics make Kafka Streams ideal for use cases with moderate
latency requirements in the tens of milliseconds range. The measured latency profile aligns well with a wide range of
operational use cases including real-time analytics, monitoring, and data transformation, while avoiding the complexity
associated with ultra-low-latency architectures [6].

Edge and Distributed Processing: The lightweight resource profile and simplified deployment model make Kafka
Streams particularly suitable for edge computing scenarios where deployment simplicity represents a significant
advantage. Moderate memory consumption enables deployment on modest edge hardware, while the embedded nature
eliminates the need for separate cluster infrastructure [7][8].

5. Conclusion

The comprehensive analysis of stream processing architectures reveals distinctive approaches that align with different
organizational priorities and use cases. Spark Streaming excels in environments already invested in the Spark
ecosystem, where unified batch and stream processing trumps absolute latency concerns. Its micro-batch processing
model provides excellent scalability for analytical workloads but introduces inherent latency constraints that limit its
suitability for time-critical applications. Apache Flink stands out for systems requiring true event-time processing with
minimal latency, complex stateful operations, and precise event ordering. Its purpose-built streaming architecture
delivers superior performance for demanding real-time applications while maintaining robust state management
capabilities through incremental checkpointing and save points.

Kafka Streams provides the most streamlined solution for applications already leveraging Kafka, offering simplified
deployment and natural integration with Kafka's partitioning model. Its client-library approach eliminates cluster
management complexity while providing reasonable performance characteristics and industry-leading recovery times
through Kafka's native partition reassignment mechanisms. As stream processing continues its evolution from
specialized infrastructure toward mainstream application development patterns, the market increasingly recognizes
that no single framework optimally addresses all requirements. This has led to multi-architecture implementations
where organizations select the appropriate technology for each specific data pipeline based on latency requirements,
existing infrastructure, and operational constraints. This hybrid approach enables organizations to leverage the specific
strengths of each framework while creating comprehensive stream processing ecosystems tailored to diverse
application requirements.

References

[1] Z. Milosevic, et al, “Chapter 2 - Real-Time Analytics,” Big Data, Principles and Paradigms, 2016, Available:
https://www.sciencedirect.com/science/article/abs/pii/B9780128053942000027

[2] Yugandhara R. Y, “Streaming Analytics Market Trends Forecast Report 2023,” June 2023, Online, Available:
https://www.researchgate.net/publication/371699754_Streaming_Analytics_Market_Trends_Forecast_Report_
2023

[3] Vikash, et al, “Performance evaluation of real-time stream processing systems for Internet of Things
applications,” Future Generation Computer Systems, Volume 113, December 2020, Available:
https://www.sciencedirect.com/science/article/abs/pii/S0167739X20302636

[4] Pradeep Bhosale, “Memory Management in Apache Flink: Techniques for Efficient State Handling,” December
2023 IJIRMPS, Available: https://www.ijirmps.org/papers/2023/6/231999.pdf

[5] Redpanda, “Kafka Streams vs. Flink—How to choose,” Blog, Available:
https://www.redpanda.com/guides/event-stream-processing-kafka-streams-vs-flink

[6] Johannes Rank, Andreas Hein, Helmut Krcmar, “The Role of Performance in Streaming Analytics Projects: Expert
Interviews on Current Challenges and Future Research Directions,” 2023, Online, Available:
https://dl.gi.de/items/0305297a-02cc-4b48-b2be-b6677cc1c9a6

https://www.sciencedirect.com/book/9780128053942/big-data
https://www.sciencedirect.com/science/article/abs/pii/B9780128053942000027
https://www.researchgate.net/profile/Yugandhara-R-Y?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/publication/371699754_Streaming_Analytics_Market_Trends_Forecast_Report_2023
https://www.researchgate.net/publication/371699754_Streaming_Analytics_Market_Trends_Forecast_Report_2023
https://www.sciencedirect.com/journal/future-generation-computer-systems
https://www.sciencedirect.com/journal/future-generation-computer-systems/vol/113/suppl/C
https://www.sciencedirect.com/science/article/abs/pii/S0167739X20302636
https://www.ijirmps.org/papers/2023/6/231999.pdf
https://www.redpanda.com/guides/event-stream-processing-kafka-streams-vs-flink
https://dl.gi.de/items/0305297a-02cc-4b48-b2be-b6677cc1c9a6

World Journal of Advanced Research and Reviews, 2025, 26(02), 3006-3016

3016

[7] Elena Georgiou, “EVALUATING APACHE FLINK, KAFKA STREAMS, AND SPARK STREAMING FOR SCALABLE
MACHINE LEARNING WORKFLOWS,” Jan 2025, Online, Available:
https://www.researchgate.net/publication/390521709_EVALUATING_APACHE_FLINK_KAFKA_STREAMS_AND
_SPARK_STREAMING_FOR_SCALABLE_MACHINE_LEARNING_WORKFLOWS

[8] Hamid Nasiri, et al, “Evaluation of distributed stream processing frameworks for IoT applications in Smart Cities,”
June 2019, Journal Of Big Data, Available:
https://www.researchgate.net/publication/333706228_Evaluation_of_distributed_stream_processing_framew
orks_for_IoT_applications_in_Smart_Cities

https://www.researchgate.net/profile/Elena-Georgiou-9?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/publication/390521709_EVALUATING_APACHE_FLINK_KAFKA_STREAMS_AND_SPARK_STREAMING_FOR_SCALABLE_MACHINE_LEARNING_WORKFLOWS
https://www.researchgate.net/publication/390521709_EVALUATING_APACHE_FLINK_KAFKA_STREAMS_AND_SPARK_STREAMING_FOR_SCALABLE_MACHINE_LEARNING_WORKFLOWS
https://www.researchgate.net/profile/Hamid-Nasiri-5?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/publication/333706228_Evaluation_of_distributed_stream_processing_frameworks_for_IoT_applications_in_Smart_Cities
https://www.researchgate.net/publication/333706228_Evaluation_of_distributed_stream_processing_frameworks_for_IoT_applications_in_Smart_Cities

