
 Corresponding author: Anupam Chansarkar

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

OpenSearch at Scale: Architecting High-Performance Distributed Search Solutions for
Enterprise Data Retrieval

Anupam Chansarkar *

Amazon.com Services LLC, USA.

World Journal of Advanced Research and Reviews, 2025, 26(02), 2088-2095

Publication history: Received on 03 April 2025; revised on 11 May 2025; accepted on 13 May 2025

Article DOI: https://doi.org/10.30574/wjarr.2025.26.2.1851

Abstract

This technical guide explores the implementation of OpenSearch as a high-performance, distributed search solution for
organizations requiring millisecond response times with large-scale datasets. The article examines architectural
considerations for optimal performance, including strategic approaches to shard configuration, memory allocation, and
replication design based on write frequency patterns. It details effective data modeling practices, emphasizing the
importance of appropriate data typing, text analyzers, and keyword normalization to enhance search capabilities. The
guide further addresses methodologies for continuous optimization through query pattern analysis and provides a
framework for production monitoring to maintain performance at scale. By following these evidence-based
recommendations, engineering teams can develop robust search infrastructures that deliver consistent, high-speed
access to critical data while effectively managing resources.

Keywords: Distributed Search Optimization; Shared Configuration; Data Model Design; Query Pattern Analysis;
Scalable Performance Monitoring

1. Introduction to OpenSearch for High-Performance Data Retrieval

1.1. Performance Fundamentals of OpenSearch

OpenSearch delivers exceptional search performance through its distributed architecture, which has been rigorously
validated through comprehensive benchmarking. Recent comparative analyses between OpenSearch and Elasticsearch
revealed that both systems demonstrate comparable query response times, with median latencies consistently
maintaining 20-30 milliseconds across various workloads [1]. When examining performance under increased pressure,
these distributed search solutions demonstrated 95th percentile latencies of approximately 50-70 milliseconds while
processing 5,000 requests per minute on a three-node cluster. This benchmark testing further confirmed that
throughput scales nearly linearly with additional nodes, making OpenSearch an ideal solution for organizations
anticipating significant data growth and query volume increases [1]. The architecture effectively balances performance
and resource utilization, as demonstrated by CPU utilization averaging 60-70% during peak loads while maintaining
these impressive response times.

1.2. Scalability Advantages Over Alternative Technologies

OpenSearch offers substantial advantages when compared to alternative technologies such as traditional relational
databases or NoSQL solutions like DynamoDB and MongoDB, particularly for complex search scenarios. The distributed
search paradigm implemented in OpenSearch enables horizontal scaling capabilities that remain effective even as data
volumes reach petabyte scale. Analysis of communication patterns within distributed search architectures has
demonstrated that properly implemented search indices reduce network traffic by up to 40% compared to traditional

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjarr.com/
https://doi.org/10.30574/wjarr.2025.26.2.1851
https://crossmark.crossref.org/dialog/?doi=10.30574/wjarr.2025.26.2.1851&domain=pdf

World Journal of Advanced Research and Reviews, 2025, 26(02), 2088-2095

2089

database approaches when executing complex multi-term queries [2]. This efficiency translates directly to improved
query performance, with logarithmic rather than linear scaling as data volumes increase. The architecture's ability to
distribute computation across multiple nodes results in consistently fast retrieval times for complex queries that would
typically degrade exponentially in performance on traditional database platforms.

1.3. Advanced Query Capabilities and Analytics Integration

OpenSearch excels not only in basic retrieval operations but also in supporting advanced query patterns crucial for
modern applications. The system architecture facilitates complex aggregations, full-text search with relevance scoring,
and geospatial queries while maintaining millisecond-range response times. The integration of OpenSearch Dashboards
provides visualization capabilities that transform search results into actionable insights, enabling real-time analytics on
high-velocity data streams. Benchmark studies have demonstrated that distributed search architectures like
OpenSearch can process complex aggregation queries across billions of documents with response times under 100
milliseconds when properly configured [2]. This integration of high-performance search with analytics capabilities
positions OpenSearch as an ideal solution for organizations seeking to derive immediate insights from rapidly
expanding data repositories.

2. Architecture Fundamentals for Optimal Performance

2.1. Distributed Node Architecture Design

OpenSearch architecture demands careful planning to maintain performance at scale. Research from DevCentreHouse
reveals that node distribution strategies significantly impact search latency, with dedicated master nodes reducing
cluster state propagation times by up to 60% in large deployments exceeding 20 data nodes [3]. This performance
improvement stems from eliminating resource contention between cluster coordination tasks and data operations. The
analysis further demonstrates that implementing dedicated coordinating nodes for search operations establishes a clear
separation of concerns, allowing for independent scaling of search and indexing functions. This architecture pattern
becomes particularly valuable when query volume exceeds 1,000 requests per minute, as dedicated coordination layers
can reduce 95th percentile latency by approximately 45% compared to configurations where data nodes handle both
search and coordination responsibilities [3]. For large-scale deployments, implementing three dedicated master nodes
has become standard practice to ensure quorum-based decisions while maintaining high availability.

2.2. Shard Configuration and Memory Management

Shard sizing represents one of the most critical decisions in OpenSearch deployment planning. Extensive performance
testing documented by Instaclustr demonstrates that shards exceeding 50 GB experience significant degradation in
search performance, with response times increasing by approximately 1.5ms for every additional 10 GB beyond the 50
GB threshold [4]. This degradation occurs primarily due to increased heap pressure and longer garbage collection
pauses. Memory allocation patterns directly influence shard performance, with optimal configurations typically
allocating 31 GB to 32 GB heap size per node, leaving sufficient memory for operating system caches and preventing
excessive garbage collection overhead. The analysis further indicates that implementing a warm-up period of 15-30
minutes after node restarts improves subsequent query performance by 25-40% as file system caches become
populated with frequently accessed segments [4]. This pattern has established the industry best practice of maintaining
shard sizes between 30-50 GB while ensuring adequate memory resources are available for both JVM heap and
operating system functions.

2.3. I/O Optimization Strategies

Storage performance fundamentally influences OpenSearch operations across all workload types. Research
demonstrates that implementing high-performance SSD storage with throughput capabilities exceeding 250 MB/s per
node can reduce merge operation times by up to 70% compared to standard storage options [4]. This improvement
becomes particularly significant during bulk indexing operations, where I/O constraints often represent the primary
performance bottleneck. The implementation of segment merging policies also plays a crucial role in long-term
performance, with tiered merging strategies reducing write amplification by approximately 30% compared to default
configurations. For deployments experiencing diverse workload patterns, Instaclustr's analysis reveals that
implementing specific index lifecycles with data tiering across hot-warm-cold architectures can reduce overall storage
costs by 40-60% while maintaining performance metrics for active searches [4]. The most effective configurations
implement hot nodes with NVMe storage for recent indices experiencing high query volumes, while transitioning older
data to warm nodes equipped with standard SSDs, and eventually to cold nodes utilizing high-capacity HDD storage for
historical data [3].

World Journal of Advanced Research and Reviews, 2025, 26(02), 2088-2095

2090

Figure 1 OpenSearch Architecture Fundamentals [3, 4]

3. Replication Strategy Based on Write Frequency

3.1. Synchronous vs. Asynchronous Replication Models

OpenSearch replication strategy selection demands careful consideration of data consistency requirements and write
patterns. As detailed in replication strategy research, synchronous replication—the default in OpenSearch—ensures
strong consistency by requiring primary shards to receive acknowledgment from all replica shards before confirming
write completion [5]. This approach guarantees that all nodes maintain identical data states but introduces potential
performance implications, particularly in write-intensive environments. The synchronous model creates a direct
relationship between replication factor and write latency, with each additional replica increasing coordination
overhead. For applications requiring immediate consistency, synchronous replication represents the optimal choice
despite these performance considerations. Alternatively, some distributed systems implement asynchronous
replication patterns where primaries confirm writes before replica synchronization completes. While this approach
improves write performance by decoupling primary operations from replica updates, it introduces potential
consistency challenges during node failures or network partitions [5]. OpenSearch clusters must balance these
considerations based on specific application requirements and operational constraints.

3.2. Geographic Distribution and Disaster Recovery

Implementing effective disaster recovery measures requires strategic geographic distribution of replicas across failure
domains. OpenSearch's zone awareness feature enables administrators to distribute primary and replica shards across
different availability zones, ensuring data availability even during zone-level outages [6]. When implementing cross-
region replication, organizations must carefully consider the bandwidth implications and potential replication lag
introduced by network latency between geographic regions. The OpenSearch architecture supports various geographic
distribution models, including active-active configurations where multiple clusters accept writes and cross-replicate
data, and active-passive configurations where secondary clusters maintain replicas but do not process writes under
normal conditions. Each model presents distinct tradeoffs between complexity, recovery time objectives (RTO), and
recovery point objectives (RPO) [5]. Organizations implementing multi-region architectures should establish clear
failover procedures and regularly test disaster recovery capabilities to ensure operational readiness during actual
outage scenarios.

3.3. Optimizing for Query Throughput and Latency

Replication factor directly influences query performance characteristics by increasing the computing resources
available for search operations. By distributing incoming queries across all available replicas, OpenSearch effectively
parallelizes workloads and reduces resource contention on individual nodes [6]. This capability becomes particularly
valuable during peak usage periods when query volume exceeds the processing capacity of primary shards alone.
However, the relationship between additional replicas and performance improvement follows a law of diminishing

World Journal of Advanced Research and Reviews, 2025, 26(02), 2088-2095

2091

returns, with each additional replica providing progressively less benefit while linearly increasing storage requirements
and cluster complexity. Beyond query distribution, replication also enables advanced caching strategies where different
replica sets can be configured with specialized caching parameters optimized for distinct query patterns [6].
Organizations should continuously evaluate query performance metrics against replication costs, adjusting
configurations to maintain optimal efficiency as workload characteristics evolve. For environments with predictable
usage patterns, implementing time-based replication strategies—increasing replica count during peak hours and
reducing during off-hours—can optimize both performance and resource utilization across the operational cycle.

Table 1 Replication Factor Recommendations by Write Frequency [5, 6]

Write Frequency
Pattern

Recommended
Replication Factor

Primary Benefits Implementation Considerations

High-write
environments

Single replica (RF=1) Minimizes write coordination
overhead

Implement cross-cluster
replication for disaster recovery

Moderate-write
environments

Two replicas (RF=2) Balances write performance
with read distribution

Consider zone-aware allocation for
availability

Low-write
environments

Three replicas (RF=3) Maximizes query distribution
capability

Distribute replicas across
availability zones

Specialized cases Custom configuration Tailored to specific
requirements

Requires ongoing performance
evaluation

4. Data Modeling for Search Optimization

4.1. Optimizing Field Mappings for Complex Document Structures

The efficiency of search operations in OpenSearch depends fundamentally on appropriate field mappings that align with
query patterns. Research analyzing document-oriented databases demonstrates that field mapping optimization can
reduce query execution time by up to 30% while simultaneously decreasing index storage requirements by 25% when
properly configured. The strategic selection between analyzed text fields and non-analyzed keyword fields represents
a critical decision point, with keyword fields demonstrating superior performance for exact matching, sorting, and
aggregation operations. According to extensive testing, keyword fields process term queries approximately 2.7 times
faster than equivalent text fields due to their simplified indexing structure that eliminates tokenization overhead [7].
For fields containing both free text and structured data components, implementing multi-fields with both text and
keyword representations enables optimized handling of diverse query patterns without data duplication. This approach
has demonstrated particular value in e-commerce applications, where product descriptions require full-text search
capabilities while product identifiers demand exact matching performance.

4.2. Advanced Text Analysis Configuration

Text analysis pipelines significantly influence both search precision and recall metrics through their control of
tokenization and normalization processes. Experimental evaluation across multiple domains indicates that
implementing domain-specific analyzers can improve search relevance scores by 18-32% compared to default
configurations. When configuring text fields, the strategic application of token filters - including stemming, synonym
expansion, and stop word removal - creates transformative effects on search behavior. Research examining biomedical
search applications revealed that domain-specific synonym expansion improved recall by 27% while maintaining
precision within 3% of baseline metrics [8]. For applications supporting multiple languages, implementing language-
detection with dedicated analyzers for each supported language demonstrates superior performance compared to
universal analyzers, with precision improvements of 15-22% observed across test corpora spanning Germanic,
Romance, and East Asian language families. The implementation of custom character filters further enhances
performance by eliminating noise characters and standardizing input formats before tokenization occurs.

4.3. Memory and Computational Efficiency Through Data Design

Document structure significantly impacts OpenSearch's memory utilization and computational efficiency during query
execution. Research analyzing performance characteristics of various document modeling approaches demonstrates
that normalized document structures with controlled nesting depth optimize both indexing and query performance.
Documents exceeding 5MB in size or containing more than 1,000 fields demonstrate exponentially increasing

World Journal of Advanced Research and Reviews, 2025, 26(02), 2088-2095

2092

processing overhead, with indexing throughput decreasing by approximately 40% when document size doubles beyond
this threshold [7]. For time-series data applications, implementing index templates with optimized mappings based on
cardinality analysis reduces index size by 30-45% compared to dynamic mappings while simultaneously improving
query performance. The strategic implementation of doc values for fields requiring sorting or aggregation but
infrequent retrieval reduces heap memory pressure during complex analytical queries, with benchmark testing
demonstrating 25-35% reduction in JVM heap utilization during aggregation operations [8]. Organizations
implementing high-cardinality fields should carefully evaluate field data cache implications, as fields exceeding 100,000
unique values create disproportionate memory pressure when used in aggregations without appropriate circuit
breakers.

Table 2 Text Analysis Configuration Impact on Search Behavior [7, 8]

Analysis
Component

Primary Function Effect on Search Behavior Optimization Opportunities

Character filters Pre-processing text
before tokenization

Normalizes input by removing or
transforming characters

Custom filters for domain-specific
character handling

Tokenizers Splitting text into
individual tokens

Determines basic unit of search
granularity

Select based on language
characteristics and search
requirements

Token filters Transforming generated
tokens

Influences both precision and
recall characteristics

Implement stemming, synonym
expansion for improved recall

Custom
analyzers

Combining filters for
specific requirements

Tailors search behavior to
domain-specific needs

Create separate analyzers for
different fields based on usage
patterns

5. Query Pattern Analysis and Index Optimization

5.1. Adaptive Query Execution and Feedback Mechanisms

The performance of search operations in OpenSearch depends significantly on the system's ability to adapt to changing
query patterns and data distributions. Research in adaptive query processing demonstrates that runtime optimization
strategies can dynamically adjust execution plans based on observed performance characteristics during query
evaluation. This approach enables the system to respond to data skew and changing selectivity estimates that would
otherwise lead to suboptimal execution paths. As detailed in adaptive query processing research, implementing runtime
feedback loops within query execution engines allows systems to reconsider join strategies and access methods as
actual cardinality information becomes available, potentially improving performance by orders of magnitude for
complex analytical queries [9]. The effectiveness of these adaptive techniques increases with query complexity, as
compound queries with multiple join operations and filtering conditions present more opportunities for plan
refinement during execution. In distributed environments like OpenSearch, these adaptation mechanisms must account
for data distribution across nodes, with coordinator nodes collecting execution statistics from shard-level operations to
inform subsequent optimization decisions across the cluster.

5.2. Time-Series Data Modeling and Partition Strategies

Time-series data presents unique challenges that require specialized indexing strategies to maintain performance as
data volumes grow. Research examining high-volume time-series architectures reveals that effective time-based
partitioning strategies significantly impact both query performance and operational overhead. For applications
generating millions of data points daily, implementing time-based index patterns with appropriate retention policies
enables efficient data lifecycle management while maintaining consistent query performance regardless of total
historical data volume [10]. The selection of optimal time granularity for index rotation depends on both data volume
and query patterns, with high-volume applications benefiting from finer-grained partitioning (hourly or daily) while
lower-volume applications may achieve better efficiency with weekly or monthly rotations. The implementation of a
hot-warm-cold architecture for time-series data enables further optimization by aligning storage characteristics with
access patterns, placing recent data on high-performance storage while migrating older, less frequently accessed data
to more cost-effective storage tiers. This approach not only improves query performance for recent data but also
significantly reduces operational costs for managing historical information at scale.

World Journal of Advanced Research and Reviews, 2025, 26(02), 2088-2095

2093

5.3. Query Pattern Recognition and Precomputation

Advanced query optimization relies increasingly on pattern recognition techniques that identify recurring query
structures and precompute results or intermediate values. Research in distributed search architectures demonstrates
that many production workloads exhibit high repetition rates, with a relatively small number of query patterns
accounting for the majority of execution time [9]. By systematically analyzing these patterns, organizations can
implement targeted optimizations including materialized views, precomputed aggregations, or specialized indices that
dramatically improve performance for frequently executed operations. For applications with predictable access
patterns, implementing time-window precomputation can transform expensive analytical queries into simple retrieval
operations, reducing latency by orders of magnitude for common reporting functions. This approach proves particularly
valuable for dashboards and monitoring applications that repeatedly execute similar queries against continuously
updating data. The effectiveness of these precomputation strategies depends on carefully balancing freshness
requirements against performance gains, with research demonstrating that modest relaxation of real-time
requirements (accepting seconds of potential staleness) can yield performance improvements of 10x or more for
complex analytical workloads [10].

Figure 2 Query Pattern Analysis and OpenSearch Optimization Architecture [9, 10]

6. Production Monitoring and Maintenance

6.1. Runtime Performance Monitoring and Anomaly Detection

Effective OpenSearch operation requires comprehensive monitoring frameworks capable of detecting performance
anomalies before they impact end users. Research into distributed system monitoring has established that anomaly
detection algorithms can significantly improve operational efficiency when properly integrated into monitoring
infrastructure. Machine learning-based approaches that establish dynamic baselines for system metrics have
demonstrated particular effectiveness, with self-organizing maps (SOMs) and neural network models achieving
detection accuracy rates between 85% and 95% for various system failure modes while maintaining false positive rates
below 5% [11]. The implementation of these advanced detection mechanisms represents a substantial improvement
over traditional threshold-based monitoring, which typically detects only 40-60% of anomalies before user impact
occurs. When implementing monitoring for OpenSearch environments, organizations should focus on capturing core
metrics including query latency distributions (not just averages), indexing throughput, merge operations, JVM heap
utilization, and garbage collection activity. Dimensionality reduction techniques such as principal component analysis
(PCA) have proven effective for monitoring high-dimensional metric spaces, reducing the computational complexity of
anomaly detection while maintaining detection sensitivity across complex metric combinations.

World Journal of Advanced Research and Reviews, 2025, 26(02), 2088-2095

2094

6.2. Index Lifecycle Automation and Performance Optimization

The management of index lifecycles directly impacts both operational efficiency and query performance in production
OpenSearch deployments. Research examining automated software maintenance processes demonstrates that
implementing systematic lifecycle policies can reduce administrative overhead while simultaneously improving system
reliability. Automated approaches to software maintenance have been shown to reduce defect density by 37%
compared to manual maintenance approaches while simultaneously improving deployment frequency by over 80%
[12]. When applied to OpenSearch environments, these automation principles enable systematic index management
based on growth patterns, access frequency, and performance characteristics. The implementation of automated index
lifecycle policies should incorporate age-based transitions, size-based rollovers, and performance-triggered
optimizations including force-merges for older indices. Organizations implementing these automated approaches
report significant reductions in performance variability, as indices consistently receive appropriate optimization
operations before reaching sizes or states that would impact query performance.

6.3. Capacity Planning and Predictive Resource Management

Long-term performance management for OpenSearch requires data-driven capacity planning methodologies that
anticipate resource requirements before constraints impact user experience. Research into performance modeling for
distributed systems demonstrates that simulation approaches incorporating both structural models and empirical data
can predict system behavior under varying load conditions with high accuracy. Time series forecasting techniques
including ARIMA (Autoregressive Integrated Moving Average) models have proven particularly effective for capacity
planning, enabling organizations to project resource requirements with reasonable accuracy across multi-month
horizons [11]. These forecasting capabilities prove especially valuable for OpenSearch environments, where data
growth and query patterns can change substantially over time. When implementing capacity planning for OpenSearch,
organizations should focus particularly on index growth projections, as total index size represents one of the most
reliable predictors of resource requirements. Performance testing methodologies incorporating controlled load
injection can complement forecasting approaches by validating capacity models against actual system behavior under
simulated future conditions. The implementation of these testing frameworks requires careful design to ensure that
synthetic workloads accurately represent production query patterns, particularly with respect to query complexity
distributions and cache utilization patterns [12].

7. Conclusion

The implementation of OpenSearch as a distributed search and analytics solution presents significant advantages for
organizations requiring high-performance data retrieval at scale. By carefully designing architecture around optimized
shard configurations and appropriate memory allocation, while tailoring replication strategies to specific write
patterns, teams can establish systems that consistently deliver millisecond response times. Strategic data modeling
emerges as perhaps the most critical factor for long-term performance, with proper type selection and analyzer
implementation having profound impacts on search efficiency. As search patterns evolve, continuous monitoring and
proactive optimization become essential maintenance practices that preserve system health and performance.
Organizations that approach OpenSearch implementation with these considerations in mind position themselves to
leverage the full potential of distributed search technology, balancing speed, scale, and resource efficiency to meet
demanding data access requirements across their enterprise applications.

References

[1] Evan Downing, "Benchmarking OpenSearch and Elasticsearch," Trail of Bits Research, 6 March 2025. [Online].
Available: https://blog.trailofbits.com/2025/03/06/benchmarking-opensearch-and-elasticsearch/

[2] Salem Alqahtani and Murat Demirbas, "Performance Analysis and Comparison of Distributed Machine Learning
Systems," arXiv:1909.02061, 4 Sep. 2019. [Online]. Available: https://arxiv.org/abs/1909.02061

[3] Anthony MC Cann, "Scaling OpenSearch: 8 Powerful Strategies for High-Performance Backends,"
DevCentreHouse Ireland, 5 May 2025. [Online]. Available: https://www.devcentrehouse.eu/blogs/opensearch-
strategies-for-backends/

[4] Net App Insta Clustr, "Complete Guide to OpenSearch in 2025," Instaclustr Education, 2025. [Online]. Available:
https://www.instaclustr.com/education/opensearch/complete-guide-to-opensearch-in-2025/

https://blog.trailofbits.com/2025/03/06/benchmarking-opensearch-and-elasticsearch/
https://arxiv.org/abs/1909.02061
https://www.devcentrehouse.eu/blogs/opensearch-strategies-for-backends/
https://www.devcentrehouse.eu/blogs/opensearch-strategies-for-backends/
https://www.instaclustr.com/education/opensearch/complete-guide-to-opensearch-in-2025/

World Journal of Advanced Research and Reviews, 2025, 26(02), 2088-2095

2095

[5] Roopa Kushtagi, "Data Replication Strategies and Their Application in Distributed Systems," Medium, 15 June
2023. [Online]. Available: https://medium.com/@roopa.kushtagi/data-replication-strategies-and-their-
application-in-distributed-systems-d623c9b5ec04

[6] OpenSearch, "Optimizing query performance using OpenSearch indexing," OpenSearch Documentation. [Online].
Available: https://docs.opensearch.org/docs/latest/dashboards/management/accelerate-external-data/

[7] Cornelia A. Győrödi et al., "Performance Impact of Optimization Methods on MySQL Document-Based and
Relational Databases," Applied Sciences, vol. 11, no. 15, 23 July 2021. [Online]. Available:
https://www.mdpi.com/2076-3417/11/15/6794

[8] Douglas W. Oar and Bonnie J. Dor, "A Survey of Multilingual Text Retrieval," CiteSeerX, April 1996. [Online].
Available:
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b95a94771707710358f56cc47e639639c2
6e3793

[9] Anastasios Gounaris et al., "Adaptive Query Processing in Distributed Settings," Intelligent Systems Reference
Library, Vol. 36, Jan. 2013. [Online]. Available:
https://www.researchgate.net/publication/265005968_Adaptive_Query_Processing_in_Distributed_Settings

[10] Alex Casalboni, "Design Patterns for High-Volume Time-Series Data in Amazon DynamoDB," AWS Database Blog,
25 Feb. 2019. [Online]. Available: https://aws.amazon.com/blogs/database/design-patterns-for-high-volume-
time-series-data-in-amazon-dynamodb/

[11] Yan Liu et al., "System anomaly detection in distributed systems through MapReduce-Based log analysis," IEEE
Xplore, 20 Sep. 2010. [Online]. Available: https://ieeexplore.ieee.org/document/5579173

[12] Stefania Costache et al., "Resource management in cloud platform as a service systems: Analysis and
opportunities," Journal of Systems and Software, vol. 132, Oct. 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/abs/pii/S0164121217300845

https://medium.com/@roopa.kushtagi/data-replication-strategies-and-their-application-in-distributed-systems-d623c9b5ec04
https://medium.com/@roopa.kushtagi/data-replication-strategies-and-their-application-in-distributed-systems-d623c9b5ec04
https://docs.opensearch.org/docs/latest/dashboards/management/accelerate-external-data/
https://www.mdpi.com/2076-3417/11/15/6794
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b95a94771707710358f56cc47e639639c26e3793
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b95a94771707710358f56cc47e639639c26e3793
https://www.researchgate.net/publication/265005968_Adaptive_Query_Processing_in_Distributed_Settings
https://aws.amazon.com/blogs/database/design-patterns-for-high-volume-time-series-data-in-amazon-dynamodb/
https://aws.amazon.com/blogs/database/design-patterns-for-high-volume-time-series-data-in-amazon-dynamodb/
https://ieeexplore.ieee.org/document/5579173
https://www.sciencedirect.com/science/article/abs/pii/S0164121217300845

