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Abstract 

Due to its particular properties, titanium dioxide (TiO2) has been widely used in industry. In this study, the high-energy 
ball milling (HEBM) parameters, including milling time (MT), ball-to-powder weight ratio (BPWR), and milling speed 
(MS), have been optimized using the Taguchi method. 

TiO2 dislocation density (DD) was used to estimate the effect of the HEBM. The experiment was applied using the 
𝐿16(43) orthogonal array (OA). The as-received and milled powders were characterized by X-ray diffraction (XRD). The 
DD, determined by the Williamson-Hall (W-H) method in XRD patterns, varied between 0.02⋅ 10−2 − 8.26 ⋅ 10−2 
lines/nm2 depending on the HEBM conditions. The optimum milling parameter combination was determined by 
analysis of signal-to-noise (S/N) ratio. Based on the S/N ratio analysis, optimal HEBM conditions were found at MT 50h, 
MS 600rpm, BPWR 50:1. The analysis of variance (ANOVA) was used to find the significance and percentage of 
contribution of each milling parameter. Statistical analysis by S/N and ANOVA established that the MT was the most 
effective parameter, followed by MS and BPWR. The results of the parameter optimization experiments were validated 
by a confirmation test with a 90% confidence level.  
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1. Introduction

Concrete, a foundational material in modern construction, constantly undergoes innovation to meet the demands of 
sustainable infrastructure and environmental responsibility [1]. The integration of nanotechnology into concrete 
admixtures presents a promising approach to enhance its mechanical properties and functionality [2–5]. Among the great 
number of nanomaterials, titanium dioxide (TiO2) nanoparticles exhibit exceptional promise due to their high chemical stability, 
photocatalytic activity, and mechanical reinforcement capabilities [6]. Several studies have investigated the influence of TiO2 
nanoparticles on concrete properties. They found that the addition of TiO2 nanoparticles improved the concrete's compressive, 
flexural and split tensile strengths [7], enhanced its resistance to sulfate attack [8], and hindered degradation of concrete surfaces 
by organic contaminants and nitrogen oxides (𝑁𝑂𝑥) [9, 10]. 

A variety of ways have been reported to synthesize TiO2 nanoparticles, such as sol-gel synthesis [11], hydrothermal methods 
[12], chemical vapor deposition [13], and high-energy ball milling (HEBM) [14]. The conventional methods predominantly 
include multi-step procedures, demand the utilization of toxic metal–organic precursors, and require expensive equipment. 
Also, long processing times are required, which is detrimental to industrial fabrication purposes [15]. HEBM has the 
advantages of being a simple process, relatively inexpensive to produce, easily scaled up to large quantities, and 
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environmentally friendly [16]. It provides a high-energy input to the system which leads to a high degree of milling intensity, 
resulting in the formation of fine and homogeneous nanocrystalline structures [17]. The use of HEBM also allows control of the 
crystal structures, specific surface area, crystallite size, particle size, and crystal defects, all of which are crucial in determining 
the physical and chemical properties of TiO2 [18–20].  

Although this preparation route is practically very simple, the process is complex and depends on many factors that affect the 
physical and chemical properties of the milled powder: the precise dynamic conditions, temperature and nature of the milling 
tools, MS, size of balls, BPWR, milling medium, MT, etc. [21]. To find the best parameters in the HEBM process of TiO2, a 
large number of experiments are required. The Taguchi technique, one among several experimental designs, was chosen due to 
its simplicity, efficiency and systematic approach in determining the optimal parameters in a manufacturing process [14, 22, 23]. 
As a result, this method reduces the number of optimization experiments needed [16, 24]. 

Dislocations are the most important structural component affecting the mechanical properties of materials [25]. Consequently, 
it is necessary to gain an in-depth understanding of the evolution of dislocation density (DD) during the HEBM process. Such an 
understanding could be effective in developing the properties of concrete that includes nanosized TiO2 particles. To the best 
of our knowledge, there is no information about the influence of HEBM on the DD of TiO2. 

In this study, we applied the Taguchi experimental design and the signal-to-noise (S/N) ratio in HEBM experiments, which 
were performed on the 𝐿16(43) orthogonal array (OA). MS, MT and BPWR were selected as control parameters, and each was 
applied at four levels. Analysis of variance (ANOVA) was used to determine the percentage effects of the various milling 
parameters. 

2. Materials and Methods 

High-quality TiO2 powder (min. 99.9% purity, Sigma Aldrich) was utilized as starting material. The raw TiO2 particles 
were micron size and irregular in shape. The HEBM of the TiO2 powder was accomplished in a planetary ball mill (Retsch 
PM 100, Germany), with vials of 250ml volume and balls (10mm diameter) made of chromium-hardened steel. The milling was 
performed at room temperature for the different milling parameters (Table 1). 

The structural parameters and phase composition of the initial and milled powders were determined by X-ray 
diffraction (XRD) using a Panalytical Pert Pro X-ray diffractometer with 𝐶u𝐾𝛼 radiation (𝜆=0.154 nm), operating at 40 

kV and 40 mA. Data collection was performed by step scanning of the specimen over the 2𝜃 ∶ 20 − 70∘ angular range, in 
steps of 0.05∘ with 3 sec per step. The XRD line profile parameters were then fitted with Rietveld refinement, using 
PANalytical X’ Pert High Score Plus v3.0e software. The Taguchi method was used for optimization of the HEBM process 
parameters. Figure 1 depicts the process optimization through the HEBM technique. 

 

Figure 1 Diagram of DD optimization by HEBM using the Taguchi method 

2.1. Determination of structural parameters 

The average crystallite size (D) and lattice strain (𝜖) for TiO2 powder was calculated from a broadening of XRD peaks by 
the Williamson-Hall (W-H) method [26] using the following equations (Eq. 2.1, 2.2): 
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(2.2) 

where Δ𝛽 is full width at half maximum (FWHM), 𝛽𝐷 and 𝛽𝜖 are the integral breadths dependent on crystallite size and strain 

effects, respectively, k is the shape factor (∼ 0.9), 𝜆 is the wave length of X-ray (0.154 nm), Θ is the diffraction angle, and 
𝜖 is strain.  

The lattice strain (𝜖) and crystallite size (D) were derived from the slope and the y-intercept of the linear fit, respectively. 
The value of the crystallite size was used to evaluate the DD (𝛿) (Eq. 2.3) [27, 28]: 
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(2.3) 

2.2. The Taguchi method 

Genichi Taguchi developed a methodology for the application of designed experiments. He proposed that engineering 
the optimization of a process or product should be carried out in a three-step approach: system design, parameter 
design, and tolerance design. The parameter design is the key step in the Taguchi method to achieve high quality without 
increasing cost. Its objectives [29] are to optimize the settings of the process parameter values for improving performance 
characteristics, and to identify the product parameter values under the optimal process parameter values. 

In contrast, classical parameter design, as developed by Fisher [30], is complex and not easy to use. It considers all input 
parameters at each level, where experimental units take on all possible combinations of these levels. This allows the study of 
each parameter effect on the response variable: if there are 𝑘 variable each at 𝑛 levels, the design has 𝑛𝑘 runs. Therefore, an 
experiment involving a significant number of parameters involves prohibitive time and costs.  

Taguchi suggested a particular method using the orthogonal array (OA) with a minimal number of experiments that could 
give complete information on all the factors that affect the outcome. The OA is an experiment matrix organizing the number 
of experiments and the conditions of each experiment. It is generically called 𝐿𝑛, where 𝑛 represents the number of experiments 

to be performed.  

Taguchi recommended using a loss function to quantify a design’s quality, defining the loss of quality as a cost that increases 
quadratically with the deviation from the target value. Usually, the quality loss function is divided into three categories: "Nominal 
is best," "smaller is better," and "larger is better" [31]. "Nominal is best" is used if the objective is to reduce variability around a 
specific target, "Larger is better" is used if the system is optimized when the response is as large as possible, and "Smaller is 
better" is used if the system is optimized when the response is as small as possible. The value of the loss function is further 
transformed into a signal-to-noise (S/N) ratio [32], which is a logarithmic function of the response variable with a different 
trend depending on the type of response (Eq. 2.4 – 2.6). 
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"Nominal is best": 
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where 𝑛 is the number of experiments in the OA, 𝑦𝑖 is the 𝑖𝑡ℎ measured value, and 𝑦0 is the optimal nominal size.  

The S/N ratio for each level of process parameters is computed based on the S/N analysis. Regardless of the category of the 
performance characteristic, the larger S/N ratio corresponds to the better performance characteristic. Therefore, the 
optimal level of the process parameters is the level with the highest S/N ratio. 

Furthermore, ANOVA is performed to discover which process parameters are statistically significant. With the S/N and ANOVA 
analyses, the optimal combination of the process parameters can be predicted. 

Finally, a confirmation experiment is conducted to verify the optimal process parameters obtained from the parameter design. 

The Taguchi methodology includes several steps of planning, conducting, and evaluating the results of a matrix of experiments 
to determine the best levels of control factors [33]. A flowchart of the various steps of the Taguchi method is depicted in 
Figure 2. 

The aim of this work was to analyze the DD of milled TiO2 powder in relation to the HEBM parameters by applying the 
Taguchi method. Three controllable HEBM parameters (MS, BPWR, and MT) were studied. Each factor was applied at four 
levels (Table 1). The levels of the HEBM parameters were selected based on the literature research [34], [35], [22]. We 
employed a S/N ratio for the "larger is better" loss function, a statistical ANOVA to test the significance of the effects, and an 
estimation of DD at optimal conditions, followed by experimental verification. 

 

Figure 2 Flow chart of the Taguchi method 

3. Results and Discussion 

According to the steps in the Taguchi method, a series of HEBM experiments was carried out. Statistical analysis was conducted 
using Qualitek-4 software. The results are presented in the following subsections. 

3.1. Step 1. Identification of the main function 

The optimization of DD predictive capability was considered as the main function. Before proceeding, it was necessary to 
detect all the factors influencing the HEBM, identifying them as signal factors (S) and noise factors (N) [36]. Signal factors 
are the system control input parameters which can be changed, while noise factors are typically difficult or expensive to control 
and are assumed to be constant during the experiment. In this work, all the considered factors (MS, MT, and BPWR) were 
controllable signal factors; none were classified as noise factors. 
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3.2. Step 2. Identification of the objective function and type of response to be optimized 

The DD was chosen as the objective function. Of the three categories of loss function, the "larger is better" response (a 
variable to be maximized) was chosen for the DD in the analysis of the experimental results (Eq. 2.5). The S/N ratio was also 
calculated for each level of the parameters. The parameters with the highest S/N ratio were introduced as optimal levels. 

3.3. Step 3. Identification of the control parameters and their levels 

The HEBM parameters (control parameters) and their levels appear in Table 1. 

Table 1 Process Parameters and Their Levels. 

Levels Parameters 

MT, [h] MS, [rpm] BPWR 

1 5 200 10:1 

2 30 300 20:1 

3 50 400 30:1 

4 100 600 50:1 

3.4. Step 4. Selection of a suitable OA and construction of the experiment matrix 

To select an appropriate OA for experiments, the total degrees of freedom (DoF) must be computed. The DoF are defined as 
the number of comparisons between process parameters that must be made to determine which level is better (Eq. 3.1) [32]: 

1i iDoF n= −
 

(3.1) 

where 𝑛𝑖 is the number of factor levels. 

Once the required DoF are known, the next step is to select an appropriate OA to fit the specific task. Basically, the DoF for the 
OA should be greater than or equal to those for the process parameters. In this study, an 𝐿16(43) OA was used. The 
experimental layout for the three HEBM parameters using the 𝐿16(43) OA is shown in Table 2. The OA was chosen from the 
parameter design OA selector [37]. 

Table 2 The experimental layout of the 𝐿16(43) OA 

Experiment Number MT, [h] MS, [rpm] BPWR 

1 5 200 10:1 

2 5 300 20:1 

3 5 400 30:1 

4 5 600 50:1 

5 30 200 20:1 

6 30 300 10:1 

7 30 400 50:1 

8 30 600 30:1 

9 50 200 30:1 

10 50 300 50:1 

11 50 400 10:1 

12 50 600 20:1 
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13 100 200 50:1 

14 100 300 30:1 

15 100 400 20:1 

16 100 600 10:1 

3.5. Step 5. Conduction of the experiments 

All experiments were performed three times for each of sixteen trial conditions (48 experiments in total), in order to reduce 
possible biased results. The XRD patterns of all 16 milled TiO2 powders, according to the conditions in Table 2, are shown 
in Figure 3. 

  

(a) (b) 

  

(c) (d) 

Figure 3 XRD patterns of HEBM 𝑇𝑖𝑂2 powders: (a) 1–4, (b) 5–8, (c) 9–12, (d) 13–16. In each part, the XRD 
pattern of the initial material (0) is also provided 

The effect of HEBM can be clearly traced in the XRD patterns, as evidence of general and significant changes. The 
intensities of the diffraction peaks of the phases were reduced to different extents, depending on the milling conditions. 
However, since the Taguchi approach was used, it would be incorrect to ascribe the observed change to the modification 
of the given condition. Thus, a classical assessment such as decreasing crystallite size with increased milling time, as 
evidenced in [38–40], could not be applied in this case. All the XRD peaks of the milled TiO2 samples can be indexed to the 
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rutile (ICSD:34372), anatase (ICSD:76173), and Ti3O5 (ICSD:75194) phases. Additionally, the milled powder contained 
an impurity fraction of Fe (ICSD:64795) and (Ti, Fe)O (ICSD:283), which originated from the steel grinding medium. The 
position of these peaks did not change with milling.  

The Bragg diffraction peaks were broadened and reduced in intensity, which can be related to the crystallite size reduction 
and the internal strain in the milling powder. Figure 4 depicts the plot of 𝛽 cos Θ versus 4 sin Θ for the typical milled TiO2 
powders. The effective strain was calculated from the slope of the linear fit, and the crystallite size was measured by the 
reciprocal of the intercept. 

  

(a) (b) 

  

(c) (d) 

Figure 4 Williamson–Hall plots of milled 𝑇𝑖𝑂2 powders (a): sample 1, (b): sample 6, (c): sample 11, (d): sample 15 

The DD was estimated by Eq. 2.3. The average estimated crystallite size, strain and DD for all the samples are displayed 
in Table 3.  
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Table 3 The average structural parameters of milled 𝑇𝑖𝑂2 powder and S/N ratios in each experiment of 𝐿16 

Experiment Number Crystallite size, nm DD⋅10−2, lines/nm2 
Strain⋅10% S/N ratio, DB 

1 73.7 0.02 0.06 -33.98 

2 49.81 0.04 3.26 -27.96 

3 8.63 1.34 1.40 2.54 

4 6.78 2.18 0.07 6.77 

5 29.68 0.11 3.70 -19.17 

6 16.10 0.39 0.00 -8.18 

7 6.58 2.31 1.34 7.27 

8 9.46 1.12 0.84 0.98 

9 70.70 0.02 3.49 -33.98 

10 6.70 2.23 0.00 6.97 

11 3.48 8.26 0.00 18.34 

12 6.17 2.63 7.35 8.40 

13 3.87 6.68 0.00 16.50 

14 3.88 6.64 0.70 16.44 

15 8.02 1.55 0.19 5.57 

16 6.3 2.52 3.85 8.03 

The highest milling efficiency was obtained in Experiments 11, 13, 14 (Figure 5). 

 

Figure 5 DD of milled 𝑇𝑖𝑂2 powder. The numbers from 1 to 16 indicate the experiment number 

3.6. Step 6. Statistical optimization 

The results of the HEBM experiments were studied using the S/N and ANOVA analyses. Based on these analyses, optimal 
HEBM parameters for DD of milled TiO2 powder were obtained and verified. 

3.6.1. Analysis of the S/N ratio 

The experimental results for DD and the corresponding S/N ratio are shown in Table 3. The S/N ratio was computed using 
Equation 2.5. The differences between the obtained values were strongly dependent on the milling conditions. Since the 
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experiment design was orthogonal, it was possible to separate out the effect of each milling parameter at different levels 
[32]. To do this, the mean S/N ratio was determined for each parameter and level. The mean 𝑆/𝑁 ratio is the average of 
the S/N ratio for each parameter at different levels [41]. For example, the mean S/N ratio for the MT at levels 1, 2, 3 and 4 
can be calculated by averaging the S/N ratios for Experiments 1–4, 5–8, 9-12 and 13–16, respectively. The mean S/N ratio for 
each level of the other HEBM parameters can be computed in a similar manner. The results are summarized in the S/N 
response table (Table 4). 

Table 4 Response table for TiO2 DD 

Level MS MT BPWR 

1 -13.16 -17.66 -3.95 

2 -4.77 -3.18 -8.29 

3 -0.69 8.43⋆ -3.50 

4 11.63⋆ 6.05 9.38⋆ 

Delta Δ 24.79 26.01 17.67 

Rank 2 1 3 

⋆ Optimum parameter level. 

The difference between maximum and minimum 𝑆/𝑁 ratios (Δ) determines the main effect of the parameter. With 
greater (Δ) values for a parameter, the effect of the parameter on the process will correspond to a smaller variance in the 
output, which will generate better performance of the experiment [42]. From the standpoint of the “larger is better” quality 
characteristic, the MT (Δ = 26.01) had the largest effect on the 𝑇𝑖𝑂2 DD, while BPWR had the smallest effect (Δ = 17.67). 
A parameter level corresponding to the maximum average S/N ratio is identified as the optimal level for that parameter [43]. 
Based on the 𝑆/𝑁 ratio analysis, the optimal conditions for higher 𝑇𝑖𝑂2 DD were: 𝑀𝑆4 (600rpm), 𝑀𝑇3 (50h) and 𝐵𝑃𝑊 𝑅4 
(50:1) (Figure 6). 

 

Figure 6 Main effect of process parameters on 𝑆/N 

3.6.2. Analysis of variance (ANOVA) 

The purpose of the ANOVA is to investigate which of the process parameters significantly affects the performance 
characteristics. This is accomplished by separating the total variability of the S/N ratios, which is measured by the sum of 
the squared deviations from the total mean of the S/N ratio, into contributions by each of the process parameters and the 
error. First, the total sum of the squared deviations 𝑆𝑆𝑇 from the total mean of the S/N ratio 𝜂 can be calculated as: 
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where 𝑛 is the number of experiments in the OA, e.g., 𝑛 = 16; and 𝜂𝑖 is the mean S/N ratio for the 𝑖th experiment. 

The total sum of the squared deviations 𝑆𝑆𝑇 is decomposed into two sources: the sum of the squared deviations 𝑆𝑆𝑃 due 

to each process parameter, and the sum of the squared error 𝑆𝑆𝑒.  𝑆𝑆𝑃 can be calculated as: 
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(3.3) 

where 𝑝 represent one of the experiment parameters, 𝑗 is the level number of this parameter 𝑝, 𝑡 is the repetition of 
each level of the parameter 𝑝, and 𝑠𝜂𝑗 is the sum of the S/N ratio involving this parameter 𝑝 and level 𝑗. The sum of squares 

from error parameters 𝑆𝑆𝑒 is 

e T MT MS BPWRSS SS SS SS SS= − − −
 

(3.4) 

where SSMT, SSMS, SSBPWR are deviations, due to MT, MS, and BPWR, respectively. 

The total DoF can be calculated using Equation 3.1, where the DoF of the tested parameter 
1PDoF t= −

. The variance 

of the tested parameter is P P PV SS DoF=
. Then, the F-value for each design parameter is simply the ratio of the 

mean of the squared deviations to the mean of squared error P P eF V V=
. The corrected sum of squares SP can be 

calculated as: 

ˆ
P P P eS SS DoF V= −   

(3.5) 

The percentage contribution 𝜌 can be calculated as: 

ˆ
P

T

S

SS
 =

 

(3.4) 

Statistically, there is a tool called the F-test, named after Fisher [44], to determine which process parameters have a 
significant effect on the performance characteristic. In performing the F-test, the mean of the squared deviations 𝑆𝑆𝑚 
due to each process parameter needs to be calculated. The mean of the squared deviations 𝑆𝑆𝑚 is equal to the sum of the 

squared deviations 𝑆𝑆𝑑 divided by the number of DoF associated with the process parameter. Then, the F-value for each 

process parameter is simply a ratio of the mean of the squared deviations 𝑆𝑆𝑚 to the mean of the squared error 𝑆𝑆𝑒. Usually 

the larger the F-value, the greater the effect on the performance characteristic due to the change of the process 
parameter. 

The ANOVA module in Qualitek-4 software was used to analyze the impact of process parameters. A review of the “Contribution” 
column in Table 5 shows that MT contributed the highest percentage (24.88%), followed by MS (16.48%) and BPWR 
(3.95%). 
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Table 5 ANOVA table for 𝑆/𝑁 ratio 

Factor DOF Sum of 

Squares 

Variance F-Ratio Pure Sum Contribution, % 

MS 3 1284.41 428.14 2.51 772.08 16.48 

MT 3 1677.78 559.26 3.27 1165.45 24.88 

BPWR 3 697.47 232.49 1.36 185.14 3.95 

Other error 6 1024.66 170.78 - - 54.69 

Total 15 4684.32 - - - 100 

The contribution of BPWR was small, so the sum of squares for this parameter was combined with the error, 𝑆𝑆𝑒. This 

process of disregarding the contribution of a selected parameter and subsequently adjusting the contributions of the other 
factors is known as pooling. Taguchi recommended pooling factors until the error DoF is approximately half the total DoF 
of the experiment [29]. A larger DoF for the error term, as a result of pooling, increases the confidence level of the 
significant parameters. The results of this procedure are summarized in the pooled ANOVA (Table 6). 

Table 6 Pooled ANOVA table for 𝑆/𝑁 ratio 

Factor DOF Sum of 

Squares 

Variance F-Ratio Pure Sum Contribution, % 

MS 3 1284.41 428.14 2.51 772.08 16.48 

MT 3 1677.78 559.26 3.27 1165.45 24.88 

BPWR (3) (697.47) - Pooled (CL=66.03%) - 

Other error 9 1722.13 191.35 - - 58.64 

Total 15 4684.32 - - - 100 

The DoF for the error is 9, and the DoF for control parameters is 3. Based on the F - distribution Table, at the 0.25 level 
of significance (75% confidence), the value of F 0.25(3, 12) = 1.56. The computed values of variance ratios F for MT 
(3.27) and MS (2.51) were greater than the limiting value obtained from the Table. Therefore, a significant influence 
was seen of MT and MS on DD during the HEBM process. The ANOVA results closely matched the Taguchi equivalents. 

3.7. Step 7. Estimation of DD at optimum conditions 

In order to estimate the optimum DD of HEBM 𝑇𝑖𝑂2 powder for the maximum result, the significant control parameters 
with optimum levels were used. The optimum result of DD was carried out using MT at the third level, and MS at the fourth 
level. The pooled BPWR parameter was not included in the estimation. The estimated mean of the DD was calculated using 
Equation 3.7: 

( )
1

n

opt m j m

i

y y y y
=

= + −
 

(3.7) 

where 𝑦𝑚 is the total mean of the DD in accordance with Taguchi's 𝐿16 OA (Table 3), 𝑛 is the number of main milling 

parameters which significantly affected performance, and 𝑦𝑗 is the mean measured values for 𝑗𝑡ℎ milling parameters 

corresponding to the optimal parameter level. Thus, the DD at optimum conditions was found to be 0.12 line/nm2. 

In statistics, it is customary to represent the values of a statistical parameter as a range within which it is likely to fall, for a 
given level of confidence. This range is termed the confidence interval (CI) [29]. The CIs of population and confirmation 
tests were calculated according to Equations 3.8 and 3.9: 
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where 𝛼 = 0.1 presents the risk, and 𝑛2 = 9 is the error data regarding the degree of freedom in ANOVA. F(0.1;1,9) is 

examined as 2.9 [45], which according to the  F-ratio table is at 90% CI. TDoF expresses the total number of DoF in 
accordance with the significant control parameters, and the value was found to be 6. 𝑅 refers to the sample size of 
confirmation tests examining DD output, and the data utilized was 3. 𝑉𝑒 is the variance of error term (from ANOVA), and 

this value was found to be 191.35 (Table 6); 𝑛𝑒𝑓𝑓 is the effective number of replications, calculated to be 2.29 (Eq. 3.10). As 

a result, CI.CT and CI.POP were analyzed as ±0.06 and ±0.05, respectively. The predicted CIs of population and 
confirmation tests for DD were calculated via Equations 3.11 and 3.12, respectively: 

. . . .opt CT opt opt CTy C I y y C I−   +
 

(3.11) 

. . . .opt POP opt opt POPy C I y y C I−   +
 

(3.12) 

The predictive results for the optimal approach in accordance with predicted confidence intervals are tabulated in Table 
7. 

Table 7 Optimal results for predicted DD 

Combination Predictive DD, line/nm2 Estimated C.I. at 90% Confidence Level 

𝑀𝑆4𝑀𝑇3𝐵𝑃𝑊𝑅4 0.12 0.06 < 𝑦𝑜𝑝𝑡 < 0.18 (confirmation test) 

0.07 < 𝑦𝑜𝑝𝑡 < 0.17 (population) 

3.8. Step 8. Conduction of the confirmation experiment 

The final step of the Taguchi method is the confirmation experiment, which is highly recommended to verify the 
experimental predictions [45]. Confirmation experiments validated the setting factors and levels obtained in our 
previous calculations. These experiments were conducted using the optimal settings obtained for MS 4𝑡ℎ level (600rpm), 
MT 3𝜏𝑑 level (50h), and BPWR 4𝑡ℎ level (50:1).  

Three confirmation runs were conducted under the optimal conditions. The average TiO2 DD was found to be 0.13 
lines/nm2. The DD obtained through confirmation experiments were within the 90% CI range (Table 7). Therefore, the results 
obtained from the confirmation tests reflected successful optimization.  

4. Conclusion 

In this study, the Taguchi method was used to determine the effects of MT, MS and BPWR on the DD of HEBM 𝑇𝑖𝑂2 powder. 
The HEBM process was analyzed with the Taguchi 𝐿16(43) OA. The optimum levels of the control parameters for 
maximizing the DD were determined using S/N ratios. The optimal conditions for DD were observed at 𝑀𝑆4𝑀𝑇3𝐵𝑃𝑊𝑅4 
(i.e., MS = 600rpm, MT = 50h and BPWR = 50:1). According to the results of ANOVA, it was found that the MT was the 
most significant parameter for DD, with a percentage contribution of 24.88%, followed by MS (16.48%) and BPWR (3.95%). 
According to the confirmation test results, the experimentally measured DD was within the 90% CI range. These results showed 
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that the Taguchi method is a reliable methodology for the reduction of machining time and manufacturing costs in the HEBM 
of TiO2 powder. In the future, the results obtained can be used for academic research as well as for industrial 
applications. 
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