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Abstract 

In this study, we simulated and analyzed the impacts of a retention basin as a hydraulic structure for mitigating flood 
peaks at the inlet of a stormwater drainage canal using the Storage Indication Curve method for various return periods. 
The adopted methodology involved modeling the hydraulic behavior of the retention basin and its discharge 
relationship based on water levels. For initial water levels ranging from 1 to 3 meters in the basin, the effectiveness in 
reducing peak flows is evaluated by estimating attenuation rates and the temporal delay of flood peaks. The results 
showed that the performance of the retention basin performance is satisfactory for attenuating a 10-year flood, with 
attenuation rates ranging from 23% to 54% and a flood peak delay of 20 to 55 minutes. For a 100-year flood, the 
attenuation rates vary from 18% to 30%, with a peak delay ranging from 17 to 30 minutes, depending on the initial 
water level. However, for consecutive rainfall events or an initial water level in the basin exceeding 1.5 meters, the 
hydraulic performance appears limited. Finally, we highlight the limitations of solely relying on retention basins for 
urban stormwater management and emphasize the need to implement Nature-based Solutions (NbS) at the local level 
to further mitigate effectively surface runoff in urban settings.  
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1. Introduction

Regional-scale climate changes have been observed in many parts of the world and have already influenced a wide range 
of physical and biological systems (1). The African continent is particularly vulnerable to the impacts of climate change 
(2–4). The Sahel region stands out as especially susceptible, both environmentally and socially, and requires special 
attention as this area has very limited resources to cope with global changes (5–9). Over the past four decades, the West 
African Sahel has experienced significant climatic fluctuations, notably characterized by an increase in extreme events 
such as floods (10–13). Many West African cities have faced devastating flood problems with increasing levels of 
occurrence over the past few decades (14–17). Flooding has submerged entire communities, forcing tens of thousands 
of families to abandon their homes and belongings for safer locations during the rainy season (18). The Office for the 
Coordination of Humanitarian Affairs OCHA (19) reported that 2.7 million people have been affected by floods in 2020 
in West and Central African countries. Urban centres such as Abidjan (Ivory Coast), Cotonou (Benin), Dakar (Senegal), 
Lagos (Nigeria), N'Djamena (Chad), Niamey (Niger) and Ouagadougou (Burkina Faso) have suffered considerable 
damage (2,18,20,21).  
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The aggravating factors of flood-related damages are associated with intensive and poorly managed urbanization in 
West African cities (11,18,22), the lack or the aging of sanitation infrastructure (23) and the failures of urban drainage 
systems (24,25). Poor waste management practices, such as the illegal dumping of solid waste into sewer systems (23), 
urban agriculture near stormwater drainage channels, dense vegetation in drainage networks, and the increased 
frequency of extreme rainfall events, further exacerbate these issues (17,26,27). The continuous expansion of 
traditional drainage systems to mitigate flooding is deemed unsustainable if urbanization and climate change persist 
(28,29). Therefore, flood risk management is at the intersection of climate dynamics and urbanization processes 
(30,31). 

Ouagadougou, the capital of Burkina Faso, is grappling with an excessive urban expansion due to a high rate of urban 
growth, driven by population increase, urban migration, and low-density urban development. From an area of 6,860 
hectares in 1980, the city now covers 52,000 hectares, representing an eight-fold increase in less than 40 years (32). 
This expansion has led to the creation of new residential areas, commonly referred to as peripheral neighbourhoods, 
often located in high-risk zones (e.g., floodplains, marshlands), obstructing natural water flow paths and resulting in a 
reduction of permeable surfaces. These neighbourhoods house nearly 60% of the urban population, primarily 
composed of economically and socially vulnerable groups (16,27). Simultaneously, Ouagadougou stormwater drainage 
networks have not kept pace with urbanization, and existing structures are inadequately maintained (11,27). Moreover, 
the attitude of some residents, who treat these drainage systems as household waste dumps (23), leads to 
malfunctioning gutters, hindering water flow during the rainy season. Consequently, the performance of existing 
structures falls short of expectations due to their inefficiency or incapacity. Added to this are the intense rainfall events, 
whose frequency and intensity are exacerbated by climate change, amplifying the flood phenomena in major African 
cities (2,4,33). As a result, flood risks are increasing, and the capacity of drainage networks is becoming inadequate. 
Floods events are becoming more frequent during the rainy season, causing material damage and sometimes loss of life. 
Notable examples include the floods in Ouagadougou on September 1, 2009; July 24, 2012; June 24, 2015; September 5, 
2020; and August 5, 2022 (11,16,17,27,33,34). These urban floods are a major concern for policymakers, and require a 
more detailed understanding of these hydrological hazards to effectively manage current and future risks (11,33). 

In response to these recurring flood problems, measures for better prevention, management, and risk mitigation are 
often implemented by municipal authorities, such as the construction of retention basins (35). These hydraulic 
structures aim to attenuate floods by temporarily storing water volumes to reduce peak flows (36). Several such 
structures exist in Ouagadougou, including one of the largest, located in the Kouritenga neighbourhood of Sector 29. 
This retention basin has a storage capacity of 195,000 m³. However, no prior study assessed the retention basin 
performance under extreme rainfall events, therefore raising questions about the limitations of existing infrastructure 
and the need to inform urban planning and current flood risk management practices, especially on practical solutions 
to enhance resilience in urban settings (16). 

This study aims to analyse the effectiveness of these retention basins to mitigate surface runoff and subsequent flooding, 
as part of urban stormwater management measures. The study uses hydrological and hydraulic modelling to analyse 
the performance of retention basins in the urban environment of Ouagadougou, considering exceptional rainfall events, 
of return periods of 10, 50 and 100 years. This study therefore aims to provide critical insights into the effectiveness of 
retention basins in mitigating urban flood risks, particularly in the context of rapidly urbanizing and climate-vulnerable 
regions like Ouagadougou, Burkina Faso.  

2. Material and methods 

2.1. Study area description 

This study is conducted in the city of Ouagadougou, focusing on the stormwater retention basin located upstream of the 
Mogho Naaba canal (12°19'24.02"N, 1°32'21.00"W) (Figure 1). The retention basin drains an upstream area of 354.2 
hectares with an average longitudinal slope of 1%. The capital city Ouagadougou, located in central Burkina Faso, is 
characterized by a Sudano-Sahelian climate and low-permeability ferruginous soils. The climate features a unimodal 
rainfall pattern with a rainy season from June to October and a dry season from November to May (37,38). The annual 
precipitation ranges from 588 to 1003 mm, with an interannual average of approximately 783.2 mm over the period 
1991–2020 (38). The intensity of some rainfall events, particularly thunderstorms, can reach 110 to 160 mm/h at 5 
minutes and 90 mm/h at 30 minutes (39).  

Stormwater drainage is managed through primary, secondary, and tertiary pipeline networks. However, this system 
has demonstrated limitations in both construction and operation. The urban land register of the municipality is divided 
into two categories: Developed Zones (DZ) and Undeveloped Zones (UZ). DZ are areas that have undergone formal 
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subdivision and have access to all city services, while UZ are informal settlements. The population of the municipality 
has significantly increased between 1996 and 2012, doubling from 750,398 inhabitants in 1996 to 1,475,223 in 2006. 
By 2019, the population was estimated at 2,415,266 inhabitants (32).  

Numerous physical and natural factors contribute to the occurrence of floods in Ouagadougou, including soil 
characteristics, topography, hydrography, and rainfall patterns (11,34,40). The hydrographic network is marked by the 
presence of three artificial reservoirs (Dams 1, 2, and 3). The terrain is flat, with slopes ranging between 0.5 and 1% 
(16). As a result, water drainage during the rainy season is challenging due to the low slopes and the encrusted, low-
permeability nature of the soils.  

 

Figure 1 Study area location 

2.2. Study area description 

This study relies on maximum daily annual rainfall events recorded at the Ouagadougou synoptic station, for the period 
1991-2020 (i.e., 30 years). The standard Gumbel distribution (41) is fitted to the dataset to estimate extreme rainfall 
events of different return periods. The Gumbel distribution is advantageous due to its widespread use in engineering 
applications in assessing the reliability of hydraulic infrastructure. The return period of an event is defined as the 
inverse of the annual exceedance probability of that event (42). The cumulative distribution function of the Gumbel 
distribution is represented by Equation 1 

𝐹(𝑥; 𝑥0; 𝑠) = exp (− exp (
𝑥 − 𝑥0
𝑠

)) (1) 

where 𝑥0 is the location parameter and 𝑠 is the scale factor, both of which are parameters of the distribution. In this 
study, the Gumbel distribution is applied using the HyfranPlus software (43) while the distribution parameters are 
estimated using the moments method (44). 

2.3. Modelling retention basin 

The retention basin cross-section is presented in Figure 2 and has a full capacity of 195,000 m³. It is 360 meters long 
and has a trapezoidal shape with an average bottom width of 145 meters and a maximum depth of 3.60 meters. At its 
downstream end lies a rectangular culvert (4.00 x 4.00 x 2.00 meters) leading into a trapezoidal channel that is 10 
meters wide, 1.30 meters high, with side slopes of 1.5. The full-flow discharge capacity of the channel, 𝑄2𝑚𝑎𝑥 , is 
estimated at 70 m³ s-1. To enable gravity drainage of the basin, the channel downstream bottom is lowered by 0.20 
meters. To optimize basin filling and prevent the premature drainage of initial water inflows, a 2-meter-high and 32-
meter-long spillway surrounds the culvert. Three rectangular openings (3.00 x 1.00 x 0.80 meters) act as outlet orifices, 
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allowing water to drain before it overflows the spillway. The basin's drainage behaviour is governed by the relationships 
outlined in Equation 2. 

{
 
 
 

 
 
 

𝐼𝑓 ℎ𝑖 ≤ ℎ1  ⇒   𝑄𝑖 = 𝑁 × 𝐾𝑠 × √𝑆 
(𝑏 ×  ℎ𝑖)

5
3

(𝑏 + 2 × ℎ𝑖)
2
3

                                        

𝐼𝑓 0.8 <  ℎ𝑖  ≤  ℎ2     ⇒   𝑄𝑖 = 𝑁 × 𝐶 ×  (𝑏 ×  ℎ1)  × √2 𝑔  ×  (ℎ𝑖 − 
ℎ1
2
)

1
2

𝐼𝑓 ℎ𝑖  ≥ 2.0   ⇒      𝑄𝑖 = 𝑄2𝑚𝑎𝑥 + 𝜇 × 𝑙𝐷  ×  √2 𝑔  × (ℎ𝑖 − ℎ2)
3
2             

 

 

 

(2) 

 

 

where 𝑁 is the number of rectangular openings, 𝑏 = 1.0 m is the width of an opening, ℎ1 = 0.80 m is the height of an 
opening, 𝐾𝑆 = 65 m1/3 s-1 is the Strickler roughness coefficient, 𝑆 = 4.4 × 10⁻³ is the basin slope, 𝐶 = 0.62 is the discharge 
coefficient of an orifice, ℎ2 = 2.0 m is the height of the spillway, 𝜇 = 0.42 is the discharge coefficient of the spillway, 𝑙𝐷 = 
32 m is the spillway length and 𝑔 = 9.81 m s-2 is the gravitational constant due to acceleration. 

The water volume in the retention basin is estimated by considering its trapezoidal shape and its geometric dimensions 
using the relationships described in Equation 3. 

{
 
 

 
 
𝐼𝑓 ℎ𝑖 ≤ 𝐻1  ⇒  𝑆𝑖 = ℎ𝑖  × (𝑏1 +𝑚1 × ℎ𝑖)                                     

                                     
𝐼𝑓 ℎ𝑖 > 𝐻1  ⇒  𝑆𝑖 = 𝑆𝑖(𝐻1) + (ℎ𝑖 − 𝐻1)(𝑏2 +𝑚2 × (ℎ𝑖 −𝐻1))

 
𝑉𝑖 = 𝑆𝑖 × 𝐿                                                                                                    

 

 

(3) 

 

where 𝑏1 and 𝐻1 are the average width and maximum height of the bottom section of the basin, respectively, 𝑏2 and 𝐻2 
are the average width and maximum height of the upper section, respectively, 𝑚1 and 𝑚2 are the side slopes of the two 
cross-sections, respectively. 

 

Figure 2 Cross-sectional view of the retention basin in this study 

2.4. Coupled hydrological and hydraulic simulation of the retention basin 

2.4.1. Definition of a project rainfall shape 

The observation data scarcity highly prevalent in Sahel countries, especially Burkina Faso, is challenging of hydrological 
applications (45,46). In this study, due to the lack of hourly rainfall observations for a typical 10-year rainfall event, we 
developed a symmetrical double-triangle hyetograph based on Chocat (47). This hyetograph consists of two triangular 
segments representing an intense rainfall period, respectively preceded and followed by periods of lighter rainfall. This 
structure is inspired by empirical observations that rain events causing failures in drainage systems typically feature a 
short duration of intense rainfall, preceded and followed by moderate rainfall (16). This configuration contributes to 
saturating the storage capacity of the drainage system before the peak rainfall occurs. This typical hyetograph is 
illustrated in Figure 3. 
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Figure 3 Symmetrical double-triangle hyetograph used in this study. Adapted from Chocat (47) 

The double-triangle project rainfall is characterized by the following parameters: 𝑡1 (in minutes, min) is the time at the 
beginning of the intense period, 𝑡2 (min) is the time at the peak intensity, 𝑡3 (min) is the ending time of the rainfall event, 
𝑖1 (mm hr-1) is the rainfall intensity at the beginning of the intense period and 𝑖2 (mm hr-1) is the maximum rainfall 
intensity. 

The rainfall intensities 𝑖1 and 𝑖2 are given by Equation 4. 

{
 

 𝑖1 = 𝑎 2𝑏+1 (0.25 𝐾)𝑏  
1 − 0.1𝑏+1

0.9 ×  0.1𝑏

𝑖2 = 𝑎 2
𝑏+1 (0.25 𝐾)𝑏  

0.1𝑏 −  1

0.9 ×  0.1𝑏

 

 

(4) 

 

where 𝑎  and 𝑏  are the Montana coefficients for a 10-year return period in the city of Ouagadougou (11,16). The 
characteristic times of the hyetograph are estimated using Equation 5. 

𝑡1 = 2.25𝐾 ;  𝑡2 = 2.5𝐾 ;  𝑡3 = 5𝐾 (5) 

with 𝐾 being the response time or lag-time, representing the temporal delay between the centroids of the rainfall and 
the resulting hydrograph at the watershed outlet. The value of 𝐾 is estimated using the corrected empirical formula by 
(48), which is commonly applied in West Africa, as given in Equation 6. 

𝐾 = 3.55 ×  𝐴0.27 × (1 + 𝐼𝑀𝑃)−1.9  ×  𝑆−0.36  ×  𝑇𝑝
0.21  × 𝐿0.15 × 𝐻𝑝

−0.07 (6) 

where 𝐴 (ha) is the watershed area, 𝑆 (%) is the average slope of the watershed, IMP refers to the soil imperviousness 
coefficient, 𝑇𝑝 (min) denotes the duration of the intense rainfall period, 𝐿 (m) is the length of the main drain channel 
and 𝐻𝑝 (mm) stands for the amount of rainfall fell during 𝑇𝑝. 

2.4.2. Inflow hydrograph 

Using the previously constructed hyetograph, the Bouvier model (49) is first applied as a production function to derive 
the net rainfall hyetogram available for runoff. This model includes three parameters: initial losses on permeable 
surfaces (STO = 8.5 mm), runoff on impermeable surfaces, which is an increasing function of the watershed 
imperviousness rate (IMP = 55%) and the runoff coefficient for permeable surfaces (C = 40%), which depends on the 
soil type. After obtaining the net rainfall hyetogram, a linear reservoir model, commonly used in urban hydrology, is 
employed to generate the hydrograph at the inlet of the retention basin. This model has a single lag-time parameter, 𝐾 
(Equation 6). A time step of 1 minute (Δt = 1 min) is selected, allowing for a reasonably accurate estimation of the 
instantaneous flow rates. The operating principle is illustrated in Figure 4. 
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Figure 4 Functioning principle of a linear reservoir model 

The variation of the stored volume over time can be expressed as in Equation 7: 

𝑑𝑉(𝑡)

𝑑𝑡
= 𝑄𝑒(𝑡) − 𝑄𝑠(𝑡) (7) 

We introduced Equation 8 for the variation of the stored volume, which depends on the inflow rate 𝑄𝑒(𝑡)  and the 
outflow rate 𝑄𝑠(𝑡): 

𝑉(𝑡) = 𝐾[𝛼 × 𝑄𝑒(𝑡) + (1 − 𝛼) × 𝑄𝑠(𝑡)] (8) 

where 𝐾 and 𝛼 are parameters obtained through calibration. Equation 8 now yields the differential Equation 9: 

𝐾𝛼
𝑑𝑄𝑒(𝑡)

𝑑𝑡
+ 𝐾 (1 − 𝛼)

𝑑𝑄𝑠(𝑡)

𝑑𝑡
= 𝑄𝑒(𝑡) − 𝑄𝑠(𝑡) (9) 

The resolution of this differential equation through Euler’s explicit scheme yield the analytical solution given in 
Equation 10: 

𝑄𝑠(𝑡 + 𝛥𝑡) = 𝐶1 × 𝑄𝑒(𝑡) + 𝐶2 × 𝑄𝑒(𝑡 + 𝛥𝑡) + 𝐶3 × 𝑄𝑠(𝑡) (10) 

where t is the integration timestep and 𝐶𝑖  coefficients are given by Equation 11: 

{
 
 

 
 𝐶1 =

𝛼

1 − 𝛼
𝑒
−

𝛥𝑡
𝐾(1−𝛼)

𝐶2 = 1 −
1

1 − 𝛼
𝑒
−

𝛥𝑡
𝐾(1−𝛼)

𝐶3 = 𝑒
−

𝛥𝑡
𝐾(1−𝛼)

 (11) 

For a linear reservoir model, the following 𝐶𝑖  values given in Equation 12 are obtained: 

{

𝐶1 = 0

𝐶2 = 1 − 𝑒
−
𝛥𝑡
𝐾

𝐶3 = 𝑒
−
𝛥𝑡
𝐾

 (12) 

2.4.3. Flood Attenuation in the Retention Basin: Storage Indication Curve method 

The Storage Indication Curve method (50) is generally recommended for flood attenuation in reservoirs (ref et al.) due 
to their nonlinear behaviour, as opposed to the Muskingum method (51). This calculation procedure allows for the 
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determination of the outflow hydrograph of a reservoir given the inflow hydrograph and the reservoir's drainage 
characteristics. It relies on the discretized form of the continuity equation: the change in storage 𝑆 between two time 
points 𝑡 = 𝑗 and 𝑡 = 𝑗 + 1 can be expressed by the relation where 𝑂 is the outflow rate, 𝐼 is the inflow rate, and Δ𝑡 is the 
time step. The continuity equation is given by Equation 13: 

1

2
 (𝐼𝑗 + 𝐼𝑗+1) −

1

2
 (𝑂𝑗 + 𝑂𝑗+1) =

𝑆𝑗+1 − 𝑆𝑗

𝛥𝑡
 (13) 

Re-arranging Equation (13) on both sides yields Equation 14: 

(𝐼𝑗 + 𝐼𝑗+1) + (
2 𝑆𝑗

𝛥𝑡
− 𝑂𝑗) = (

2 𝑆𝑗+1

𝛥𝑡
+ 𝑂𝑗+1) (14) 

From a curve (
2 𝑆

Δ𝑡
+ 𝑂) defined as a function of 𝑂, obtained from the height-volume relationship of the retention basin, 

we calculate 𝑂𝑗+1 . Then we further evaluate (
2 𝑆𝑗+1

𝛥𝑡
− 𝑂𝑗+1)  by computing (

2 𝑆𝑗+1

𝛥𝑡
+ 𝑂𝑗+1) −  2 𝑂𝑗+1 . Finally, the 

computed value of (
2 𝑆𝑗+1

𝛥𝑡
− 𝑂𝑗+1) becomes equal to (

2 𝑆𝑗

𝛥𝑡
− 𝑂𝑗) for the next step. 

3. Results 

3.1. Rainfall events description 

Figure 5 illustrates the key characteristics of annual and daily maximum rainfall over the period 1991-2020. During this 
observation period, the averages for annual and daily maximum precipitation are 783.2 ± 118.1 mm and 70.9 ± 21.3 
mm, respectively. For annual precipitation, the distribution appears to be left-skewed, with a median not centered 
within the box and higher than the mean. Conversely, for daily maximum precipitation, the median is lower than the 
mean, and the distribution is skewed towards higher daily maximum precipitation values. While annual precipitation 
totals seem to be decreasing, the trend for daily maximum precipitation reveals an opposite increasing trend pattern.  

 

Figure 5 Box plot distributions of annual rainfall (a) and annual daily maximum rainfall (b) in Ouagadougou over the 
period of 1991-2020 

3.2. Extreme value analysis 

Several hypothesis tests of independence, homogeneity and stationarity are applied to the annual daily maximum 
precipitation data from the Ouagadougou synoptic station over the period 1991-2020. Table 1 shows the results of these 
hypothesis tests, all applied at 𝛼  = 5% significance level. These results indicate that the timeseries of daily annual 
maximum rainfall values can be considered independent, homogeneous and stationary values, which makes it eligible 
to assumptions required for frequency analysis to derive extreme values for further analyses. 
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Table 1 Statistical tests applied to the daily annual maximum rainfall over the period 1991-2020 at Ouagadougou 
station. 

Hypothesis test Test statistic p-value 

Wald-Wolfowitz (independence test) 0.328 0.743 

Wilcoxon (homogeneity test) 1.590 0.111 

Von Neumann (homogeneity test) 1.848 0.336 

Mann-Kendall (stationarity test) 1.670 0.096 

The significance level applied to all the test is 𝛼 = 5%. 

The fitting of the standard Gumbel distribution to the annual daily maximum precipitation is shown in Figure 6. The 
visual inspection indicates a successful fit, as all observations fall within the 95% confidence band. Table 2 shows the 
extreme daily rainfall values derived from the fitting of the Gumbel distribution for various return periods. 

 

Figure 6 Visual assessment of the fitting of the standard Gumbel distribution to the daily annual maximum rainfall 
data over the period 1991-2020 at Ouagadougou station 

Table 2 Extreme rainfall values derived from Gumbel standard distribution 

Return period 
T [years] 

Non-Exceedance 
probability 

Extreme 
value [mm] 

Standard 
deviation [mm] 

Confidence interval 
[mm] 

10 0.90 98.6 8.3  82.4 – 115.0 

20 0.95 111.0 10.4  90.1 – 131.0 

50 0.98 126.0 13.3  99.9 – 152.0 

100 0.99 138.0 15.5  107.0 – 168.0 

3.3. Inflow hydrograph 

Figure 7 shows the double triangle hyetograph developed for a 10-year design rainfall event superimposed with the 
hydrograph at the inlet of the retention basin. The characteristics of the upstream watershed (area, average slope, 
hydraulic length, and imperviousness rate) combined with those of the design rainfall event allowed the estimation of 
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a lag-time 𝐾 = 36 min. The hyetograph consists of an intense rainfall period lasting 18 min with a maximum intensity of 
248.7 mm hr-1, flanked by two periods of light rainfall lasting around 81 min with a maximum intensity of 39.1 mm hr-
1. The rainfall depth during the intense phase is 44 mm, and the total depth of the 10-year rainfall is 96.0 mm. This 10-
year rainfall value, calculated using Montana coefficients, appears close to that obtained from the fitting of the standard 
Gumbel distribution, which is 98.6 mm. 

 

Figure 7 Design inlet hyetograph and hydrograph for a 10-year rainfall event 

It is observed that the peak of the rainfall hyetograph occurs approximately 90 min after the onset of rainfall, while the 
peak of the hydrograph appears at 99 min, i.e. a delay of 9 min. Similarly, the centroids of the hyetograph and 
hydrograph are approximately at 90 min and 122 min, respectively, indicating that the response time is roughly 32 min. 
This value closely aligns with that obtained from the empirical estimation (48). 

3.4. Flood routing in the retention basin 

The hydraulic behaviour of the retention basin is simulated using three types of hydrographs corresponding to rainfall 
events with return periods of 10, 50 and 100 years, to account for various and increasing associated risks and provide 
considerations for adapted safety margins. Also, to account for conditions where successive rainfall events occur, the 
retention basin operation was simulated under various initial water levels, including 0 m, 1 m, 2 m and 3 m (Figure 8). 

The simulations show that the retention basin effectively mitigates peak flows, thereby protecting downstream 
conditions. The different panels in Figure 8 show the effectiveness of flood mitigation by the retention basin. The peak 
inflow rates of the hydrograph are 49.2 m³ s-1, 78.7 m³ s-1, and 98.3 m³ s-1 for the 10-, 50- and 100-year return periods, 
respectively.  

It is noteworthy that only the peak inflow rate of the 10-year hydrograph is below the full-bank capacity of the 
downstream channel. Additionally, for an initially empty retention basin, the attenuated hydrograph peaks are 22.6 m³ 
s-1, 50.3 m³ s-1 and 68.8 m³ s-1 for the 10-, 50- and 100-year return periods, respectively. Moreover, the peak outflow 
rate of the 100-year flood is lower than the peak inflow rate of the 50-year flood at the entrance of the basin. 
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Figure 8 Inflow and laminated hydrograph for various return periods (10-year design rainfall in the first column, 50-
year rainfall in the second/middle column and 100-year rainfall in the third/right column). The first row (a0, b0 and 
c0 panels) shows the hydrographs for an initial water level of 0 m in the retention basin. The second row (a1, b1 and 
c1 panels) shows the hydrographs for an initial water level of 1 m in the retention basin. The third row (a2, b2 and c2 
panels) shows the hydrographs for an initial water level of 2 m in the retention basin. The fourth row (a3, b3 and c3 

panels) shows the hydrographs for an initial water level of 3 m in the retention basin 

When the retention basin is initially empty, the time lag between the peaks of the hydrographs is 55, 35, and 30 minutes 
for return periods of 10, 50, and 100 years, respectively. The duration of this lag decreases as the initial water level 
increases. Additionally, the runoff volume during the 10-year flood is 232,65 m³, exceeding the maximum capacity of 
the retention basin. Furthermore, the hydrographs are attenuated to varying degrees depending on the initial water 
level in the retention basin.  

Figure 9 shows the evolution of the attenuation rate of the inflow hydrograph as a function of the initial water level in 
the retention basin for different return periods. The attenuation rate of a hydrograph varies from 18% to 54%. For a 
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10-year hydrograph, the attenuation rate ranges from 23% to 54% for an initial water level from 0 to three meters. This 
rate varies from 18% to 30% for a 100-year hydrograph. When the initial water level in the retention basin is 1.5 m, the 
attenuation rate for a 10-year flood is the same as that for a 50-year flood with an initially empty basin. Additionally, for 
initial water levels ≥ 2 m, the attenuation rate seems to stabilize at 18% for both the 50-year and 100-year hydrographs. 
It can therefore be partially concluded that the performance of the retention basin appears to be satisfactory for 
attenuating a 10-year flood, even with initial water levels of 1.5 m or less. However, when successive rainfall events 
occur, the hydraulic performance of the retention basin appears to be limited. 

 

Figure 9 Evolution of the flood hydrograph attenuation rate as a function of the initial water level in the retention 
basin and the return period 

4. Discussion 

This study analyzed the effectiveness of a water retention basins to mitigate surface runoff and subsequent flooding in 
the urban environment of Ouagadougou (capital city of Burkina Faso). The study uses hydrological and hydraulic 
modelling to analyse the performance and the flood hydrograph attenuation performance for various conditions and 
increasing return periods of design rainfall events. The findings show that the studied retention basin is effective in 
managing stormwater generated by rainfall events with a return period below or equal to 10 years. Beyond this 
threshold, or when successive storms occur, the effectiveness of the retention basin remains marginal. The peak 
attenuation rates of the hydrographs vary from 18% to 54% for different return periods depending on the initial level. 
These values are higher than those obtained by Acheampong et al. (52) in the Odaw River basin in Ghana. Also, Emerson 
et al. (53), in evaluating the effectiveness of an existing stormwater retention basin system operating at the watershed 
scale, showed that retention basins reduce peak flows at the watershed scale by only 3 to 5%. 

Although the usefulness of retention basins is no longer to be demonstrated, their disadvantages are that they constitute 
solutions to a single problem rather than multiple or cascading problems. For example, retention basins address 
flooding issues but ignore water quality, wildlife, recreation or aesthetics issues. Moreover, their significant land 
footprint, associated health risks and drowning risks further limit their development. It has been largely observed that 
such retention basins are generally used as open air dumpings by local populations during the dry season, which further 
severely limits their flood attenuation capacity and their functioning for the next wet season (23,54). With the lack of 
or irregular maintenance, these structures are often silted up by settling sludge, further promoting the development of 
invasive plant species with the corollary of disrupting proper functioning and reduction of their hydraulic performance. 

In the recent years, urban water management have been promoting green stormwater infrastructure and other Nature-
based Solutions (NbS) such as wetlands, green roofs, permeable pavements, gardens, and urban green spaces (55,56) 
to reduce flooding, increase shallow surface water reserves, promote groundwater recharge and improve overall water 
quality (31). Also, the local-scale development of low-infrastructure development facilities such as trenches, gardens or 
permeable pavements has been used worldwide as a complement to relieve pressure on urban drainage systems by 
regulating surface runoff at the source (57). 
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To enhance the performance of retention basins for higher return periods to allow for containment of future risks, 
several strategies can be implemented. Increasing the basin size is crucial, as larger dimensions can accommodate larger 
storm events. Multi-cell designs can improve sedimentation and pollutant removal, with each cell serving a specific 
function. Extended detention features allow for prolonged water retention, enhancing sedimentation and pollutant 
removal efficiency, while also improving control of peak flows during significant storm events. Also, designing a 
meandering flow path can increase the residence time of water within the basin, promoting sedimentation and reducing 
peak flow rates. Adding features such as aquatic benches can further enhance pollutant removal efficiency by providing 
additional surface area for sedimentation and biological treatment processes (55). 

The study also outlines that operational improvements are also essential. Real-time control systems that respond to 
current rainfall data can optimize the operation of retention basins, adjusting outlet flows based on conditions to 
improve flood management and pollutant removal efficiency. Regular maintenance, including sediment removal, 
vegetation management, and inspection of structural components, is crucial for maintaining optimal performance. 
Community engagement and education can lead to better stewardship and awareness of the importance of retention 
basins in urban stormwater management, addressing issues related to solid waste and pollution entering the basins 
(52,58). 

The implementation of these structural enhancements and operational improvements will be key to increase the 
performance of retention basins, enabling them to better handle higher return periods and contribute effectively to 
urban stormwater management. These strategies not only enhance hydraulic performance but also improve water 
quality and ecological benefits, making retention basins a more effective solution for urban environments. 

5. Conclusion 

This study uses a coupled hydrological and hydraulic modeling chain to evaluate the effectiveness of retention basin for 
urban flood prevention and management in the urban city of Ouagadougou (Burkina Faso). The covers the definition of 
a design rainfall event, the transformation of a rainfall hyetograph into a flood hydrograph through empirical production 
and transfer functions. Three return periods (10-, 50- and 100-year) for design rainfall events and various initial water 
level conditions (0 m, 1 m, 2 m and 3 m) in the retention basin were considered to assess the hydraulic performance 
and flood attenuation rate capabilities of the retention basin. The study showed that the retention basin significantly 
mitigates flood inlet hydrographs by reducing the flood peak, with a time lag of 30 to 55 minutes in peak discharge 
depending on the return period of the rainfall event. For a 10-year design rainfall, the peak attenuation rate of the 
hydrographs varies from 23% to 54% for initial water level between 0-3 m. This rate varies from 18% to 30% for a 100-
year hydrograph under the same initial water level conditions. The study concludes that although retention basins are 
widely used worldwide for urban flood prevention and management, they appear limited in terms of ability to handle 
increasing incoming runoff in the case of higher rainfall events, which are becoming more common due to climate 
change effects. Moreover, their large footprint, and associated risks limit their development, raising the need to combine 
retention basins with green infrastructure and adapt their sizing approaches.  
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