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Abstract 

Artificial Intelligence (AI) has brought a transformative shift to seismic engineering during past decade, enabling 
engineers to address complex challenges with unprecedented precision and efficiency. By leveraging machine learning 
(ML) and deep learning (DL) technologies, researchers are redefining seismic analysis, structural response prediction,
and damage assessment. AI-driven methods such as artificial neural networks (ANNs) and convolutional neural
networks (CNNs) have proven highly effective in analyzing seismic data and predicting structural performance during
earthquakes. These tools process vast datasets collected from global seismic networks, facilitating real-time monitoring
and more accurate damage assessments. They predict structural responses with remarkable precision, optimize designs
for resilience, and better prepare for natural forces Furthermore, advancements like physics-informed neural networks
(PiNNs) integrate engineering principles with AI, providing models that are both reliable and interpretable. This paper
reviews the advancements of AI application in earthquake engineering during the past decade (Open Access Articles), current
challenges and future directions.

Keywords: Artificial Intelligence (AI); Machine Learning (ML); Structural Engineering; Seismic Engineering; AI 
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1. Introduction

Incorporating artificial intelligence (AI) and machine learning (ML) in structural engineering has opened new avenues 
for optimizing materials, design, and maintenance processes. Within this domain, advanced computational techniques 
are being employed to address complex challenges such as material property predictions, structural health monitoring, 
and sustainable construction. For example, Ben Seghier et al. [1] utilized hybrid artificial neural networks (ANNs) and 
genetic expression programming (GEP) to predict the bond strength of corroded steel reinforcement with high accuracy 
(96%) based on 218 data points. Similarly, Gorphade et al. [2] applied a combination of genetic algorithms (GA) and 
ANN to predict the workability and strength of high-performance concrete using 324 data points. In another study, 
Naseri et al. [3] explored the use of various algorithms, including water cycle, soccer league competition, GA, ANN, and 
support vector machines (SVM), to optimize concrete mixtures for compressive strength and sustainability metrics such 
as CO2 emissions and resource efficiency. 

Artificial intelligence (AI) refers to computational methods designed to replicate human cognitive functions such as 
reasoning, decision-making, classification, and interpretation (Ertel, 2017  [11]; Neapolitan and Jiang, 2018[12]; Salehi 
and Burgueño [13], 2018; Shehab et al., 2020  [14]). This interdisciplinary field draws from mathematics, computer 
science, biology, neurology, and engineering, providing solutions to complex problems that traditional methods often 
cannot address (Nti et al., 2021[15]). Unlike conventional software, AI excels in processing incomplete or uncertain 
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data, allowing it to infer patterns and make predictions. Consequently, AI is now widely applied in domains such as 
education, healthcare, transportation, and structural engineering (Shehab et al., 2020[014]; Zhang et al., 2021[16]). 

Supervised learning techniques, a subset of ML, are widely utilized for predictive tasks in structural engineering. These 
methods rely on labeled data to train models for regression (continuous variable prediction) or classification 
(categorical variable prediction). On the other hand, unsupervised learning methods, which do not require labeled 
datasets, have been used to identify patterns and clusters in structural data. Algorithms such as k-means clustering, 
association rules, auto-encoders, and principal component analysis (PCA) are frequently employed to enhance data 
interpretation and computational efficiency (Bertolini et al., 2021 [4]; Meng et al., 2020 [5]).  

Optimization is another key area where ML has proven invaluable in structural engineering. Yepes et al. [006] developed 
cognitive methods leveraging multi-objective optimization for reinforced concrete beams, highlighting the potential for 
reducing lifecycle costs and improving durability. Garcia-Segura et al. [6] employed modified harmonic search 
algorithms combined with ANN to optimize post-tensioned concrete bridges under corrosion conditions, achieving 
designs with extended corrosion resistance. Similarly, Chatterjee et al. [7] demonstrated the efficacy of multi-objective 
genetic algorithms in refining neural network models for structural failure classification. 

seismic analysis and earthquake engineering in the field of structural engineering has witnessed a remarkable 
transformation in recent years through the integration of artificial intelligence (AI) technologies (Liu, T) [8]. Traditional 
approaches to seismic analysis, while foundational, have been limited by their computational intensity and inability to 
process vast amounts of real-time data effectively. The emergence of AI and machine learning has revolutionized how 
engineers approach seismic analysis, offering unprecedented capabilities in pattern recognition, predictive modeling, 
and real-time structural health monitoring (Chen, S) [9]. The development of foundation models like SeisLM has 
demonstrated the potential of AI to learn complex seismic waveform patterns from extensive datasets, enabling more 
accurate event detection and phase-picking capabilities. These advancements have particularly benefited from the 
exponential growth in seismic data collection, with networks of thousands of stations worldwide contributing to an 
ever-expanding repository of seismic recordings. 

The integration of deep learning architectures, including convolutional neural networks (CNNs), recurrent networks, 
and generative adversarial networks (GANs), has enabled more sophisticated approaches to analyzing structural 
responses to seismic events. Recent developments in physics-informed neural networks have further enhanced our 
ability to incorporate fundamental physical principles into AI models, leading to more reliable and interpretable results 
(Morocco Solidarity Hackathon) [10]. 

However, significant challenges remain, including the need for more robust validation methods, the integration of 
domain expertise with AI capabilities, and the development of more efficient computational approaches. The field 
continues to evolve rapidly, with new methodologies emerging that combine traditional engineering principles with 
cutting-edge AI technologies. This synthesis of approaches promises to enhance our understanding of seismic 
phenomena and improve our ability to design and maintain resilient structures. 

As we move forward, the focus increasingly shifts toward developing more sophisticated AI models that can handle the 
complexity of seismic analysis while maintaining computational efficiency and reliability. This review examines the 
current state of AI applications in seismic analysis, highlighting both the achievements and challenges that define this 
rapidly evolving field. Collectively, these studies emphasize the transformative impact of AI and ML on structural 
engineering. This review explores practical application of artificial intelligence in seismic engineering.  

AI’s widespread adoption has raised concerns about the transparency and accountability of its decision-making 
processes, particularly in critical areas like defense, finance, and healthcare. This has led to the emergence of Explainable 
Artificial Intelligence (XAI), a field focused on making AI systems more interpretable and reliable. By elucidating how 
decisions are made, XAI helps establish trust, facilitates verification, and enables continuous model improvement (Minh 
et al., 2022[17]; Vassiliades et al., 2021[18]; Wells and Bednarz, 2021[019]). Moreover, XAI offers human designers’ 
insights into previously unexplored scenarios, fostering more reliable human-machine collaboration. 

The application of AI in structural engineering has expanded significantly since 2014, driven by advancements in 
computational technology and the increasing availability of data. Machine learning (ML) and deep learning (DL) play 
pivotal roles in this growth, while techniques like expert systems, fuzzy logic, and genetic algorithms, though important, 
have seen a comparatively stable rate of usage over time. ML and DL, in particular, have revolutionized fields such as 
structural health monitoring, material optimization, and predictive modeling, making them indispensable in modern 
structural engineering. 
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Soft computing, often considered synonymous with computational intelligence (CI), extends AI’s ability to handle 
complex and uncertain problems. Techniques such as neural networks, fuzzy logic, and evolutionary algorithms are 
integral to soft computing, enabling solutions to nonlinear and ambiguous challenges. Unlike conventional models, 
which often require clearly defined parameters, soft computing excels in approximating solutions where uncertainties 
dominate. 

AI intersects significantly with big data and data mining, where large and diverse datasets offer new opportunities for 
insights. Data mining focuses on discovering unknown properties and trends in datasets, while big data addresses 
challenges involving the volume, velocity, and variety of data types. ML utilizes these datasets to create predictive 
models, while deep learning refines this process by enabling learning from unstructured and unlabeled data. This has 
made DL particularly effective in applications like image recognition, structural health monitoring, and topology 
optimization. 

Research on AI applications in structural engineering has grown steadily, with methods such as pattern recognition, ML, 
and neural networks showing substantial advancements over the last decade. Fig. 1 illustrates the relationship between 
various intelligent computational techniques. Some methods, like evolutionary computation and expert systems, have 
maintained a steady application rate, and there has been a marked increase in the use of ML and DL, including 
convolutional neural networks (CNNs). These developments reflect the growing recognition of AI’s transformative 
potential in addressing structural engineering challenges, paving the way for more efficient, resilient, and sustainable 
solutions.  

 

Figure 1 Computational Methodologies [20] 

2. Recent Advancements of AI in Earthquake Engineering 

Machine learning techniques have also advanced the prediction and analysis of structural responses under earthquake 
conditions, focusing on drifts, deflections, strength, natural frequencies, and hysteresis behaviors. Nguyen et al. [27] 
employed ANN and XGBoost to model the drift of steel moment frames under seismic loading, while Hwang et al. [28] 
compared several ML algorithms, including Random Forest (RF), Decision Trees (DT), k-Nearest Neighbors (kNN), 
Naive Bayes (NB), RA1, RA5, AdaBoost, and XGBoost, for predicting the drift of RC frames. Boosting algorithms like 
AdaBoost and XGBoost consistently outperformed other models in handling complex, high-dimensional datasets with 
reduced overfitting. Charalampakis et al. [29] and Somala et al. [30] examined the natural frequency of masonry-infilled 
RC structures using both ANN and RF as well as other ML approaches, again finding that boosting methods achieved 
superior predictive accuracy. Studies by Mangalathu and Burton [33] used an LSTM-based DL approach to evaluate 
seismic damage in thousands of buildings with high accuracy. Zhang et al. [34] further investigated RC special moment 
frames using classification and regression tree (CART) and RF, reporting high rates of successful damage classification 
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The field of seismic analysis has witnessed remarkable transformations through the integration of artificial intelligence 
(AI) methods, particularly in recent years. This advancement has been primarily driven by the availability of extensive 
datasets, significant improvements in computational capabilities, and the evolution of sophisticated algorithmic 
techniques in network architecture and training methodologies (Xie, Y) [21]. Deep Learning (DL) has emerged as a 
cornerstone in this context, demonstrating exceptional capabilities in extracting meaningful features from raw seismic 
data. Its power lies in creating efficient representations of complex input spaces through statistical training against large 
datasets, leading to groundbreaking applications across various aspects of seismic analysis, from signal processing to 
structural response prediction (Xie, Y) [21]. Hwang et al. [35] applied algorithms including AdaBoost and Extreme 
Gradient Boosting Trees (ExGBT) to classify collapse statuses of RC buildings under earthquake ground motions, 
outperforming traditional methods. Morfidis and Kostinakis [42] also used ANNs to analyze seismic performance, 
identifying real-time damage states under 65 ground motions. Luo and Paal [36] employed SVM for shear resistance 
prediction in RC columns, contributing to more accurate and robust seismic design strategies.  

One of the earliest implementations of AI in seismic analysis involved the use of Artificial Neural Networks (ANNs) for 
seismic data denoising (Harsuko, R) [22]. As computational resources became more accessible and data availability 
increased, researchers developed more sophisticated approaches. The introduction of Generative Adversarial Networks 
(GANs) and U-Net convolutional neural networks marked a significant advancement in seismic image processing and 
analysis, proving particularly effective in handling complex seismic data patterns and extracting relevant features for 
structural analysis (Harsuko, R) [22]. Long-Short Term Memory (LSTM) networks have also made substantial 
contributions, especially to the temporal aspects of seismic analysis. These networks excel in processing time-series 
data, making them valuable for seismic signal analysis and prediction. An innovative application combined “You Only 
Look Once” (YOLO) architecture with LSTM networks to develop automated picking systems for seismic events 
(Harsuko, R) [22]. 

Physics-informed Machine Learning (PiML) has further bridged the gap between traditional physics-based methods and 
pure data-driven approaches by incorporating physical laws and constraints into the learning process, thereby 
improving both accuracy and reliability in seismic response predictions. Recent developments have seen the emergence 
of SeisGPT, a specialized implementation of transformer-based models that adapts the power of large language models 
to meet the specific requirements of seismic data processing. SeisGPT has demonstrated promising results in 
understanding complex seismic patterns and generating accurate predictions of structural responses. 

The integration of these AI methods has revolutionized earthquake-related research and applications, leading to 
significant improvements in ground motion prediction, structural response assessment, and damage detection 
(Morocco Solidarity Hackathon) [10]. By enabling the processing of large-scale seismic datasets, these advancements 
contribute to more accurate and efficient predictions, ultimately helping inform earthquake preparedness and response 
strategies. Looking forward, the field continues to evolve with the development of more sophisticated AI architectures 
and hybrid approaches that combine traditional physics-based methods with advanced AI techniques. This integration 
is a crucial step toward more reliable and comprehensive analysis methods in seismic engineering. 

Real-world applications underscore this progress. A 30-week real-time earthquake forecasting study in China 
demonstrated the practical effectiveness of AI-based approaches in seismic prediction and analysis (Morocco Solidarity 
Hackathon) [10]. These outcomes highlight AI’s potential to transform seismic engineering practice and improve 
structural safety in seismically active regions. The application of AI in earthquake engineering has significantly 
advanced the understanding and assessment of seismic damage to structures; machine learning (ML) and deep learning 
(DL) approaches have become indispensable tools for predicting structural responses to earthquakes, improving 
resilience, and guiding design modifications. 

Deep learning has revolutionized seismic analysis through various neural network architectures, each bringing unique 
capabilities to structural engineering applications (Zhang, R) [23]. Convolutional Neural Networks (CNNs) have 
emerged as powerful tools for processing ground motion records and structural response patterns, with architectures 
like U-Net (Xie, Y) [21] enabling detailed analysis of waveforms and damage states. Recurrent Neural Networks (RNNs), 
particularly LSTM variants (Xie, Y) [21], have proven invaluable in processing sequential seismic data, capturing both 
short-term and long-term patterns for more accurate structural behavior predictions. Generative Adversarial Networks 
(GANs) further address the challenge of limited real-world data by generating realistic ground motion scenarios and 
synthetic training sets. Recent efforts combine multiple network types—such as CNN-LSTM hybrid models—to provide 
comprehensive spatial and temporal analyses of seismic responses, which has proven especially useful in real-time 
damage assessment and structural health monitoring (Zhang, R) [23]. 
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Seismic engineering, confronted with the complexities of earthquake-induced structural damage, has increasingly 
integrated AI-based methodologies to enhance predictive and diagnostic capabilities. Arsalan [26] employed artificial 
neural networks (ANN) to analyze earthquake resistance factors in RC structures, achieving 92%–99% accuracy and 
identifying key parameters like shear wall ratio and short column formation. Pattern recognition (PR) techniques have 
further propelled this domain; Zhang et al. [224,25] combined PR with support vector regression (SVR) for nonlinear 
parameter identification in vibration data, while Lautour et al. [26] used ANNs to model seismic-induced damage in RC 
frames, revealing correlations between ground motion and structural characteristics. Elwood et al. [18] illustrated how 
fuzzy classifiers effectively detect damage in post-earthquake scenarios, using real-world data for robust pattern 
recognition and diagnostics. Table below presents recent application of AI in earthquake engineering. 

Table 1 AI Application in Earthquake Engineering 

Application AI Algorithm(s) Reference 

Predict energy dissipated in steel 
reinforcing bars in reinforced 
concrete members 

ANN Abdalla and 
Hawileh [37] 

Assessing post-earthquake structural 
safety 

CART, RF Zhang and 
Burton [38] 

Classification of building damages 
from textural document 

Long short-term memory (LSTM) Mangalathu and 
Burton [40] 

Predicting the seismic response and 
structural collapse 

MLR, ridge regression, DT, RF, AdaBoost, ExGBT, Naıve 
Bayes, (NB), KNN 

Hwang et al. [40] 

Quantification of seismic behavior of 
RC buildings 

Locally weighted least squares support vector machines 
for regression (LWLS-SVMR), coupled simulated 
annealing, (CSA), Grid search (GS) 

Luo and Paal [36] 

Predicting seismic damage state ANN Morfidis and 
Kostinakis [42] 

Predicting the seismic response of 
structures 

CNN Oh et al. [43] 

Predicting the fundamental period of 

vibration of infilled frame reinforced 
concrete structures 

Artificial bee colony (ABC) Asteris [44] 

Detecting damage in reinforced 
concrete frames 

DT Su and He [45] 

Predicting damage of steel frame 
structures 

ANN Liu and Zhang 
[46] 

3. Real-time Prediction Systems 

Real-time seismic response prediction systems represent a crucial application of deep learning in structural 
engineering. These systems have evolved significantly, with frameworks like SeisGPT leading the way in providing 
rapid, accurate predictions of structural responses during seismic events. The implementation of these systems typically 
involves a combination of deep learning architectures and high-performance computing infrastructure to deliver real-
time predictions (Woollam, J) [47]. 

Modern real-time prediction systems utilize advanced preprocessing techniques and optimized neural network 
architectures to minimize computational overhead while maintaining high accuracy. The integration of Parametric 
Exponential Linear Units (PELU) and dropout layers has significantly improved the robustness and efficiency of these 
systems (Zhang, R) [23]. These architectural improvements have enabled faster processing of seismic data streams 
while maintaining high prediction accuracy. 
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Recent developments in real-time systems have focused on reducing latency and improving scalability. The 
implementation of distributed computing frameworks, coupled with optimized deep learning models, has enabled these 
systems to process multiple data streams simultaneously. This capability is particularly crucial for monitoring large-
scale structural systems or multiple structures across seismic regions (Liu, T) [ 8]. 

The effectiveness of real-time prediction systems has been enhanced through the integration of cloud computing and 
edge computing technologies. These advancements have enabled more efficient distribution of computational loads and 
reduced response times in critical situations. The implementation of automated model updating mechanisms ensures 
that these systems maintain their accuracy over time, adapting to new seismic data and structural conditions (Woollam, 
J) [47]. 

The latest generation of real-time prediction systems incorporates uncertainty quantification methods, providing not 
just predictions but also confidence intervals for their estimates. This feature is particularly valuable for decision-
making during seismic events, allowing engineers and emergency responders to make more informed choices based on 
the reliability of predictions. The continuous improvement in deep learning frameworks and computing infrastructure 
suggests that future real-time prediction systems will offer even greater accuracy and reduced latency, further 
enhancing their utility in seismic structural analysis and emergency response scenarios. 

4. Observations From Past Research:  

• This review has illuminated the significant strides made in applying artificial intelligence to seismic analysis of 
structures over the past decade. The evolution of AI applications in this field has demonstrated remarkable 
progress, particularly in the development and implementation of various machine learning techniques. From 
the early applications of genetic programming in 2009 to the recent advancements in deep neural networks, 
the field has witnessed a continuous refinement of methodologies and approaches (Chen, S) [9]. 

• The analysis reveals that artificial neural networks (ANNs) have emerged as particularly effective tools, 
consistently achieving accuracy rates above 90% in seismic response predictions (Sun, Y) [48]. The integration 
of physics-informed neural networks has further enhanced the reliability of these AI-driven approaches, 
bridging the gap between traditional analytical methods and modern computational techniques. 

• Looking forward, several recommendations emerge for advancing AI applications in seismic analysis. First, 
there is a need for greater integration of uncertainty quantification in AI models, particularly for critical 
infrastructure applications. Second, the development of hybrid approaches that combine physics-based 
modeling with data-driven techniques shows promise for improving prediction accuracy while maintaining 
physical consistency. Third, efforts should be directed toward creating standardized benchmarking datasets 
and evaluation metrics to facilitate meaningful comparisons between different AI approaches. 

• The field would benefit from increased collaboration between structural engineers, seismologists, and AI 
researchers to address these challenges. Additionally, future research should focus on improving the 
interpretability of AI models, particularly for complex deep learning architectures, to enhance their acceptance 
in practical engineering applications. The successful implementation of these recommendations will require 
continued investment in both computational resources and experimental validation, ultimately leading to more 
resilient structural design and more effective seismic risk mitigation strategies. 

• Artificial intelligence (AI) has significantly expanded the capabilities of structural engineering, particularly in 
seismic. In earthquake engineering, machine learning (ML) and deep learning (DL) algorithms have enhanced 
the accuracy of damage assessments, facilitated real-time monitoring, and guided adaptive design strategies. 
Diverse methods—ranging from artificial neural networks (ANNs) to boosting algorithms—have demonstrated 
strong predictive performance for drifts, deflections, strength, and other key parameters, ultimately improving 
resilience against seismic hazards. 

• Collectively, the studies underscore AI’s growing importance in advancing knowledge, streamlining analyses, 
and promoting sustainable, resilient structural systems. Despite challenges such as data quality, 
interpretability, and computational demands, ongoing research and interdisciplinary collaboration are likely 
to refine these AI methodologies. As the field continues to integrate advanced computing techniques with 
domain-specific insights, AI is poised to play an increasingly critical role in shaping the future of seismic.  
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5. Conclusion 

The application of artificial intelligence in seismic analysis of structures has shown remarkable progress, yet several 
significant challenges and limitations need to be addressed for its widespread adoption and reliability. One of the 
primary challenges lies in data availability and quality. While seismic events generate vast amounts of data, the 
collection, processing, and standardization of this information remain complex tasks. The inherent variability in 
structural responses, ground motion characteristics, and environmental conditions creates challenges in developing 
comprehensive datasets that can effectively train AI models. 

Model reliability and generalization present another crucial challenge. Current AI models often perform well on specific 
datasets but may struggle when confronted with new, unseen scenarios. This limitation becomes particularly critical in 
seismic analysis, where the consequences of incorrect predictions could be catastrophic. The integration of physics-
based constraints and domain knowledge into AI frameworks requires careful consideration to ensure the models 
remain both accurate and physically meaningful. 

Computational efficiency continues to be a significant concern, especially when dealing with large-scale structural 
systems. The real-time analysis requirements for early warning systems and rapid post-earthquake assessment demand 
efficient algorithms that can process and analyze data quickly without compromising accuracy. The balance between 
model complexity and computational resources needs careful optimization. 

Looking toward future directions, several promising avenues emerge for addressing these challenges. The development 
of hybrid approaches that combine traditional numerical methods with AI techniques shows potential for improving 
model reliability while maintaining computational efficiency. These hybrid models can leverage the strengths of both 
approaches, using physics-based understanding to guide and constrain AI predictions. 

Data augmentation and synthetic data generation techniques offer solutions to the data scarcity problem. Advanced 
generative models can create realistic seismic scenarios, helping to expand training datasets while maintaining physical 
consistency. However, the validation of such synthetic data requires careful consideration of path effects and spatial 
correlations between different stations and sources. 

The integration of uncertainty quantification in AI models represents another crucial direction. Future research should 
focus on developing frameworks that not only provide predictions but also quantify the associated uncertainties. This 
becomes particularly important in risk assessment and decision-making processes for structural safety. 

The advancement of explainable AI (XAI) techniques specific to structural engineering applications presents another 
important research direction. Understanding how AI models arrive at their predictions is crucial for building trust 
among practitioners and ensuring safe implementation in critical applications. 

Scientific machine learning (SciML) shows promising potential in addressing the unique challenges of geoscience 
applications, including seismic analysis. The field's ability to handle sparse direct measurements, unbalanced data 
distribution, and inevitable noise makes it particularly relevant for advancing structural engineering applications. 

Future developments should also focus on creating standardized benchmarks and evaluation metrics specific to seismic 
analysis applications. This standardization would facilitate fair comparison between different approaches and help 
establish best practices in the field. The organization of workshops and data competitions could accelerate progress by 
bringing together experts from both geophysics and machine learning communities. 

The integration of real-time monitoring systems with AI-based analysis tools represents another promising direction. 
Such integration could enable more effective early warning systems and rapid post-earthquake assessment capabilities. 
However, this requires addressing challenges related to data transmission, processing speed, and reliability under 
emergency conditions. 

As we move forward, the focus should be on developing more robust and reliable AI systems that can handle the 
complexities of seismic analysis while maintaining practical applicability. This includes improving the interpretability 
of AI models, enhancing their generalization capabilities, and ensuring their reliability under various operating 
conditions. The continued collaboration between structural engineering experts and AI researchers will be crucial in 
advancing these developments and addressing the current limitations in the field. 
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Future orientation in machine learning and deep learning encompasses a range of applications, for predicting 
earthquake-induced structural damage, demonstrating the value of handling complex, high-dimensional data while 
reducing reliance on extensive experimentation. 

Transparency and explainability are essential to foster trust in AI-driven decisions within structural engineering, where 
safety is paramount. Interpretable models enable stakeholders to validate and embrace AI solutions more confidently.  

Compliance with ethical standards 

Disclosure of conflict of interest 

No conflict of interest to be disclosed. 

References 

[1] Mai SH, Ben Seghier MEA, Nguyen PL, Jafari-Asl J, Thai DK. A hybrid model for predicting the axial compression 
capacity of square concrete-filled steel tubular columns. Eng Comput 2020. 

[2] V.G. Gorphade, H.S. Rao, M. Beulah, Development of Genetic Algorithm based Neural Network Model for 
Predicting Workability and Strength of High-Performance Concrete, Int. J. Inven. Eng. Sci. (2014) 2319–9598. 

[3] H. Naseri, H. Jahanbakhsh, P. Hosseini, F. Moghadas Nejad, Designing sustainable concrete mixture by developing 
a new machine learning technique, J. Clean. Prod. 258 (2020) 120578. 
https://doi.org/10.1016/j.jclepro.2020.120578. 

[4] Bertolini, M., Mezzogori, D., Neroni, M., Zammori, F., 2021. Machine learning for industrial applications: A 
comprehensive literature review. Expert Syst. Appl. 175, 114820. 
http://dx.doi.org/10.1016/j.eswa.2021.114820. 

[5] Meng, L., McWilliams, B., Jarosinski, W., Park, H.-Y., Jung, Y.-G., Lee, J., Zhang, J., 2020. Machine learning in additive 
manufacturing: A review. JOM 72 (6), 2363–2377. http://dx.doi.org/10.1007/s11837-020-04155-y  

[6] V. Penadés-Plà, T. García-Segura, J. V. Martí, V. Yepes, A review of multi-criteria decision-making methods applied 
to the sustainable bridge design, Sustain. 8 (2016). https://doi.org/10.3390/su8121295.  

[7] Liu, T., Münchmeyer, J., Laurenti, L., Marone, C., de Hoop, M. V., & Dokmanić, I. (2024). SeisLM: a Foundation Model 
for Seismic Waveforms. arXiv. https://arxiv.org/html/2410.15765v1  

[8] Chen, S., Liu, X., Fu, L., Wang, S., Zhang, B., & Li, X. (2023). Physics Symbolic Learner for Discovering Ground-
Motion Models Via NGA-West2 Database arXiv. https://arxiv.org/abs/2303.14179  

[9] Morocco Solidarity Hackathon. (2023). Leveraging AI for Natural Disaster Management : Takeaways From The 
Moroccan Earthquake. arXiv. https://arxiv.org/html/2311.08999v2  

[10] Ertel, W., 2017. Introduction to Artificial Intelligence. Springer, Weingarten, http://dx.doi.org/10.1007/978-3-
319-58487-4.  

[11] Neapolitan, R.E., Jiang, X., 2018. Artificial Intelligence: With an Introduction to Machine Learning, second ed. 
Chapman and Hall/CRC, New York, http://dx.doi. org/10.1201/b22400. 

[12] Salehi, H., Burgueño, R., 2018. Emerging artificial intelligence methods in structural engineering. Eng. Struct. 171, 
170–189. http://dx.doi.org/10.1016/j.engstruct.2018. 05.084. 

[13] Shehab, M., Abualigah, L., Jarrah, M.I., Alomari, O.A., Daoud, M.S., 2020. Artificial intelligence in software 
engineering and inverse: Review. Int. J. Comput. Integr. Manuf. 33 (10–11), 1129–1144. 
http://dx.doi.org/10.1080/0951192X.2020.1780320  

[14] Nti, I.K., Adekoya, A.F., Weyori, B.A., Nyarko-Boateng, O., 2021. Applications of artificial intelligence in engineering 
and manufacturing: a systematic review. J. Intell. Manuf. http://dx.doi.org/10.1007/s10845-021-01771-6.  

[15] Zhang, Y., Xu, T., Chen, C., Wang, G., Zhang, Z., Xiao, T., 2021. A hierarchical method based on improved deep forest 
and case-based reasoning for railway turnout fault diagnosis. Eng. Fail. Anal. 127, 105446. 
http://dx.doi.org/10.1016/j.engfailanal. 2021.105446. 

[16] Minh, D., Wang, H.X., Li, Y.F., Nguyen, T.N., 2022. Explainable artificial intelligence: a comprehensive review. Artif. 
Intell. Rev. 55 (5), 3503–3568. http://dx.doi.org/ 10.1007/s10462-021-10088-y. 

https://doi.org/10.1016/j.jclepro.2020.120578
http://dx.doi.org/10.1016/j.eswa.2021.114820
http://dx.doi.org/10.1007/s11837-020-04155-y
https://doi.org/10.3390/su8121295
https://arxiv.org/html/2410.15765v1
https://arxiv.org/abs/2303.14179
https://arxiv.org/html/2311.08999v2
http://dx.doi.org/10.1007/978-3-319-58487-4
http://dx.doi.org/10.1007/978-3-319-58487-4
http://dx.doi.org/10.1080/0951192X.2020.1780320
http://dx.doi.org/10.1007/s10845-021-01771-6


International Journal of Science and Research Archive, 2025, 14(01), 083-092 

91 

[17] Vassiliades, A., Bassiliades, N., Patkos, T., 2021. Argumentation and explainable artificial intelligence: a survey. 
Knowl. Eng. Rev. 36, e5. http://dx.doi.org/10.1017/S0269888921000011,e5  

[18] Wells, L., Bednarz, T., 2021. Explainable AI and reinforcement learning—A systematic review of current 
approaches and trends [systematic review]. Front. Artif. Intell. 4. http://dx.doi.org/10.3389/frai.2021.550030. 

[19] Tapeh, A., Naser, M.Z. (2022). Artificial Intelligence, Machine Learning, and Deep Learning in Structural 
Engineering: A Scientometrics Review of Trends and Best Practices. Archives of Computational Methods in 
Engineering. https://doi.org/10.1007/s11831-022-09793-w. 

[20] Elwood E, Corotis RB. Application of fuzzy pattern recognition of seismic damage to concrete structures. ASCE-
ASME J Risk Uncertain Eng Syst Part Civ Eng 2015; 1:04015011.  

[21] Nagarajaiah S, Yang Y. Modeling and harnessing sparse and low‐rank data struc- ture: a new paradigm for 
structural dynamics, identification, damage detection, and health monitoring. Struct Control Health Monit 
2017;24. 

[22] M.H. Arslan, An evaluation of effective design parameters on earthquake performance of RC buildings using 
neural networks, Eng. Struct. 32 (2010) 1888–1898. https://doi.org/10.1016/j.engstruct.2010.03.010.  

[23] Xie, Y. (2024). Deep Learning in Earthquake Engineering: A Comprehensive Review. arXiv. 
https://arxiv.org/abs/2405.09021  

[24] Harsuko, R., & Alkhalifah, T. (2022). StorSeismic: A new paradigm in deep learning for seismic processing. arXiv. 
https://arxiv.org/abs/2205.00222  

[25] Zhang, R., Liu, Y., & Sun, H. (2019). Physics-guided Convolutional Neural Network (PhyCNN) for data-driven 
Seismic Response Modeling. arXiv. https://arxiv.org/pdf/1909.08118 

[26] Zhang J, Sato T, Iai S, Hutchinson T. A pattern recognition technique for structural identification using observed 
vibration signals: Linear case studies. Eng Struct 2008; 30:1439–46.  

[27] Zhang J, Sato T, Iai S, Hutchinson T. A pattern recognition technique for structural identification using observed 
vibration signals: Nonlinear case studies. Eng Struct 2008; 30:1417–23. 

[28] De Lautour OR, Omenzetter P. Prediction of seismic-induced structural damage using artificial neural networks. 
Eng Struct 2009; 31:600–6. 

[29] Nguyen HD, Dao ND, Shin M. Prediction of seismic drift responses of planar steel moment frames using artificial 
neural network and extreme gradient boosting. Eng Struct 2021;242. 

[30] Hwang S-H, Mangalathu S, Shin J, Jeon J-S. Machine learning-based approaches for seismic demand and collapse 
of ductile reinforced concrete building frames. J Build Eng 2021; 34:101905. 

[31] Charalampakis AE, Tsiatas GC, Kotsiantis SB. Machine learning and nonlinear models for the estimation of 
fundamental period of vibration of masonry infilled RC frame structures. Eng Struct 2020; 216:110765. 

[32] Somala SN, Karthikeyan K, Mangalathu S. Time period estimation of masonry infilled RC frames using machine 
learning techniques. Struct 2021; 34:1560–6. 

[33] Ning CL, Wang L, Du W. A practical approach to predict the hysteresis loop of reinforced concrete columns failing 
in different modes. Constr Build Mater 2019; 218:644–56. 

[34] Yang C, Fan J. Artificial neural network-based hysteresis model for circular steel tubes. Struct 2021; 30:418–39.  

[35] S. Mangalathu, H. V. Burton, Deep learning-based classification of earthquake-impacted buildings using textual 
damage descriptions, Int. J. Disaster Risk Reduct. 36 (2019) 101111. 
https://doi.org/10.1016/j.ijdrr.2019.101111.  

[36] Y. Zhang, H. V. Burton, H. Sun, M. Shokrabadi, A machine learning framework for assessing post-earthquake 
structural safety, Struct. Saf. (2018). https://doi.org/10.1016/j.strusafe.2017.12.001.  

[37] S.H. Hwang, S. Mangalathu, J. Shin, J.S. Jeon, Machine learning-based approaches for seismic demand and collapse 
of ductile reinforced concrete building frames, J. Build. Eng. (2020) 101905. 
https://doi.org/10.1016/j.jobe.2020.101905. 

[38]   H. Luo, S.G. Paal, A locally weighted machine learning model for generalized prediction of drift capacity in 
seismic vulnerability assessments, Comput. Civ. Infrastruct. Eng. 34 (2019) 935–950. 
https://doi.org/10.1111/mice.12456. 

http://dx.doi.org/10.1017/S0269888921000011,e5
http://dx.doi.org/10.3389/frai.2021.550030
https://doi.org/10.1007/s11831-022-09793-w
https://doi.org/10.1016/j.engstruct.2010.03.010
https://arxiv.org/abs/2405.09021
https://arxiv.org/abs/2205.00222
https://doi.org/10.1016/j.ijdrr.2019.101111
https://doi.org/10.1016/j.strusafe.2017.12.001
https://doi.org/10.1016/j.jobe.2020.101905
https://doi.org/10.1111/mice.12456


International Journal of Science and Research Archive, 2025, 14(01), 083-092 

92 

[39] J.A. Abdalla, R.A. Hawileh, Assessment of Effect of Strain Amplitude and Strain Ratio on Energy Dissipation Using 
Machine Learning, in: Lect. Notes Civ. Eng., 2021. https://doi.org/10.1007/978-3-030-51295-8_9. 

[40] Y. Zhang, H. V. Burton, H. Sun, M. Shokrabadi, A machine learning framework for assessing post-earthquake 
structural safety, Struct. Saf. (2018).https://doi.org/10.1016/j.strusafe.2017.12.001. 

[41] S. Mangalathu, H. V. Burton, Deep learning-based classification of earthquake-impacted buildings using textual 
damage descriptions, Int. J. Disaster Risk Reduct. 36 (2019) 101111. 
https://doi.org/10.1016/j.ijdrr.2019.101111. 

[42] [S.H. Hwang, S. Mangalathu, J. Shin, J.S. Jeon, Machine learning-based approaches for seismic demand and collapse 
of ductile reinforced concrete building frames, J. Build. Eng (2020) 101905. 
https://doi.org/10.1016/j.jobe.2020.101905. 

[43] H. Luo, S.G. Paal, A locally weighted machine learning model for generalized prediction of drift capacity in seismic 
vulnerability assessments, Comput. Civ. Infrastruct. Eng. 34 (2019) 935–950. 
https://doi.org/10.1111/mice.12456.  

[44] K. Morfidis, K. Kostinakis, Approaches to the rapid seismic damage prediction of r/c buildings using artificial 
neural networks, Eng. Struct. 165 (2018) 120–141. https://doi.org/10.1016/j.engstruct.2018.03.028.  

[45] B.K. Oh, Y. Park, H.S. Park, Seismic response prediction method for building structures using convolutional neural 
network, Struct. Control Heal. Monit. 27 (2020) 1–17. https://doi.org/10.1002/stc.2519.  

[46] P.G. Asteris, M. Nikoo, Artificial bee colony-based neural network for the prediction of the fundamental period of 
infilled frame structures, Neural Comput. Appl. 31 (2019) 4837–4847. https://doi.org/10.1007/s00521-018-
03965-1.  

[47] L. Su, H.J. He, Decision tree–based seismic damage prediction for reinforcement concrete frame buildings 
considering structural micro-characteristics, Adv. Struct. Eng. 22 (2019) 2097–2109. 
https://doi.org/10.1177/1369433219832508.  

[48] Z. Liu, Z. Zhang, Artificial neural network-based method for seismic fragility analysis of steel frames, KSCE J. Civ. 
Eng. 22 (2018) 708–717. https://doi.org/10.1007/s12205-017- 1329-8. 

[49] Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., 
Jozinović, D., Michelini, A., Saul, J., & Soto, H. (2021). SeisBench - A Toolbox for Machine Learning in Seismology. 
arXiv. https://ar5iv.labs.arxiv.org/html/2111.00786  

[50] Sun, Y., Wang, H., Zhang, Z., Diels, C., & Asadipour, A. (2023). RESenv: A Realistic Earthquake Simulation 
Environment based on Unreal Engine. arXiv. https://arxiv.org/abs/2311.07239 

https://doi.org/10.1007/978-3-030-51295-8_9
https://doi.org/10.1016/j.strusafe.2017.12.001
https://doi.org/10.1016/j.ijdrr.2019.101111
https://doi.org/10.1016/j.jobe.2020.101905
https://doi.org/10.1111/mice.12456
https://doi.org/10.1016/j.engstruct.2018.03.028
https://doi.org/10.1002/stc.2519
https://doi.org/10.1007/s00521-018-03965-1
https://doi.org/10.1007/s00521-018-03965-1
https://doi.org/10.1177/1369433219832508
https://doi.org/10.1007/s12205-017-
https://ar5iv.labs.arxiv.org/html/2111.00786
https://arxiv.org/abs/2311.07239

