
* Corresponding author: Praveen Kumar Manchikoni Surendra

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0.

Automating documentation and legacy code modernization: Revitalizing legacy
systems with AI

Praveen Kumar Manchikoni Surendra *

Central Michigan University, USA.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(01), 1390-1397

Publication history: Received on 08 March 2025; revised on 13 April 2025; accepted on 16 April 2025

Article DOI: https://doi.org/10.30574/wjaets.2025.15.1.0367

Abstract

This article examines how artificial intelligence technologies are revolutionizing the maintenance and modernization of
legacy software systems in large organizations. Legacy systems, despite their outdated architectures, continue to power
critical business operations while posing significant challenges due to poor documentation, obsolete programming
paradigms, and the loss of original developer knowledge. The article demonstrates how AI-driven solutions address
these challenges through automated documentation generation and code modernization strategies. These technologies
enable comprehensive system understanding through semantic code analysis, facilitate incremental modernization
through intelligent refactoring, and reduce risks through automated test generation. By implementing hybrid human-
AI workflows and following incremental modernization strategies, organizations can transform aging codebases into
well-documented, maintainable systems while avoiding the pitfalls of complete rewrites. The economic benefits include
reduced maintenance costs, improved system agility, faster time-to-market, and enhanced developer productivity,
making AI-assisted modernization a strategic imperative for organizations seeking to remain competitive in rapidly
evolving markets.

Keywords: Legacy modernization; Technical debt; Automated documentation; AI-driven refactoring; knowledge
preservation

1. Introduction

Legacy software systems form the backbone of operations in many large organizations. Developed decades ago, these
systems continue to play critical roles despite their outdated architecture and technologies. Recent industry analyses
reveal that over 65% of enterprises worldwide still operate mission-critical systems that are more than 15 years old,
with modernization initiatives becoming increasingly urgent as digital transformation accelerates across sectors [1].
The statistics are particularly striking in the public sector, where approximately 80% of IT budgets are allocated to
maintaining existing systems rather than developing innovative solutions.

Maintaining and extending these systems presents significant challenges due to poor documentation, obsolete
programming paradigms, and the retirement of original developers who understood the system's intricacies. Legacy
modernization is fundamentally about transforming outdated systems into contemporary software architectures that
align with current business needs. The process typically yields a 40-60% reduction in operational costs while enhancing
system agility by 30-50%, according to comprehensive modernization initiatives documented across multiple
industries [1]. This transformation is not merely technical but represents a strategic imperative as organizations seek
to remain competitive in rapidly evolving markets.

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2025.15.1.0367
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2025.15.1.0367&domain=pdf

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(01), 1390-1397

1391

The financial implications of delayed modernization are substantial. Technical debt—the accumulated cost of
maintaining suboptimal code—grows exponentially when organizations repeatedly postpone necessary refactoring. In
financial terms, technical debt manifests when software development teams choose convenient but suboptimal code
solutions to accelerate delivery, creating future rework requirements. Studies indicate that technical debt costs
organizations an average of 23-42% of development time that could otherwise be dedicated to innovation [2]. When
code becomes overly complex or outdated, developers spend approximately 33% more time implementing new features
and fixing defects than they would in well-maintained systems.

This technical article explores how artificial intelligence (AI) technologies, particularly large language models, are
transforming approaches to legacy code maintenance through automated documentation generation and code
modernization strategies. The economic incentives are compelling—organizations implementing AI-assisted
modernization report documentation time reductions of 35-45% and knowledge transfer acceleration of around 50%
for new developers joining legacy system teams [1]. These efficiency gains translate to significant competitive
advantages in markets where speed-to-innovation determines market positioning.

The modernization journey necessarily involves balancing immediate business requirements with long-term
architectural goals. Organizations that successfully navigate this transition typically establish strategic roadmaps that
prioritize high-value components while maintaining system stability. With appropriate AI assistance, modernization
initiatives have demonstrated potential to reduce overall transformation timelines by 25-30% while improving code
quality metrics by similar margins [2].

2. The Legacy Code Challenge

2.1. Defining the Problem Scope

Legacy software systems present numerous challenges for modern development teams. These systems often run critical
business processes but suffer from multiple technical constraints that impede maintenance and enhancement efforts.
Research indicates that organizations typically spend 23-42% of their development time managing technical debt rather
than creating new business value, with the highest percentages observed in systems over 10 years old [3]. The problem
is particularly acute in regulated industries where mission-critical systems cannot be easily replaced, creating a
situation where developers spend on average 13.5 hours per week dealing with system limitations rather than
implementing new features.

2.2. Common Issues with Legacy Systems

Original documentation is frequently missing, incomplete, or outdated, forcing developers to reverse-engineer
functionality. This documentation gap creates significant productivity challenges, with studies showing that developers
spend approximately 42% of their work week understanding existing code rather than writing new code [3]. When
documentation is absent, this percentage increases to nearly 60%, representing a substantial operational inefficiency.

As original developers retire or leave, organizational knowledge about system functionality diminishes. Technical debt
analysis reveals that systems maintained by teams with significant personnel turnover demonstrate 37% more code
complexity and 29% higher defect rates than those with stable maintenance teams. This knowledge erosion compounds
over time, making systems increasingly fragile and resistant to modification.

Technical debt accumulation presents another significant challenge. Years of quick fixes and workarounds have created
layers of complexity that make changes risky. Research demonstrates that highly indebted code typically costs 25%
more to maintain and takes 30% longer to modify than code that follows best practices [3]. This debt compounds
annually at rates between 5-10%, making legacy systems progressively more expensive to maintain.

Many legacy systems use programming languages or frameworks that are no longer widely supported. The strangler
pattern approach to legacy modernization has emerged as a leading methodology precisely because direct replacement
of these systems typically fails 70-80% of the time when attempted through traditional big-bang approaches [4]. The
incremental nature of the strangler pattern recognizes the practical impossibility of comprehensive replacement for
systems with extensive obsolete technologies.

Integration difficulties represent perhaps the most immediate obstacle to digital transformation. Connecting legacy
systems to modern applications often requires complex adapter layers. Studies of strangler pattern implementations

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(01), 1390-1397

1392

reveal that organizations typically require 15-20% of the modernization budget specifically for maintaining functional
interfaces between legacy components and their modern replacements during transition periods [4].

2.3. The Business Impact

The business consequences of maintaining legacy systems without proper documentation and modern code practices
are far-reaching. Development cycles for new features extend significantly, with analysis showing that teams working
with high technical debt codebases deliver features 24% slower than those working with well-maintained code [3].

Risk profiles increase substantially, with organizations experiencing a higher probability of introducing bugs during
modifications. Data shows that high-debt code areas have defect densities approximately 2.5 times higher than healthy
code areas in the same systems. Each defect takes on average 175% longer to resolve when it occurs in legacy
components [3].

The strangler pattern methodology provides compelling evidence of these impacts through controlled modernization
experiments, where organizations typically observe 30-40% improvements in delivery speed for components that have
been successfully modernized, while maintaining system stability throughout the transition process [4]. This dramatic
difference in performance metrics illustrates the concrete business impact of legacy system constraints.

Table 1 Technical Debt Cost Comparison: Legacy vs. Modern Systems [3,4]

Challenge Impact Percentage

Time spent managing technical debt vs. creating new value 23-42%

Developer time spent understanding existing code vs. writing new code 42%

Increased maintenance cost of highly indebted code 25%

Feature delivery slowdown in high technical debt codebases 24%

Delivery speed improvement after successful modernization 30-40%

3. AI-Driven Documentation Generation

3.1. Understanding the Documentation Challenge

Documentation is the first critical step in managing legacy systems effectively. Without proper documentation,
developers must spend excessive time understanding code before they can make changes, significantly increasing
maintenance costs. Research shows that professional programmers spend up to 60% of their time understanding code
during maintenance activities, making it the most time-consuming maintenance task [5]. Furthermore, studies indicate
that 81.9% of developers consider documentation vital for successfully maintaining unfamiliar systems. This challenge
is magnified when examining programmer preferences, with 91.1% indicating that comments embedded in the code
and detailed design documentation are critical for understanding program functionality efficiently.

3.2. How AI Analyzes Legacy Codebases

Modern AI systems can scan entire codebases to identify code modules and their interactions. These systems determine
function purposes through semantic analysis, leveraging natural language processing capabilities to extract meaning
from code structures. Research reveals that quality documentation can reduce maintenance time by up to 50%, creating
a compelling case for automated documentation solutions [5]. AI algorithms recognize design patterns implemented in
the code, providing contextual understanding that helps developers grasp architectural decisions embedded in legacy
systems. This pattern recognition capability extends to mapping data flows between system components and detecting
business logic embedded in the code, offering comprehensive insights that would traditionally require extensive manual
analysis.

3.3. Automated Documentation Techniques

3.3.1. Natural Language Processing for Code Understanding

Large language models can interpret code semantics and generate human-readable explanations that describe function
purposes and behaviors. Research in maintenance practices highlights that 72.4% of developers consider

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(01), 1390-1397

1393

documentation of program functionality essential for understanding existing code [5]. AI-driven documentation tools
leverage this insight by automatically generating descriptions of parameter requirements and return values. The
importance of this automation becomes clear when considering that nearly 70% of maintenance time is spent on
program comprehension rather than actual modification [6]. These AI systems also document side effects and
interactions with other code modules, addressing a critical area where manual documentation often falls short.

3.3.2. Visualization and Relationship Mapping

AI systems can automatically generate system architecture diagrams that substantially improve comprehension speed.
Studies show that system overviews and architectural documentation rank among the most critical documentation
types, with 75.8% of developers considering them essential for maintenance tasks [5]. Modern AI documentation tools
create module relationship maps that provide these crucial overviews automatically, addressing a significant gap in
legacy system documentation. The generation of call graphs and dependency trees further enhances understanding,
with AI-powered solutions reducing documentation time by approximately 60% compared to manual processes [6].
These visualizations prove particularly valuable when navigating complex legacy systems where data flow patterns
have evolved organically over decades.

3.4. Benefits of AI-Generated Documentation

Reduced onboarding time represents one of the most immediately quantifiable benefits of AI-generated documentation.
With comprehensive documentation, new team members can understand system functionality more quickly, achieving
productivity up to 40% faster than when working with poorly documented systems [6]. Improved maintenance
efficiency translates directly to business value, with engineers spending less time deciphering code and more time
implementing solutions. This efficiency gain is particularly significant considering that 87.3% of developers consider
well-documented systems essential for productive maintenance activities [5]. Better collaboration emerges naturally
as all team members work from the same documented understanding, creating unified mental models of system
architecture. Perhaps most importantly, AI-generated documentation facilitates risk reduction by making it easier to
identify potential impacts of changes, with studies indicating that proper documentation can reduce defect introduction
rates by up to 20% during system modifications [6].

Figure 1 AI-Generated Documentation: Efficiency Gains in Legacy System Maintenance [5,6]

4. Legacy Code Modernization Strategies

4.1. Assessment and Prioritization

Before modernization begins, AI systems help identify code modules with highest technical debt. Research indicates
that approximately 80% of technical debt impact derives from only 20% of the codebase, making precise identification
of these critical areas essential for efficient modernization [7]. This prioritization becomes particularly important when
considering that organizations typically can only address about 38% of identified technical debt due to resource
constraints. AI analysis distinguishes critical vs. non-critical system components through dependency mapping, helping
teams focus on the most impactful targets first. Studies show that technical debt items have different interest rates, with

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(01), 1390-1397

1394

some incurring up to 10 times higher maintenance costs than others, further emphasizing the importance of data-driven
prioritization.

The assessment phase also identifies areas with greatest potential performance improvements. Technical debt
prioritization research reveals that principal and interest metrics should be combined with business value measures to
create a holistic prioritization framework that balances technical concerns with organizational needs [7]. Security
vulnerabilities require special consideration, with studies showing that security-related technical debt typically
receives the highest priority scores (averaging 8.2 out of 10) due to potential business impacts of breaches, making AI-
based security analysis particularly valuable during initial assessment.

4.2. Refactoring Assistance

4.2.1. Code Analysis and Improvement Suggestions

AI tools identify problematic code patterns such as duplicated code sections with remarkable precision. Research shows
that code duplication typically accounts for 15-25% of legacy codebases, representing significant refactoring
opportunities [8]. The analysis extends to detecting overly complex functions, with 46% of legacy applications
containing functions exceeding recommended complexity thresholds. AI solutions can identify inefficient algorithms
that often account for 60-70% of performance bottlenecks in legacy systems, along with outdated programming
constructs that create security and compatibility risks.

4.2.2. Automated Refactoring Operations

Modern AI systems can suggest appropriate design patterns to improve code structure. Studies indicate that AI-driven
refactoring tools can reduce code complexity measures by approximately 30% when implementing recommended
design patterns [8]. These systems can automatically refactor simpler code sections while requiring human guidance
for more complex transformations, typically achieving full automation for around 40% of identified refactoring
opportunities. The ability to reorganize code to improve maintainability has demonstrated maintenance cost reductions
of 20-35% in documented case studies, while extraction of business logic from presentation layers improves both
maintainability and facilitates future migrations.

4.3. Language and Framework Migration

4.3.1. Code Translation

AI can assist in translating code between languages, showing particular promise for modernizing legacy systems. Data
indicates that approximately 92% of IT leaders consider automated code conversion essential for addressing the COBOL
skills shortage, with AI-based translation showing significant advantages over rule-based approaches [8]. C to C++
modernization follows similar patterns, while Visual Basic to .NET transformations benefit from pattern recognition
capabilities that identify platform-specific adaptations required during migration. Legacy SQL to modern ORM
implementations represent another significant migration category, with research showing potential performance
improvements of 25-40% when moving from legacy database access patterns to modern frameworks.

4.3.2. Architecture Modernization

Beyond language updates, AI helps with monolith to microservice decomposition. Technical debt research emphasizes
that architectural issues represent the highest-impact form of technical debt, with architectural decisions accounting
for approximately 65% of long-term maintenance costs [7]. Migration to cloud-native architectures benefits from
systematic approaches that prioritize components based on business value and technical metrics. AI-guided
implementation of modern design patterns helps address the estimated 60% of architectural debt that remains invisible
until it impacts performance or maintenance costs, while separation of concerns in tightly coupled systems addresses
one of the most challenging aspects of legacy modernization.

4.4. Automated Test Generation

AI significantly improves testing of legacy systems through automatic unit test creation based on existing code behavior.
Research indicates that legacy systems typically have test coverage below 30%, creating significant modernization risks
that AI-generated tests can mitigate [8]. Integration test scenario identification helps address cross-module
dependencies that exist in approximately 78% of legacy applications. Edge case detection and test coverage analysis
benefit from machine learning approaches that identify test gaps in critical paths, while regression test suite generation
ensures behavior preservation throughout the modernization process, reducing the 40-60% of modernization projects
that historically experienced critical functionality regressions.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(01), 1390-1397

1395

Table 2 AI-Driven Modernization: Performance Improvement Opportunities [7,8]

Metric Percentage

Technical debt impact concentrated in small portion of codebase 80% from 20% of code

Code duplication in typical legacy codebases 15-25%

Complexity reduction from AI-driven refactoring 30%

Architectural debt's contribution to long-term maintenance costs 65%

Typical test coverage in legacy systems Below 30%

5. Implementation Approaches and Best Practices

5.1. Hybrid Human-AI Workflows

The most effective modernization strategies leverage both AI capabilities and human expertise in complementary roles.
Research indicates that hybrid approaches where AI generates initial documentation and refactoring proposals yield
significantly better outcomes than either purely automated or manual approaches [9]. When comparing different
system development methodologies, projects employing hybrid workflows demonstrated 31% higher completion rates
within initial time estimates compared to traditional approaches. Human developers reviewing and refining AI
suggestions play a crucial role, with structured feedback loops significantly improving output quality. Studies show that
iterative improvement cycles that capture feedback between AI systems and human experts lead to approximately 28%
higher accuracy in generated artifacts over time. Domain experts validating business logic interpretations remain
essential, with research indicating that projects incorporating structured domain expert review phases reduced critical
business rule misinterpretations by over 35% compared to purely technical reviews.

5.2. Incremental Modernization Strategies

Rather than complete rewrites, successful projects typically follow incremental approaches that manage risk more
effectively. Analysis of transformation projects indicates that incremental modernization approaches are 2.5 times more
likely to achieve business objectives than "big bang" replacement strategies [10]. Strangler pattern implementations
that gradually replace legacy components have proven particularly effective, allowing organizations to adapt to
changing requirements during the transformation process. Organizations prioritizing high-value or high-risk modules
consistently report stronger ROI metrics, with top-performing digital transformations yielding 3-4 times the return of
less strategic initiatives. Maintaining operational capabilities throughout the modernization process is equally critical,
with research showing that successful transformations minimize business disruption while achieving technical
objectives. Parallel running of old and new implementations to verify equivalence provides essential quality assurance,
with comparative analysis showing that this approach identifies approximately 28% more potential issues before
production deployment.

5.3. Tools and Technologies

Several current technologies support AI-driven legacy system modernization with demonstrated effectiveness.
Comparative analysis of code analysis platforms shows that those incorporating machine learning capabilities
consistently outperform traditional tools, with accuracy improvements of 23-36% for identifying complex technical
debt patterns [9]. Documentation generators using natural language processing technologies reduce documentation
effort by approximately 40% while maintaining acceptable quality standards. Research indicates that automated
refactoring tools with AI assistance correctly identify 57% of optimization opportunities across diverse code bases,
though implementation still requires significant human oversight. Intelligent test generators for behavioral verification
improve test coverage metrics by an estimated 33% compared to manual test creation approaches for equivalent effort.
Visualization systems for architecture understanding round out the essential toolkit, with studies demonstrating 25%
improvements in architectural comprehension scores when teams employ visual modeling tools during modernization
planning.

5.4. Measuring Success

Effective modernization projects track metrics that demonstrate business and technical value throughout the
transformation process. Research shows that organizations leading in digital transformation achieve 25% higher
customer satisfaction scores and 41% faster time-to-market for new capabilities [10]. System reliability improvements

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(01), 1390-1397

1396

provide another essential metric, with high-performing transformations reporting 20-30% reductions in critical
incidents following modernization. Developer experience metrics are equally important, with decreased onboarding
time for new developers serving as a key indicator of improved codebase health. Analysis indicates that successful
modernization typically reduces onboarding time by 30-40%, with corresponding improvements in developer retention
metrics. Increased development velocity for new features represents perhaps the most significant business value
metric, with research indicating that organizations successfully modernizing legacy systems deploy code 24 times more
frequently with 3 times lower change failure rates than those maintaining outdated architectures. Reduction in technical
debt measured through code quality metrics provides a fundamental indicator of modernization success, with
successful initiatives demonstrating measurable improvements in maintainability scores and corresponding reductions
in maintenance effort.

Table 3 Comparing Modernization Approaches: Success Metrics [9, 10]

Metric Percentage/Factor

Hybrid workflow completion rate improvement 31%

Success likelihood of incremental vs. big bang approaches 2.5 times

ROI of strategic vs. non-strategic modernization initiatives 3-4 times

Time-to-market improvement for modernized systems 41%

Developer onboarding time reduction after modernization 30-40%

6. Conclusion

The application of AI technologies to legacy system documentation and modernization represents a significant
advancement in software engineering practices. Rather than continuing to struggle with poorly documented, difficult-
to-maintain legacy systems, organizations can now leverage AI to systematically understand, document, and modernize
their critical applications. By generating comprehensive documentation, AI tools reduce the knowledge barriers that
have traditionally made legacy system maintenance so challenging. Through intelligent code analysis and automated
refactoring suggestions, these same tools help development teams gradually transform outdated codebases into
modern, maintainable systems without the risks associated with complete rewrites. As AI technologies continue to
advance, even more sophisticated capabilities for legacy system modernization will emerge. The ultimate goal remains
the same: transforming aging software systems into well-documented, efficiently architected applications that can
continue to deliver business value while adapting to changing requirements. For organizations heavily invested in
legacy systems, AI-driven modernization approaches offer a practical path forward that balances continuity with
innovation.

References

[1] RINF.tech, "Legacy System Modernization: Strategies for a Digital Future," RINF.tech.com. [Online]. Available:
https://www.rinf.tech/legacy-system-modernization-strategies-for-a-digital-
future/#:~:text=Legacy%20modernization%20is%20the%20process,and%20boost%20cybersecurity%20and
%20compliance.

[2] Erik Frederick, "The Financial Implications of Technical Debt," Toptal.com. [Online]. Available:
https://www.toptal.com/management-consultants/part-time-cfos/technical-
debt#:~:text=In%20simple%20terms%2C%20technical%20debt,or%20code%20is%20overly%20complex.

[3] Adam Tornhill, "Business Costs of Technical Debt," CodeScene. [Online]. Available:
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf

[4] Olga Gierszal, "The Strangler Pattern for Legacy System Modernization," Brainhub, 2024. [Online]. Available:
https://brainhub.eu/library/strangler-pattern-legacy-modernization

[5] Sergio Cozzetti B. de Souza et al., "A Study of the Documentation Essential to Software Maintenance," Conference:
the 23rd annual international conference, 2005. [Online]. Available:
https://www.researchgate.net/publication/200040518_A_Study_of_the_Documentation_Essential_to_Software
_Maintenance

https://www.rinf.tech/legacy-system-modernization-strategies-for-a-digital-future/#:~:text=Legacy%20modernization%20is%20the%20process,and%20boost%20cybersecurity%20and%20compliance
https://www.rinf.tech/legacy-system-modernization-strategies-for-a-digital-future/#:~:text=Legacy%20modernization%20is%20the%20process,and%20boost%20cybersecurity%20and%20compliance
https://www.rinf.tech/legacy-system-modernization-strategies-for-a-digital-future/#:~:text=Legacy%20modernization%20is%20the%20process,and%20boost%20cybersecurity%20and%20compliance
https://www.toptal.com/management-consultants/part-time-cfos/technical-debt#:~:text=In%20simple%20terms%2C%20technical%20debt,or%20code%20is%20overly%20complex
https://www.toptal.com/management-consultants/part-time-cfos/technical-debt#:~:text=In%20simple%20terms%2C%20technical%20debt,or%20code%20is%20overly%20complex
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://brainhub.eu/library/strangler-pattern-legacy-modernization
https://www.researchgate.net/publication/200040518_A_Study_of_the_Documentation_Essential_to_Software_Maintenance
https://www.researchgate.net/publication/200040518_A_Study_of_the_Documentation_Essential_to_Software_Maintenance

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(01), 1390-1397

1397

[6] Richa Agrawal, "Bridging the Tech Gap: Using AI in Legacy Project Digital Transformation," LinkedIn, 2024.
[Online]. Available: https://www.linkedin.com/pulse/bridging-tech-gap-using-ai-legacy-project-digital-richa-
agrawal-pkpcc/

[7] Reem Alfayez et al., "A systematic literature review of technical debt prioritization," Conference: TechDebt '20:
International Conference on Technical Debt, 2020. [Online]. Available:
https://www.researchgate.net/publication/347577681_A_systematic_literature_review_of_technical_debt_prio
ritization

[8] Srikumar Ramanathan, "AI-Driven Approaches to Legacy System Modernization," AI Business, 2024. [Online].
Available: https://aibusiness.com/automation/ai-driven-approaches-to-legacy-system-modernization

[9] Umeh Innocent Ikechukwu and Kobimdi Cordelia Umeh, "A Comparative Analysis of AI System Development
Tools for Improved Outcomes," International Journal of Sustainability Management and Information
Technologies 11(1):1-20, 2025. [Online]. Available:
https://www.researchgate.net/publication/388653882_A_Comparative_Analysis_of_AI_System_Development_
Tools_for_Improved_Outcomes

[10] Muhammad Raza, "Digital Transformation Metrics & KPIs for Measuring Success," BMC Blogs, 2020. [Online].
Available: https://www.bmc.com/blogs/digital-transformation-metrics-kpis/

https://www.linkedin.com/pulse/bridging-tech-gap-using-ai-legacy-project-digital-richa-agrawal-pkpcc/
https://www.linkedin.com/pulse/bridging-tech-gap-using-ai-legacy-project-digital-richa-agrawal-pkpcc/
https://www.researchgate.net/publication/347577681_A_systematic_literature_review_of_technical_debt_prioritization
https://www.researchgate.net/publication/347577681_A_systematic_literature_review_of_technical_debt_prioritization
https://aibusiness.com/automation/ai-driven-approaches-to-legacy-system-modernization
https://www.researchgate.net/publication/388653882_A_Comparative_Analysis_of_AI_System_Development_Tools_for_Improved_Outcomes
https://www.researchgate.net/publication/388653882_A_Comparative_Analysis_of_AI_System_Development_Tools_for_Improved_Outcomes
https://www.bmc.com/blogs/digital-transformation-metrics-kpis/

