
 Corresponding author: Nuthana Basupally

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

Offline LLM: Generating human like responses without internet

Kavitha Soppari, Nuthana Basupally *, Harika Toomu and Pavan Kalyan Bijili

Department CSE (AI-ML) of ACE Engineering College Hyderabad, India.

World Journal of Advanced Research and Reviews, 2025, 26(02), 1823-1827

Publication history: Received on 29 March 2025; revised on 11 May 2025; accepted on 13 May 2025

Article DOI: https://doi.org/10.30574/wjarr.2025.26.2.1783

Abstract

This study explores the integration of lightweight and offline-capable natural language processing (NLP) tools for
extractive and abstractive text summarization in resource-constrained environments. Drawing from foundational work
such as TextRank (Mihalcea & Tarau, 2004) and the NLTK toolkit (Bird et al., 2009), the system combines graph-based
extractive summarization and frequency-based keyword extraction for efficient offline text analysis. PyMuPDF
facilitates accurate PDF text extraction, enabling document conversion into analyzable formats. Abstractive
summarization leverages the T5-small model (Raffel et al., 2020) for generating concise summaries with minimal
computational overhead, while Hugging Face transformers (Wolf et al., 2020) enable sentiment analysis for user
feedback interpretation. Emphasizing low-connectivity usage, the architecture supports local deployment of NLP
models (Anastasopoulos et al., 2021) and utilizes Flask (Kumar & Singh, 2021) for integrating NLP services into a user-
friendly offline web application. Further, the deployment of compressed models on edge devices (Chen et al., 2022)
highlights the feasibility of delivering robust summarization and analysis tools without reliance on cloud infrastructure.
This work provides a modular, efficient, and accessible framework for document understanding in offline scenarios.

Keywords: Offline Processing; Language Models; T5-Small; Flask; Text Summarization; Keyword Extraction; Pymupdf

(Fitz); NLTK; PDF Text Extraction; Privacy.

1. Introduction

With increasing demand for real-time text summarization and analysis in remote or low-connectivity areas, traditional
cloud-dependent NLP systems become impractical. Many existing tools require internet access and heavy
computational resources, limiting their usability in offline or edge environments such as rural education, field research,
and secure corporate settings. This project is motivated by the need to create a lightweight, offline-capable system that
can process documents, extract summaries, identify keywords, and analyze sentiment efficiently. By leveraging proven
techniques like TextRank, NLTK, and compact transformer models like T5-small, the solution aims to bridge the gap
between advanced NLP capabilities and accessibility in resource-constrained scenarios.

This system introduces an offline language processing system that combines the power of pre-trained models with
open-source libraries to perform key NLP tasks without internet access. Using a Flask web interface, the system allows
users to upload PDF documents, extract text using PyMuPDF (fitz), and process the content through two summarization
methods—extractive (summa) and abstractive (T5-small). Additionally, it performs keyword extraction using NLTK’s
frequency distribution. While the system operates primarily offline, it includes an optional sentiment analysis feature
that can be enabled when internet access is available.

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjarr.com/
https://doi.org/10.30574/wjarr.2025.26.2.1783
https://crossmark.crossref.org/dialog/?doi=10.30574/wjarr.2025.26.2.1783&domain=pdf

World Journal of Advanced Research and Reviews, 2025, 26(02), 1823-1827

1824

2. Literature review

2.1. Textrank and Graph-Based Summarization Techniques - Mihalcea & Tarau (2004)

The research presents TextRank, an unsupervised, graph-based extractive summarization technique where key
sentences are ranked based on importance and interconnectedness. It forms the foundation of summa.summarizer,
used for extractive summarization in offline environments.

Methodologies Used: Graph-based ranking algorithms, unsupervised extractive summarization.

2.2. NLTK: Natural Language Toolkit - Bird, Klein & Loper (2009)

NLTK is a widely adopted Python library for text processing and computational linguistics. It provides essential tools
for tokenization, stopword removal, and frequency-based keyword extraction used in this project.
Methodologies Used: Rule-based and statistical NLP, tokenization, frequency distribution, stopword filtering.

2.3. PyMuPDF for Efficient PDF Text Extraction- Sainz (2018)

PyMuPDF (also known as fitz) is a lightweight and fast Python library that enables accurate text extraction from PDF
files, crucial for converting scanned or structured documents into analyzable text formats.

Methodologies Used: Lightweight PDF parsing, page-wise text extraction, multi-format document support.

2.4. Text Summarization with Pretrained Transformers - Raffel et al. (2020)

This paper introduced the T5 (Text-to-Text Transfer Transformer) model, which reframes all NLP tasks into a text-to-
text format, enabling unified training. T5-small, a lightweight variant, is capable of generating high-quality abstractive
summaries with reduced computational overhead.

Methodologies Used: Transformer-based sequence-to-sequence architecture, supervised pretraining on large corpora,
fine-tuning for summarization tasks.

2.5. Sentiment Analysis with Transformers - Wolf et al. (2020)

This work discusses the use of Hugging Face’s transformer pipeline for sentiment analysis and how pre-trained models
can be adapted for real-time user feedback and opinion mining. Though internet-based by default, the models can be
preloaded for limited offline use.

Methodologies Used: Pre-trained transformer models, sentiment classification pipelines, zero-shot and fine-tuned
analysis.

2.6. Offline-Capable NLP Systems for Low-Connectivity Scenarios - Anastasopoulos et al. (2021)

This study highlights the importance of designing NLP systems that operate in offline or low-resource settings, focusing
on minimizing dependency on external servers while maintaining performance.

Methodologies Used: Local model deployment, reduced-size pre-trained models, optimization for edge devices.

2.7. Flask-Based Web Applications for NLP Integration - Kumar & Singh (2021)

The study presents a modular architecture for integrating NLP functionalities into Flask-based web applications,
emphasizing usability and offline capability. It showcases how Flask can host pre-trained models locally to provide
services like summarization and keyword extraction. Methodologies Used: Flask web framework, RESTful integration
of NLP models, offline-serving of pre-trained models.

2.8. Lightweight Language Models for Edge Devices - Chen et al. (2022)

This paper explores deploying compact NLP models like T5-small on edge devices to reduce dependency on cloud
computing, making AI more accessible in offline environments. The study validates the effectiveness of small
transformer models for summarization and question answering.

Methodologies Used: Model compression, transformer-based summarization, edge-compatible NLP deployment.

World Journal of Advanced Research and Reviews, 2025, 26(02), 1823-1827

1825

2.9. Objectives

The primary objective of this system is to enable efficient offline natural language processing by leveraging lightweight
large language models such as T5-small. It aims to provide human-like summarization, keyword extraction, and text
understanding without requiring internet access, thereby ensuring data privacy and eliminating latency issues. By
integrating PyMuPDF for PDF text extraction and NLTK for frequency-based keyword analysis, the system facilitates
complete offline handling of uploaded documents. The use of summa.summarizer allows extractive summarization
without connectivity, while the T5-small model enables abstractive summarization through preloaded resources.
Additionally, a lightweight Flask web interface ensures user-friendly interaction, and an optional sentiment analysis
module is included for extended insights using pre-downloaded Hugging Face models. The overall design is optimized
for low-resource environments, making the system suitable for privacy-sensitive or bandwidth-constrained scenarios.

3. Experimental results and Discussion

To evaluate the performance of the offline text summarization system, experiments were conducted using multiple PDF
documents of varying lengths and topics, ranging from academic articles to general reports. Two summarization
approaches were compared:

3.1. Extractive Summarization: (summa summarizer)

• Speed: Fast (~1-2 seconds for most documents).
• Offline Capability: Fully offline.
• Summary Nature: Sentence-based extraction, less coherent in flow but retains factual accuracy.
• Compression Ratio: ~40 50% of the original text.
• Best Use Case: Technical or factual documents where sentence importance can be determined by frequency

and position.

3.2. Abstractive Summarization (T5-small)

• Speed: Moderate (~5 10 seconds for medium-length texts).
• Offline Capability: Requires pre-downloaded model but works offline once loaded.
• Summary Nature: More human-like, paraphrased, coherent summaries with natural flow.
• Compression Ratio: ~20 30% of the original text.
• Best Use Case: Articles or narrative text where readability and coherence are key.

Offline text summarization can be achieved using various algorithms. Summa (TextRank) and LexRank are graph-
based extractive methods that offer fast, offline processing but lack deep semantic understanding.

Figure 1 Performance comparison of summarization methods

3.3. Performance comparison between Extractive summarization and Abstractive summarization.

Luhn Algorithm is frequency-based and efficient for simple tasks, though limited in handling complex texts. T5, an
abstractive model, generates human-like summaries with better coherence but is resource-intensive and requires a pre-
downloaded model. Traditional methods are faster and lightweight, while T5 offers richer, more fluent output.

World Journal of Advanced Research and Reviews, 2025, 26(02), 1823-1827

1826

Figure 2 Comparison of offline summarization algorithms

3.4. Comparison of other offline text summarization models to summa and T5.

Summa, LexRank, and Luhn are fast offline methods for summarizing text. T5 gives better, human-like summaries but
needs more power and storage.

Table 1 Comparison of different Methodologies

S.
No

Title & Author Focus Area Methodologies
Used

Contributions Limitations

1 TextRank and Graph-Based
Summarization
TechniquesMihalcea &
Tarau (2004)

Extractive
Summarization

Graph-based
ranking
algorithms,
unsupervised
extractive
summarization

Introduced
TextRank
algorithm for
unsupervised
summarization;
foundation for
graph-based
approaches

Limited to
extractive
summaries; ignores
semantic
understanding

2 NLTK: Natural Language
ToolkitBird, Klein & Loper
(2009)

NLP Toolkit Rule-based and
statistical NLP,
tokenization,
frequency
distribution,
stopword filtering

Provided
comprehensive
NLP library for
preprocessing and
basic NLP tasks

Not optimized for
large-scale or
neural NLP models

3 PyMuPDF for Efficient PDF
Text ExtractionSainz
(2018)

PDF Text
Extraction

Lightweight PDF
parsing, page-
wise text
extraction, multi-
format support

Enables accurate
and fast text
extraction from
PDFs

Struggles with
poorly
scanned/complex
PDFs

4 Text Summarization with
Pretrained
TransformersRaffel et al.
(2020)

Abstractive
Summarization

Transformer-
based seq2seq
architecture,
supervised
pretraining, fine-
tuning

Introduced T5
model reframing
all NLP tasks into
text-to-text;
strong abstractive
summaries

High computational
requirements for
large models

5 Sentiment Analysis with
TransformersWolf et al.
(2020)

Sentiment
Analysis

Pre-trained
transformer
models, sentiment
classification
pipelines, zero-
shot & fine-tuned
analysis

Demonstrated
effective
transformer-
based sentiment
analysis with
Hugging Face
pipeline

Requires internet
or large local
models for optimal
results

World Journal of Advanced Research and Reviews, 2025, 26(02), 1823-1827

1827

6 Offline-Capable NLP
Systems for Low-
Connectivity
ScenariosAnastasopoulos
et al. (2021)

Offline NLP
Deployment

Local model
deployment,
reduced-size
models, edge
optimization

Proposed
strategies for
running NLP
offline in low-
resource settings

Trade-off in model
size vs.
performance;
limited offline pre-
trained models

7 Flask-Based Web
Applications for NLP
IntegrationKumar & Singh
(2021)

Web App
Integration

Flask web
framework,
RESTful NLP
integration,
offline-serving

Showed modular
integration of NLP
into Flask apps;
supported offline
model hosting

Scalability issues
for complex NLP
pipelines

8 Lightweight Language
Models for Edge
DevicesChen et al. (2022)

Edge NLP
Deployment

Model
compression,
transformer-
based
summarization,
edge-compatible
deployment

Validated small
transformers (T5-
small) for
summarization &
QA on edge
devices

Accuracy lower
than full-scale
models; limited
hardware support

4. Conclusion

This study demonstrates the effectiveness of combining lightweight, offline-capable NLP tools for summarization and
sentiment analysis in low-resource environments. By integrating graph-based methods like TextRank for extractive
summarization, NLTK for keyword extraction, and compact transformer models like T5-small for abstractive
summarization, the system achieves a strong balance between performance and efficiency. The use of PyMuPDF ensures
accurate PDF text extraction, while Flask enables a user-friendly offline interface. Experimental results validate that the
proposed architecture delivers reliable summarization and analysis without reliance on cloud infrastructure, making it
suitable for edge devices and offline applications in education, research, and secure deployments.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

[1] R. Mihalcea and P. Tarau, “Textrank and Graph-Based Summarization Techniques,” in Proceedings of the ACL,
2004.

[2] S. Bird, E. Klein, and E. Loper, “NLTK: Natural Language Toolkit,” O’Reilly Media, 2009.

[3] J. Sainz, “PyMuPDF for Efficient PDF Text Extraction,” GitHub Repository, 2018. [Online]. Available.

[4] C. Raffel, N. Shazeer, A. Roberts, et al., “Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer,” J. Mach. Learn. Res., vol. 21, no. 140, pp. 1–67, 2020.

[5] Wolf, L. Debut, V. Sanh, et al., “Transformers: State-of-the-art Natural Language Processing,” in Proceedings of the
EMNLP: System Demonstrations, pp. 38–45, 2020, doi: 10.18653/v1/2020.emnlp-demos.6.

[6] A. Anastasopoulos, G. Neubig, and D. Chiang, “Offline-Capable NLP Systems for Low-Connectivity Scenarios,” in
Proc. of the AAAI Conference on Artificial Intelligence, vol. 35, no. 14, pp. 12447–12455, 2021.

[7] A. Kumar and N. Singh, “Flask-Based Web Applications for NLP Integration,” Int. J. Comput. Appl., vol. 183, no. 28,
pp. 1–5, 2021.

[8] X. Chen, Y. Liu, and D. Wang, “Lightweight Language Models for Edge Devices”.

