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Abstract 

This study explores the integration of lightweight and offline-capable natural language processing (NLP) tools for 
extractive and abstractive text summarization in resource-constrained environments. Drawing from foundational work 
such as TextRank (Mihalcea & Tarau, 2004) and the NLTK toolkit (Bird et al., 2009), the system combines graph-based 
extractive summarization and frequency-based keyword extraction for efficient offline text analysis. PyMuPDF 
facilitates accurate PDF text extraction, enabling document conversion into analyzable formats. Abstractive 
summarization leverages the T5-small model (Raffel et al., 2020) for generating concise summaries with minimal 
computational overhead, while Hugging Face transformers (Wolf et al., 2020) enable sentiment analysis for user 
feedback interpretation. Emphasizing low-connectivity usage, the architecture supports local deployment of NLP 
models (Anastasopoulos et al., 2021) and utilizes Flask (Kumar & Singh, 2021) for integrating NLP services into a user-
friendly offline web application. Further, the deployment of compressed models on edge devices (Chen et al., 2022) 
highlights the feasibility of delivering robust summarization and analysis tools without reliance on cloud infrastructure. 
This work provides a modular, efficient, and accessible framework for document understanding in offline scenarios. 
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1. Introduction

With increasing demand for real-time text summarization and analysis in remote or low-connectivity areas, traditional 
cloud-dependent NLP systems become impractical. Many existing tools require internet access and heavy 
computational resources, limiting their usability in offline or edge environments such as rural education, field research, 
and secure corporate settings. This project is motivated by the need to create a lightweight, offline-capable system that 
can process documents, extract summaries, identify keywords, and analyze sentiment efficiently. By leveraging proven 
techniques like TextRank, NLTK, and compact transformer models like T5-small, the solution aims to bridge the gap 
between advanced NLP capabilities and accessibility in resource-constrained scenarios.  

This system introduces an offline language processing system that combines the power of pre-trained models with 
open-source libraries to perform key NLP tasks without internet access. Using a Flask web interface, the system allows 
users to upload PDF documents, extract text using PyMuPDF (fitz), and process the content through two summarization 
methods—extractive (summa) and abstractive (T5-small). Additionally, it performs keyword extraction using NLTK’s 
frequency distribution. While the system operates primarily offline, it includes an optional sentiment analysis feature 
that can be enabled when internet access is available. 
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2. Literature review 

2.1. Textrank and Graph-Based Summarization Techniques - Mihalcea & Tarau (2004) 

The research presents TextRank, an unsupervised, graph-based extractive summarization technique where key 
sentences are ranked based on importance and interconnectedness. It forms the foundation of summa.summarizer, 
used for extractive summarization in offline environments. 

Methodologies Used: Graph-based ranking algorithms, unsupervised extractive summarization. 

2.2. NLTK: Natural Language Toolkit - Bird, Klein & Loper (2009) 

NLTK is a widely adopted Python library for text processing and computational linguistics. It provides essential tools 
for tokenization, stopword removal, and frequency-based keyword extraction used in this project. 
Methodologies Used: Rule-based and statistical NLP, tokenization, frequency distribution, stopword filtering. 

2.3. PyMuPDF for Efficient PDF Text Extraction- Sainz (2018) 

PyMuPDF (also known as fitz) is a lightweight and fast Python library that enables accurate text extraction from PDF 
files, crucial for converting scanned or structured documents into analyzable text formats. 

Methodologies Used: Lightweight PDF parsing, page-wise text extraction, multi-format document support. 

2.4. Text Summarization with Pretrained Transformers - Raffel et al. (2020) 

This paper introduced the T5 (Text-to-Text Transfer Transformer) model, which reframes all NLP tasks into a text-to-
text format, enabling unified training. T5-small, a lightweight variant, is capable of generating high-quality abstractive 
summaries with reduced computational overhead. 

Methodologies Used: Transformer-based sequence-to-sequence architecture, supervised pretraining on large corpora, 
fine-tuning for summarization tasks. 

2.5. Sentiment Analysis with Transformers - Wolf et al. (2020) 

This work discusses the use of Hugging Face’s transformer pipeline for sentiment analysis and how pre-trained models 
can be adapted for real-time user feedback and opinion mining. Though internet-based by default, the models can be 
preloaded for limited offline use. 

Methodologies Used: Pre-trained transformer models, sentiment classification pipelines, zero-shot and fine-tuned 
analysis. 

2.6. Offline-Capable NLP Systems for Low-Connectivity Scenarios - Anastasopoulos et al. (2021) 

This study highlights the importance of designing NLP systems that operate in offline or low-resource settings, focusing 
on minimizing dependency on external servers while maintaining performance. 

Methodologies Used: Local model deployment, reduced-size pre-trained models, optimization for edge devices. 

2.7. Flask-Based Web Applications for NLP Integration - Kumar & Singh (2021) 

The study presents a modular architecture for integrating NLP functionalities into Flask-based web applications, 
emphasizing usability and offline capability. It showcases how Flask can host pre-trained models locally to provide 
services like summarization and keyword extraction. Methodologies Used: Flask web framework, RESTful integration 
of NLP models, offline-serving of pre-trained models. 

2.8. Lightweight Language Models for Edge Devices - Chen et al. (2022) 

This paper explores deploying compact NLP models like T5-small on edge devices to reduce dependency on cloud 
computing, making AI more accessible in offline environments. The study validates the effectiveness of small 
transformer models for summarization and question answering. 

Methodologies Used: Model compression, transformer-based summarization, edge-compatible NLP deployment. 
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2.9. Objectives 

The primary objective of this system is to enable efficient offline natural language processing by leveraging lightweight 
large language models such as T5-small. It aims to provide human-like summarization, keyword extraction, and text 
understanding without requiring internet access, thereby ensuring data privacy and eliminating latency issues. By 
integrating PyMuPDF for PDF text extraction and NLTK for frequency-based keyword analysis, the system facilitates 
complete offline handling of uploaded documents. The use of summa.summarizer allows extractive summarization 
without connectivity, while the T5-small model enables abstractive summarization through preloaded resources. 
Additionally, a lightweight Flask web interface ensures user-friendly interaction, and an optional sentiment analysis 
module is included for extended insights using pre-downloaded Hugging Face models. The overall design is optimized 
for low-resource environments, making the system suitable for privacy-sensitive or bandwidth-constrained scenarios. 

3. Experimental results and Discussion 

To evaluate the performance of the offline text summarization system, experiments were conducted using multiple PDF 
documents of varying lengths and topics, ranging from academic articles to general reports. Two summarization 
approaches were compared: 

3.1. Extractive Summarization: (summa summarizer) 

• Speed: Fast (~1-2 seconds for most documents). 
• Offline Capability: Fully offline. 
• Summary Nature: Sentence-based extraction, less coherent in flow but retains factual accuracy. 
• Compression Ratio: ~40 50% of the original text. 
• Best Use Case: Technical or factual documents where sentence importance can be determined by frequency 

and position. 

3.2. Abstractive Summarization (T5-small) 

• Speed: Moderate (~5 10 seconds for medium-length texts). 
• Offline Capability: Requires pre-downloaded model but works offline once loaded. 
• Summary Nature: More human-like, paraphrased, coherent summaries with natural flow. 
• Compression Ratio: ~20 30% of the original text. 
• Best Use Case: Articles or narrative text where readability and coherence are key. 

Offline text summarization can be achieved using various algorithms. Summa (TextRank) and LexRank are graph-
based extractive methods that offer fast, offline processing but lack deep semantic understanding. 

 

Figure 1 Performance comparison of summarization methods 

3.3. Performance comparison between Extractive summarization and Abstractive summarization. 

Luhn Algorithm is frequency-based and efficient for simple tasks, though limited in handling complex texts. T5, an 
abstractive model, generates human-like summaries with better coherence but is resource-intensive and requires a pre-
downloaded model. Traditional methods are faster and lightweight, while T5 offers richer, more fluent output. 
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Figure 2 Comparison of offline summarization algorithms 

3.4. Comparison of other offline text summarization models to summa and T5. 

Summa, LexRank, and Luhn are fast offline methods for summarizing text. T5 gives better, human-like summaries but 
needs more power and storage. 

Table 1 Comparison of different Methodologies 

S. 
No 

Title & Author Focus Area Methodologies 
Used 

Contributions Limitations 

1 TextRank and Graph-Based 
Summarization 
TechniquesMihalcea & 
Tarau (2004) 

Extractive 
Summarization 

Graph-based 
ranking 
algorithms, 
unsupervised 
extractive 
summarization 

Introduced 
TextRank 
algorithm for 
unsupervised 
summarization; 
foundation for 
graph-based 
approaches 

Limited to 
extractive 
summaries; ignores 
semantic 
understanding 

2 NLTK: Natural Language 
ToolkitBird, Klein & Loper 
(2009) 

NLP Toolkit Rule-based and 
statistical NLP, 
tokenization, 
frequency 
distribution, 
stopword filtering 

Provided 
comprehensive 
NLP library for 
preprocessing and 
basic NLP tasks 

Not optimized for 
large-scale or 
neural NLP models 

3 PyMuPDF for Efficient PDF 
Text ExtractionSainz 
(2018) 

PDF Text 
Extraction 

Lightweight PDF 
parsing, page-
wise text 
extraction, multi-
format support 

Enables accurate 
and fast text 
extraction from 
PDFs 

Struggles with 
poorly 
scanned/complex 
PDFs 

4 Text Summarization with 
Pretrained 
TransformersRaffel et al. 
(2020) 

Abstractive 
Summarization 

Transformer-
based seq2seq 
architecture, 
supervised 
pretraining, fine-
tuning 

Introduced T5 
model reframing 
all NLP tasks into 
text-to-text; 
strong abstractive 
summaries 

High computational 
requirements for 
large models 

5 Sentiment Analysis with 
TransformersWolf et al. 
(2020) 

Sentiment 
Analysis 

Pre-trained 
transformer 
models, sentiment 
classification 
pipelines, zero-
shot & fine-tuned 
analysis 

Demonstrated 
effective 
transformer-
based sentiment 
analysis with 
Hugging Face 
pipeline 

Requires internet 
or large local 
models for optimal 
results 
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6 Offline-Capable NLP 
Systems for Low-
Connectivity 
ScenariosAnastasopoulos 
et al. (2021) 

Offline NLP 
Deployment 

Local model 
deployment, 
reduced-size 
models, edge 
optimization 

Proposed 
strategies for 
running NLP 
offline in low-
resource settings 

Trade-off in model 
size vs. 
performance; 
limited offline pre-
trained models 

7 Flask-Based Web 
Applications for NLP 
IntegrationKumar & Singh 
(2021) 

Web App 
Integration 

Flask web 
framework, 
RESTful NLP 
integration, 
offline-serving 

Showed modular 
integration of NLP 
into Flask apps; 
supported offline 
model hosting 

Scalability issues 
for complex NLP 
pipelines 

8 Lightweight Language 
Models for Edge 
DevicesChen et al. (2022) 

Edge NLP 
Deployment 

Model 
compression, 
transformer-
based 
summarization, 
edge-compatible 
deployment 

Validated small 
transformers (T5-
small) for 
summarization & 
QA on edge 
devices 

Accuracy lower 
than full-scale 
models; limited 
hardware support 

4.  Conclusion 

This study demonstrates the effectiveness of combining lightweight, offline-capable NLP tools for summarization and 
sentiment analysis in low-resource environments. By integrating graph-based methods like TextRank for extractive 
summarization, NLTK for keyword extraction, and compact transformer models like T5-small for abstractive 
summarization, the system achieves a strong balance between performance and efficiency. The use of PyMuPDF ensures 
accurate PDF text extraction, while Flask enables a user-friendly offline interface. Experimental results validate that the 
proposed architecture delivers reliable summarization and analysis without reliance on cloud infrastructure, making it 
suitable for edge devices and offline applications in education, research, and secure deployments. 
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