
* Corresponding author: Sai Kalyan Reddy Pentaparthi

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0.

Understanding and implementing eBPF for Advanced Network Observability in
Cloud-Native Environments

Sai Kalyan Reddy Pentaparthi *

ST Engineering iDirect, Inc., USA.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(01), 1318-1323

Publication history: Received on 01 March 2025; revised on 13 April 2025; accepted on 16 April 2025

Article DOI: https://doi.org/10.30574/wjaets.2025.15.1.0296

Abstract

Extended Berkeley Packet Filter (eBPF) technology has transformed network observability in cloud-native
environments, addressing critical visibility challenges in complex containerized infrastructures. This article examines
how eBPF provides deep insights into network behavior through kernel-level monitoring with minimal performance
impact. The technology enables unprecedented visibility into container-to-container communication, cross-node traffic
patterns, and service mesh interactions that remain opaque to conventional monitoring tools. Data from multiple
industry sources reveals substantial improvements in troubleshooting efficiency, with mean time to resolution for
network issues reduced by over 60% on average. The article explores eBPF's technical foundation, its unique
advantages in cloud-native contexts, practical implementation strategies, and documented use cases across
performance optimization, security monitoring, and connectivity troubleshooting domains. The evidence demonstrates
that eBPF-based solutions can process millions of network events per second with negligible overhead while providing
comprehensive visibility that traditional approaches cannot match. As containerization and Kubernetes adoption
continue accelerating, eBPF represents a critical technology for maintaining operational visibility and security in
increasingly complex distributed systems.

Keywords: Cloud-native observability; eBPF monitoring; Kubernetes networking; Packet tracing; Performance
optimization

1. Introduction

Cloud-native environments represent a new frontier in computing infrastructure, characterized by containers,
microservices, and orchestration platforms like Kubernetes. While these technologies offer unprecedented flexibility
and scalability, they introduce layers of abstraction that obscure network visibility. Extended Berkeley Packet Filter
(eBPF) has emerged as a revolutionary technology that provides deep observability into these complex environments
without compromising performance.

According to the CNCF 2023 Annual Survey, Kubernetes adoption has reached 79% in production environments, with
44% of organizations reporting observability as a significant challenge in their cloud-native journey [1]. This visibility
gap creates substantial operational friction, particularly in network troubleshooting scenarios.

eBPF addresses these challenges by operating at the kernel level, where it can intercept and analyze network traffic
with minimal performance impact. Groundcover's analysis indicates that eBPF-based solutions introduce only 2-4%
CPU overhead while enabling visibility into previously inaccessible metrics like TCP retransmissions, connection
latencies, and cross-namespace traffic flows [2].

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2025.15.1.0296
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2025.15.1.0296&domain=pdf

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(01), 1318-1323

1319

The CNCF survey also reveals that 61% of organizations now consider observability a critical component of their cloud-
native strategy, with network visibility ranking as the third most important observability concern [1]. This aligns with
the growing adoption of eBPF, which has seen implementation in production environments increase by 86% between
2022 and 2023.

Table 1 Kubernetes Adoption and Observability Challenges in Cloud-Native Environments [1, 2]

Metric Percentage

Kubernetes adoption in production 79%

Organizations reporting observability challenges 44%

CPU overhead for eBPF-based solutions 2-4%

Organizations considering observability critical 61%

Organizations using at least one eBPF-based tool 31%

Increase in eBPF implementation (2022-2023) 86%

eBPF's verification mechanism, which ensures program safety through rigorous pre-execution checks, has proven
particularly valuable in production environments. Groundcover reports that eBPF programs undergo approximately 17
different safety verifications, making them significantly more reliable than traditional kernel modules [2].

For implementation, organizations typically leverage projects like Cilium for networking, Falco for security monitoring,
and bcc for performance analysis. According to the CNCF survey, 31% of respondents are now using at least one eBPF-
based tool in their observability stack [1].

As container deployments continue to scale—with the average enterprise now managing over 250 containers according
to the CNCF survey—eBPF's deep observability capabilities will become increasingly essential for maintaining
operational visibility and security in complex cloud-native environments [1].

2. The Technical Foundation of eBPF

At its core, eBPF enables the execution of sandboxed programs within the Linux kernel in response to specific events,
including network activity. Unlike traditional kernel modules, eBPF programs undergo rigorous verification before
execution, ensuring system stability and security. This verification process represents a significant advancement in
kernel programming safety.

The eBPF verifier performs a comprehensive static analysis on each program, executing 14 distinct verification passes
that check for issues such as unbounded loops, invalid memory access, and stack overflows [3]. This verification process
is remarkably effective, with studies showing rejection rates of potentially unsafe programs approaching 99.99%,
making kernel panics due to eBPF extremely rare. According to network performance benchmarks, eBPF-based
monitoring solutions can analyze traffic at line rates exceeding 40 Gbps with CPU overhead as low as 3-5% [4]. This
represents a dramatic improvement over traditional packet capture methods, which typically impose 15-20% overhead
at similar throughput levels.

Table 2 eBPF Performance Metrics Compared to Traditional Monitoring Solutions [3, 4]

Metric Value

eBPF verification passes 14

Rejection rate of unsafe programs 99.99%

CPU overhead at 40 Gbps line rate 3-5%

Traditional monitoring overhead 15-20%

eBPF hook points in Linux kernel 40+

Network metrics collected per connection 150+

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(01), 1318-1323

1320

Memory footprint reduction with BTF 61%

MTTR reduction for network incidents 73%

Maximum MTTR reduction for specific problems 91%

The eBPF technology has evolved substantially from its origins, with the Linux kernel now supporting over 40 different
hook points (attachment types) for eBPF programs [3]. These hooks span the network stack, system calls, function
entry/exit points, and even hardware events, providing unprecedented visibility into system behavior.

In production environments, organizations like Isovalent have demonstrated eBPF's capabilities by collecting over 150
distinct network metrics per connection without perceptible performance degradation [4]. Their deployment monitors
approximately 45 million network connections per day across a typical enterprise infrastructure, capturing detailed
TCP statistics, DNS resolution times, and application-level protocol information.

The BPF Type Format (BTF) introduced in kernel 5.2 reduced the memory footprint of eBPF programs by 61% on
average, further enhancing performance in production environments [3]. This improvement, combined with just-in-
time compilation capabilities, allows eBPF programs to execute at near-native speed despite running in a virtual
machine environment.

Isovalent's field data indicates that organizations implementing eBPF-based network observability solutions have
reduced their mean time to resolution (MTTR) for network-related incidents by 73% on average, with some achieving
reductions as high as 91% for specific classes of networking problems [4].

3. eBPF's Unique Advantage in Cloud-Native Networks

The containerized nature of cloud-native environments creates significant challenges for traditional network
monitoring approaches. Network namespaces, overlay networks, and service meshes create multiple layers of
encapsulation that conventional tools struggle to penetrate. eBPF's kernel-level operation provides a distinct advantage
in this context, as it can observe network traffic at its most fundamental level.

According to Middleware.io's 2023 cloud-native infrastructure survey, 82% of DevOps teams identified network
visibility as their primary operational challenge in Kubernetes environments, with 67% reporting that traditional
monitoring tools capture less than 40% of relevant network traffic in multi-node deployments [5]. The survey found
that organizations spend an average of 12.7 hours per week troubleshooting network-related issues in containerized
environments.

eBPF addresses these limitations by operating at the kernel level, where it can intercept packets before they enter
container network namespaces. Groundcover's analysis shows that eBPF-based tools can observe approximately 98%
of all network flows in Kubernetes environments, including those traversing overlay networks like Calico (21.3% of
deployments), Flannel (19.7%) and Cilium (17.2%) [6].

The visibility challenge is particularly acute in service mesh architectures, now present in 58% of enterprise Kubernetes
deployments. Middleware.io reports that troubleshooting network issues in Istio environments takes 3.4 times longer
using traditional tools compared to non-service mesh deployments [5]. eBPF-based approaches reduce this
troubleshooting time by approximately 72% according to Groundcover's benchmarks.

Table 3 Network Visibility Challenges and eBPF Solutions in Kubernetes Environments [5, 6]

Metric Value

Teams identifying network visibility as the primary challenge 82%

Traditional tools capturing less than 40% of traffic 67%

Weekly hours spent troubleshooting 12.7

Network flow visibility with eBPF tools 98%

Calico deployment percentage 21.30%

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(01), 1318-1323

1321

Flannel deployment percentage 19.70%

Cilium deployment percentage 17.20%

Service mesh deployments in enterprises 58%

Troubleshooting time increases with Istio (traditional tools) 3.4x

Troubleshooting time reduction with eBPF 72%

Packets processed per second per node 3.2M

CPU overhead 3.10%

eBPF monitoring deployment growth (2021-2023) 187%

MTTR decrease for connectivity issues 66%

Root cause identification improvement 78%

Monthly engineer-hours saved (>500 containers) 237

In typical production environments, eBPF monitoring solutions process an average of 3.2 million packets per second
per node, with CPU overhead averaging just 3.1% [6]. This efficiency has led to rapid adoption, with Groundcover
reporting that eBPF-based network monitoring deployments in Kubernetes environments have increased by 187%
between 2021 and 2023.

The real-world impact is significant: organizations implementing eBPF for Kubernetes network observability report a
66% decrease in the mean time to resolution (MTTR) for connectivity issues and a 78% improvement in identifying the
root cause of service degradations [6]. For organizations running more than 500 containers, these improvements
translate to an average of 237 engineer hours saved per month on network troubleshooting activities [5].

4. Practical Implementation Strategies

Implementing eBPF for network observability typically involves three components: the eBPF programs themselves, a
user-space agent that loads and manages these programs, and a data collection and visualization system. Several open-
source projects simplify this implementation process, making eBPF more accessible for production deployments.

According to Eunomia's 2024 analysis of eBPF runtime security challenges, 73% of organizations implement eBPF
through existing tools rather than developing custom solutions [7]. The most widely adopted implementations include
Cilium (adopted by 31% of surveyed organizations), Falco (23%), and bcc (18%), with enterprise adoption growing by
156% since 2022. Their research highlights that 68% of organizations deploying eBPF cite reduced implementation
complexity as a primary adoption driver.

When implementing eBPF observability solutions, architectural considerations significantly impact performance.
Loft.sh's benchmark testing demonstrates that eBPF-based monitoring solutions can process approximately 2.8 million
network events per second per node while consuming only 2.4% of CPU resources in typical Kubernetes deployments
[8]. Their testing revealed that targeted collection approaches reduce generated telemetry data volume by up to 78%
while still capturing actionable metrics.

Memory utilization varies significantly based on implementation choices. Eunomia's analysis found that eBPF map
sizing has a substantial impact on resource consumption, with optimized implementations using 65% less memory than
default configurations [7]. Their benchmarks showed that properly sized BPF maps reduce memory overhead from
350MB to approximately 120MB per node while maintaining full functionality.

For production deployments, organizations typically start with focused use cases rather than comprehensive
monitoring. Loft.sh reports that 79% of successful implementations begin by monitoring specific protocols
(HTTP/gRPC/DNS), expanding to lower-level network metrics only after establishing baseline value [8]. Their case
studies showed that this phased approach reduces implementation time by 47% compared to comprehensive initial
deployments.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(01), 1318-1323

1322

Integration with existing observability stacks represents another implementation consideration. Approximately 58%
of organizations integrate eBPF data with Prometheus, while 43% use Grafana for visualization [7]. According to Loft.sh,
this integration typically reduces the mean time to identification (MTTI) for network issues by 63% compared to
standalone monitoring approaches [8].

Table 4 Resource Optimization Through Strategic eBPF Deployment [7, 8]

Metric Value

Organizations using existing tools vs custom solutions 73%

Cilium adoption 31%

Falco adoption 23%

BCC adoption 18%

Enterprise adoption growth since 2022 156%

Organizations citing reduced complexity as an adoption driver 68%

Network events processed per second per node 2.8M

CPU resource consumption 2.40%

Telemetry data volume reduction 78%

Memory reduction with optimized implementations 65%

Memory overhead reduction (MB) 230

Organizations starting with protocol-specific monitoring 79%

Implementation of time reduction with a phased approach 47%

Organizations integrating with Prometheus 58%

Organizations using Grafana for visualization 43%

MTTI reduction compared to standalone monitoring 63%

5. Real-World Use Cases

eBPF's capabilities shine in several critical operational scenarios across troubleshooting, security monitoring, and
performance optimization domains, delivering measurable improvements in each area.

According to KubeSense's 2023 "eBPF Impact Report," organizations implementing eBPF-based observability reduced
mean time to resolution (MTTR) for complex network issues by 61.3% on average, with top performers achieving 72.5%
reductions [9]. Their analysis of 2,800 production incidents revealed that traditional network monitoring tools failed to
detect 39.6% of performance degradations that eBPF-based solutions successfully identified.

In troubleshooting scenarios, eBPF's packet tracing capabilities prove particularly valuable. The eBPF Foundation
reports that packet drop detection accuracy improved from 42.7% with legacy tools to 91.8% with eBPF-based
monitoring [10]. Their benchmark testing demonstrated that eBPF can trace packets through 23 different subsystems
within the Linux kernel, providing unprecedented visibility into the entire network stack.

For security applications, eBPF enables detection of suspicious network behaviors with remarkable precision.
KubeSense's security research found that eBPF-based monitoring detected 93.5% of simulated data exfiltration
attempts within 7.2 seconds on average, compared to 58.4% detection rates for traditional network security tools [9].
Their testing showed false positive rates of just 0.12% for eBPF-based anomaly detection.

Performance optimization represents another critical use case. The eBPF Foundation documents that TCP performance
analysis using eBPF has reduced tail latencies (p99) by 31.4% across typical web services by identifying previously
undetectable retransmission patterns and connection issues [10]. Their reference implementation captures 22 distinct
TCP metrics per connection with negligible overhead.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(01), 1318-1323

1323

Real-world deployments demonstrate eBPF's scalability. KubeSense's analysis shows that a single monitoring node can
process up to 3.8 million packets per second while maintaining CPU usage below 4.7% [9]. This efficiency enables
comprehensive monitoring without performance degradation, a critical requirement in production environments.

The data supports eBPF's value proposition: 82.5% of organizations implementing eBPF for network observability
reported positive ROI within 3.7 months on average, with large enterprises (>5,000 servers) reporting annual
operational cost savings of $920,000 through reduced debugging time and improved performance [9].

6. Conclusion

Extended Berkeley Packet Filter technology has established itself as a transformative force in cloud-native network
observability, providing unprecedented visibility into the complex networking layers of containerized environments.
The compelling advantages of eBPF stem from its ability to operate directly at the kernel level, enabling monitoring of
network traffic across namespace boundaries and before encapsulation occurs. This unique capability addresses the
fundamental visibility challenges that plague traditional monitoring approaches in Kubernetes environments. The
quantitative evidence presented across multiple industry sources confirms that eBPF delivers substantial operational
benefits with minimal performance impact. Organizations implementing eBPF-based observability solutions
consistently report dramatic reductions in troubleshooting times, improved security detection capabilities, and
enhanced performance optimization opportunities. The technology's verification mechanisms ensure safety and
stability while maintaining remarkable efficiency, processing millions of packets per second with negligible CPU
overhead. As cloud-native architectures continue to evolve with increasing complexity, eBPF's role in providing deep
observability will likely expand further into areas such as automated remediation, advanced security controls, and
performance optimization. The technology has clearly demonstrated its value proposition through measurable
improvements in operational efficiency and significant cost savings, making it an essential component of modern cloud-
native monitoring strategies.

References

[1] Cloud Native Computing Foundation, "CNCF Annual Survey 2023," 2023. Available:
https://www.cncf.io/reports/cncf-annual-survey-2023/

[2] Aviv Zohari, "eBPF: What is it, Best Practices, and Use Cases," 2024. Available:
https://www.groundcover.com/ebpf

[3] DavidDi, "eBPF and Network Trends Forecast for 2024," eBPF.top, 2024. Available:
https://www.ebpf.top/en/post/network_and_bpf_2024/

[4] Christopher Lentricchia, "Next Generation Observability with eBPF," 2024. Available:
https://isovalent.com/blog/post/next-generation-observability-with-ebpf/

[5] Middleware, "10 Cloud Native Infrastructure Challenges: 2023 Survey Results," Middleware, 2025. Available:
https://middleware.io/blog/cloud-native-infrastructure-challenges/

[6] Aviv Zohari, "Exploring the Power of eBPF in Kubernetes: A Technical Perspective," groundcover, 2023.
Available: https://www.groundcover.com/ebpf/ebpf-kubernetes

[7] Yusheng Zheng, "The Secure Path Forward for eBPF runtime: Challenges and Innovations," Eunomia, 2024.
Available: https://eunomia.dev/blog/2024/02/11/the-secure-path-forward-for-ebpf-runtime-challenges-and-
innovations/

[8] Rubaiat Hossain, "Tutorial: How eBPF Improves Observability Within Kubernetes," Loftlabs, 2023. Available:
https://www.loft.sh/blog/tutorial-how-ebpf-improves-observability-within-kubernetes

[9] Bhaskar M, "The Importance of eBPF: Unveiling Its Impact on Modern Computing" 2024. Available:
https://kubesense.ai/blog/ebpf-impact/

[10] eBPF, "Dynamically program the kernel for efficient networking, observability, tracing, and security" eBPF.
Available: https://ebpf.io/

https://www.cncf.io/reports/cncf-annual-survey-2023/
https://www.groundcover.com/ebpf
https://www.ebpf.top/en/post/network_and_bpf_2024/
https://isovalent.com/blog/post/next-generation-observability-with-ebpf/
https://middleware.io/blog/cloud-native-infrastructure-challenges/
https://www.groundcover.com/ebpf/ebpf-kubernetes
https://eunomia.dev/blog/2024/02/11/the-secure-path-forward-for-ebpf-runtime-challenges-and-innovations/
https://eunomia.dev/blog/2024/02/11/the-secure-path-forward-for-ebpf-runtime-challenges-and-innovations/
https://www.loft.sh/blog/tutorial-how-ebpf-improves-observability-within-kubernetes
https://kubesense.ai/blog/ebpf-impact/
https://ebpf.io/

