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Abstract 

This article examines a transformative case study in healthcare data infrastructure, where a skilled data engineer 
revolutionized operations by implementing an integrated technology stack with advanced machine learning 
capabilities. Facing challenges of processing diverse and voluminous patient data, the engineer architected a 
comprehensive solution leveraging AWS services, including S3, Redshift, and Lambda to create a cloud-based data lake 
optimized for AI workloads. This foundation was augmented with Apache Spark for distributed processing and MLlib 
for scalable machine learning, Hadoop clusters for specialized workloads, and Kubernetes for container orchestration—
creating a flexible, resilient system capable of supporting sophisticated predictive models. The implementation featured 
automated ETL processes within a robust data pipeline alongside purpose-built feature stores and model serving 
infrastructure. A strategic combination of SQL and NoSQL databases provided flexible storage solutions optimized for 
various machine learning algorithms, from natural language processing for clinical notes to computer vision for medical 
imaging. Despite obstacles including data inconsistency and latency issues, the solution delivered substantial 
improvements in operational efficiency and clinical outcomes through AI-powered predictive capabilities, 
demonstrating the transformative potential of modern data engineering and machine learning approaches in healthcare 
settings.  

Keywords: Data Lake Architecture; Distributed Computing; Container Orchestration; ETL Automation; Healthcare 
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1. Introduction the healthcare data challenge

1.1. The Data Explosion in Healthcare 

The healthcare industry is experiencing an unprecedented data revolution, with providers now managing exponentially 
growing volumes of patient information. According to Stanford Medicine's 2018 Health Trends Report, the digitization 
of healthcare has created an environment where the health sector generates approximately 30% of the world's data 
volume [1]. This dramatic increase stems from the widespread adoption of electronic health records (EHRs), with 
adoption rates rising from 9.4% to 83.8% in hospitals over a recent seven-year period. The challenge extends beyond 
volume alone, as healthcare organizations must integrate data from clinical notes, medical imaging, genomic 
sequencing, and connected medical devices—each generating information in different formats, requiring distinct 
processing approaches. This data complexity creates both a challenge and an opportunity for machine learning 
applications, which can extract meaningful patterns from diverse healthcare datasets but require sophisticated 
infrastructure to operate at scale. 
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1.2. Case Study: Infrastructure Limitations 

Our case study examines a multi-facility healthcare provider struggling with dated infrastructure that had become 
increasingly inadequate for modern analytical needs. The organization's primary data processing framework originated 
from a traditional data warehouse design predating the emergence of complex feature engineering requirements. 
Similar to the evolution described in modern ML platforms research, the organization's data architecture needed to 
progress beyond simple extract-transform-load (ETL) workflows to accommodate more sophisticated data 
transformations and real-time feature extraction [2]. The existing system required over 30 hours to process 
comprehensive analytics reports, creating critical delays in decision-making. The limitations were even more 
pronounced for machine learning workloads, with data scientists waiting up to 72 hours for model training cycles to 
complete on large patient cohorts. With their patient database growing at 27% annually, leadership recognized that 
their infrastructure scalability—limited to 8-10% annual capacity increases—represented an unsustainable trajectory 
that would further constrain their ability to implement advanced predictive analytics. 

1.3. Vision for Transformation 

The healthcare provider's leadership commissioned a complete infrastructure overhaul, guided by the democratization 
principles outlined in Stanford Medicine's report. This vision aligned with the trend that 79% of healthcare 
professionals anticipate more open data sharing environments in the coming years [1]. The proposed transformation 
centered on building a comprehensive data platform incorporating cloud services, distributed processing frameworks, 
and containerization technologies—all designed to support advanced machine learning capabilities. The senior data 
engineer leading this initiative designed an architecture capable of supporting the full spectrum of healthcare 
analytics—from traditional business intelligence to sophisticated predictive modeling applications. This approach 
embraced the recent architectural evolution of feature stores in machine learning platforms, enabling both batch 
processing of historical data and real-time streaming capabilities to support point-of-care predictive decision-making 
[2]. The infrastructure was specifically designed to accommodate diverse machine learning workloads, including 
computer vision models for radiology image analysis, natural language processing for clinical documentation, and time-
series models for patient monitoring data. 

2. Cloud foundation: building the AWS data lake architecture 

2.1. Assessment and Planning 

The healthcare organization's migration to an AWS-based data lake architecture began with a comprehensive data 
infrastructure assessment. Similar to findings in recent industry research, the organization discovered their data 
engineers were spending approximately 71% of their time on data preparation and infrastructure maintenance rather 
than value-generating activities [3]. This inefficiency stemmed from their fragmented legacy architecture consisting of 
17 distinct storage systems with varying access protocols and inconsistent metadata management. The assessment 
team identified several critical technical requirements, including HIPAA-compliant security controls, standardized data 
governance, and the ability to process both structured clinical data and unstructured imaging files exceeding 500MB 
per study. Through detailed infrastructure mapping and workload analysis, the team established baseline performance 
metrics to guide architectural decisions and measure future improvements. 

2.2. Implementing S3-Based Storage Hierarchy 

Amazon S3 served as the foundation for the new data lake architecture, providing the organization with virtually 
unlimited scalability. The implementation utilized S3's tiered storage classes to optimize costs across the data lifecycle. 
For frequently accessed patient records, S3 Standard storage provided immediate retrieval capabilities with 
99.999999999% durability. For archival data—such as medical imaging studies older than one year—the organization 
implemented S3 Glacier Deep Archive, achieving storage costs as low as $0.00099 per GB per month [4]. This 
represented a significant operational expenditure reduction compared to their previous on-premises storage 
infrastructure. The architecture incorporated strict data partitioning strategies based on data domain, source system, 
and time periods, facilitating efficient data retrieval without full-dataset scans. S3 object tagging and metadata catalogs 
provided comprehensive data lineage tracking, essential for regulatory compliance and audit purposes. 

2.3. Data Processing and Analytics Infrastructure 

To transform the raw data lake into an actionable analytics platform, the organization implemented a multi-layered 
processing architecture. Amazon Redshift formed the core analytics engine, with an initial deployment of 8 ra3.4xlarge 
nodes providing sufficient computational capacity for complex analytical workloads. The data engineering team 
implemented Redshift Spectrum to create a unified query layer across both hot and cold data stores. This architecture 
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aligned with industry best practices identified in research demonstrating that 65% of organizations with advanced data 
engineering maturity utilize separation between storage and compute resources [3]. Complementing the data 
warehouse, 47 Lambda functions handled specialized ETL processes, metadata synchronization, and data validation. 
These serverless components provided automatic scaling during peak processing periods, such as month-end reporting 
cycles when query volumes increased fivefold. The Lambda functions integrated with AWS Step Functions to 
orchestrate complex workflow sequences, providing transaction-like semantics for multi-step data transformations that 
previously required custom application code. 

 

Figure 1 AWS Cloud Foundation for the Healthcare Data Lake Architecture [3, 4] 

3. Distributed Processing: Harnessing Spark and Hadoop for Machine Learning 

3.1. Performance Analysis and Framework Selection 

The healthcare organization's distributed processing infrastructure was designed based on comprehensive 
benchmarking of available technologies against their specific workload characteristics, including machine learning 
requirements. Initial analysis revealed that their legacy system fell significantly short of performance targets, with data-
intensive clinical analytics queries experiencing latency up to 26 times greater than acceptable thresholds. Machine 
learning workloads were particularly impacted, with model training pipelines frequently failing due to memory 
constraints and inefficient resource allocation. This performance gap echoed findings from benchmark studies showing 
that traditional data processing approaches struggle with healthcare analytics workloads where data locality becomes 
critical for performance optimization [5]. The evaluation team conducted extensive comparative analysis across 
multiple distributed processing frameworks, focusing on memory utilization efficiency, latency characteristics, and 
throughput capacity under various data distribution patterns. Apache Spark emerged as the optimal solution due to its 
unified processing model, in-memory computation capabilities, and robust machine learning libraries (MLlib), which 
benchmark studies have shown can deliver performance improvements of up to 100x compared to disk-based 
processing for iterative algorithms common in healthcare analytics and machine learning [5]. The implementation 
architecture was designed around a primary EMR cluster with memory-optimized nodes to accommodate the complex 
data transformations required for patient cohort analyses and large-scale feature engineering for predictive models. 
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3.2. Optimizing Spark for Healthcare Machine Learning Workloads 

The Spark implementation required significant customization to address the unique characteristics of healthcare data 
processing and machine learning workflows. The team implemented a multi-tenant architecture with dynamic resource 
allocation, allowing the system to efficiently serve both scheduled batch processes and computationally intensive 
machine learning training jobs. Performance was optimized through careful tuning of executor conFigureurations, with 
memory allocation set to 85% of available RAM on worker nodes based on detailed profiling of garbage collection 
patterns during model training operations. The organization implemented specialized serialization frameworks to 
handle the complex nested data structures common in FHIR-based clinical records, achieving a 37% reduction in 
serialization overhead compared to default implementations. For machine learning pipelines, the team developed 
custom Spark transformers and estimators to handle healthcare-specific feature engineering tasks, such as medical 
terminology normalization and temporal feature extraction from longitudinal patient records. Spark SQL served as the 
primary interface for structured data analytics, with a predefined library of over 200 parameterized queries optimized 
through logical plan analysis. This approach aligns with research findings that emphasize the importance of query 
optimization in analytic benchmark performance, where even a 20% improvement in query efficiency can translate to 
substantial operational benefits in healthcare settings and accelerate machine learning development cycles [5]. The 
Spark Streaming implementation utilized time windowing techniques with a 15-second processing interval to balance 
latency requirements against processing efficiency, enabling near-real-time feature calculation for predictive models 
operating on streaming healthcare data. 

3.3. Integration of Hadoop Ecosystem Components for End-to-End ML Pipelines 

 

Figure 2 Distributed Processing Spark and Hadoop Architecture [5, 6] 

While Spark formed the processing core, the architecture incorporated several Hadoop ecosystem components to create 
a comprehensive data platform with robust machine learning capabilities. The integration approach followed a 
systematic methodology similar to that outlined in enterprise data platform research, with interfaces between 
components designed around well-defined contracts and standardized data formats [6]. Apache Hive served as a 
metastore with a unified catalog of data assets across the organization, implementing a governance model with clearly 
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defined ownership and quality metrics for each data domain. This governance framework was extended to machine 
learning assets, with model metadata, training datasets, and evaluation metrics tracked in a central registry. Data 
lineage was tracked through specialized metadata tags propagated throughout the processing pipeline, enabling 
comprehensive audit trails for regulatory compliance and machine learning model explainability. The resource 
management layer utilized YARN with hierarchical scheduling queues established based on service level requirements, 
with critical clinical prediction systems assigned guaranteed minimum resource allocations of 40% of cluster capacity. 
This approach to resource governance aligns with research showing that effective multi-tenant resource management 
is crucial for large-scale data platforms, where resource sharing must be balanced against predictable performance for 
mission-critical machine learning models [6]. The complete infrastructure incorporated failover mechanisms with a 
recovery time objective of 5 minutes, achieved through checkpoint-based state management and stateless processing 
design, ensuring continuous availability of predictive services that had become integral to clinical workflows. 

4. Orchestration and Scaling: Kubernetes Implementation 

4.1. Container Adoption and Orchestration Strategy 

The healthcare organization's container orchestration journey aligned with broader industry trends, where Kubernetes 
has emerged as the de facto standard for managing containerized applications at scale. According to the Cloud Native 
Computing Foundation's 2021 survey, 96% of organizations are either using or evaluating Kubernetes, reflecting its 
dominance in the container orchestration landscape [7]. The healthcare provider's initial assessment identified 
significant operational inefficiencies in their traditional infrastructure, with deployments requiring an average of 7.4 
hours to complete and environment inconsistencies causing nearly two dozen production incidents quarterly. Their 
implementation strategy focused on containerizing the entire data processing pipeline, beginning with stateless 
components that presented the lowest migration complexity. The organization's approach mirrored industry patterns 
identified in the CNCF survey, where 79% of respondents reported running Kubernetes in production environments, 
demonstrating the maturity of the technology for mission-critical workloads [7]. The container implementation 
standardized all images on Alpine Linux with comprehensive security scanning integrated into the CI/CD pipeline, 
which automatically rejected builds containing vulnerabilities with CVSS scores above 7.0. This security-first approach 
proved critical for maintaining HIPAA compliance while modernizing the infrastructure. 

4.2. Resource Management Framework 

The Kubernetes deployment incorporated sophisticated resource management principles to ensure optimal 
performance across diverse workload profiles. The implementation leveraged Kubernetes' native resource specification 
capabilities, defining precise CPU and memory requirements for each component in the data processing pipeline. The 
organization implemented a standardized approach to resource requests and limits as documented in Kubernetes' 
resource management best practices, with requests defining the minimum guaranteed resources and limits establishing 
usage boundaries [8]. This granular approach to resource definition enabled the platform to make intelligent scheduling 
decisions, particularly during high-demand periods when resource contention could impact critical services. The team 
established a three-tier Quality of Service (QoS) classification aligned with clinical priorities: Guaranteed class for 
patient-facing analytics, Burstable for internal operational workflows, and BestEffort for non-time-sensitive batch 
processing. The resource governance framework incorporated LimitRanges to enforce minimum and maximum 
resource allocations within namespaces, preventing resource monopolization while ensuring efficient infrastructure 
utilization. This approach-maintained resource utilization above 78% while preserving headroom for demand spikes, 
significantly improving the economics of the platform compared to the previous static allocation model. 

4.3. Scaling and High Availability Architecture 

The organization implemented a comprehensive scaling architecture designed to maintain performance under variable 
workloads while ensuring high availability for critical healthcare analytics. The production environment utilized 
Amazon EKS with worker nodes distributed across three availability zones, creating infrastructure redundancy that 
maintained service availability even during zone failures. The implementation incorporated both Horizontal Pod 
Autoscaling (HPA) and Cluster Autoscaler, creating a two-dimensional scaling capability that adjusted both application 
instances and underlying infrastructure based on demand patterns [8]. Custom scaling metrics derived from application 
telemetry enabled intelligent scaling decisions, with response time percentiles and queue depths serving as primary 
scaling triggers rather than raw CPU utilization. The organization implemented Pod Disruption Budgets (PDBs) to 
ensure minimum service availability during infrastructure maintenance, preventing degradation of critical analytics 
capabilities during upgrades. This approach maintained 99.97% availability for clinical decision support systems 
throughout the transition period, exceeding the organization's service level objectives. The multi-cluster architecture 
incorporated sophisticated traffic management with weighted routing capabilities, enabling gradual workload 
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transitions during deployments and creating a resilient foundation capable of supporting the healthcare provider's 
expanding analytical requirements. 

 

Figure 3 Orchestration and Scaling: Kubernetes Implementation [7, 8] 

5. Database Strategy: SQL and NoSQL Integration for Machine Learning 

5.1. Strategic Data Architecture for Healthcare Machine Learning 

The healthcare organization's database modernization initiative addressed fundamental challenges within their 
fragmented data ecosystem while establishing a robust foundation for machine learning applications. According to the 
analysis of healthcare data management, organizations typically struggle with data siloed across multiple systems, with 
many healthcare providers maintaining between 15 and 20 distinct data repositories for clinical information alone [9]. 
The organization's landscape mirrored this industry pattern, operating 27 separate database instances spanning 
various technologies and vendors, creating significant barriers to implementing cohesive machine learning models that 
required cross-domain data access. Their modernization approach incorporated Gartner's recommended data fabric 
architecture, implementing a unified semantic layer that harmonized terminology and relationships across domains 
while preserving source-specific implementation details. This architectural pattern proved essential for maintaining 
semantic cohesion across structured clinical data, unstructured documentation, and specialized healthcare datasets—
a critical requirement for developing accurate machine learning models. The data modeling methodology incorporated 
healthcare-specific reference models aligned with industry standards, creating logical constructs for patient, provider, 
encounter, and clinical observation entities. This domain-driven approach enabled the organization to maintain 
traceability between business concepts and technical implementations, facilitating data governance and quality 
management that directly supported machine learning model explainability, a critical requirement for AI applications 
in healthcare settings. 

5.2. Relational Database Implementation with Feature Store Capabilities 

The organization's relational database strategy emphasized high availability and performance for mission-critical 
clinical data while incorporating specialized feature store capabilities to support machine learning workflows. The 
implementation selected Amazon Aurora PostgreSQL as the primary platform based on intensive performance 
benchmarking that demonstrated throughput improvements of 73% compared to their legacy systems [10]. The 
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database architecture incorporated a multi-tier design with separate clusters optimized for transactional and analytical 
workloads, with an additional feature store layer designed specifically for machine learning use cases. This feature store 
implementation maintained pre-computed features for common predictive modeling scenarios, significantly reducing 
feature engineering overhead and ensuring consistency between model training and inference stages. The analytical 
tier leveraged Aurora's parallel query capabilities, enabling complex population health queries and feature extraction 
operations to execute across distributed processing nodes with near-linear scaling characteristics. Schema design 
incorporated healthcare-specific patterns, including entity-attribute-value structures for flowsheet data, temporal 
tables for longitudinal patient history, and specialized indexing strategies for clinical terminology hierarchies. The 
implementation included sophisticated query optimization techniques, utilizing execution plan management to ensure 
consistent performance for both clinical workflows and machine learning inference services that required real-time 
feature calculation. 

5.3. Specialized Database Technologies for Machine Learning Diversity 

 

Figure 4 Integration of SQL and NoSQL Technologies [9, 10] 

The healthcare organization implemented a polyglot persistence strategy to address the diverse characteristics of 
healthcare data assets and machine learning workloads. According to AWS technical documentation, healthcare 
workloads benefit significantly from purpose-built database engines aligned with specific data access patterns and 
structure [10]. For clinical documentation and unstructured content, the organization deployed Amazon DocumentDB 
with a sharded architecture spanning multiple instances to distribute workload across computing resources. This 
implementation supported natural language processing models that extracted structured insights from over 12 million 
clinical documents with an average retrieval time of 83 milliseconds, essential for clinical documentation workflows in 
high-volume care settings. For high-velocity telemetry data from patient monitoring systems, the organization 
implemented a specialized time-series database architecture using Amazon Timestream, which reduced storage 
requirements by 95% through automatic data compression and tiering policies while supporting real-time anomaly 
detection models with sub-second response times. The time-series implementations incorporated advanced machine 
learning models for detecting subtle clinical deterioration patterns, with trained models deployed directly within the 
database environment to minimize prediction latency. For medical imaging studies, the organization developed a hybrid 
architecture combining Amazon S3 for raw DICOM storage with DynamoDB for metadata indexing and access pattern 
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optimization. This approach enabled sub-second retrieval of study metadata while maintaining cost-effective storage 
for multi-terabyte imaging archives, creating an optimal foundation for computer vision models that analyzed 
radiological images for automated disease detection and clinical decision support. 

6. Results and Future Directions 

6.1. Quantifiable Improvements Through Machine Learning Integration 

The healthcare organization's data infrastructure transformation yielded substantial operational benefits that directly 
impacted clinical and financial performance, with machine learning capabilities playing a central role in these 
improvements. According to McKinsey's analysis of healthcare data initiatives, organizations implementing 
comprehensive big data strategies with machine learning components have realized between $300 billion and $450 
billion in reduced healthcare spending nationally through operational improvements and enhanced clinical outcomes 
[11]. In alignment with these industry findings, the healthcare provider documented significant efficiency gains across 
multiple domains powered by predictive modeling. Their clinical workflow optimization, enhanced by machine learning 
algorithms operating on the new data platform, reduced average patient admission processing time from 127 minutes 
to 38 minutes by predicting resource requirements and optimizing staff allocations. The organization's machine 
learning-powered capacity forecasting models improved resource allocation precision, reducing excess staffing costs 
by $4.2 million annually while simultaneously decreasing emergency department boarding hours by 34% through 
predictive admission models that anticipated bed availability with 92% accuracy. The claims processing capabilities 
demonstrated similar improvements, with first-pass claim accuracy increasing from 82% to 96% through AI-powered 
validation algorithms that identified potential denial issues before submission. This improvement directly contributed 
to accelerated reimbursement cycles and reduced administrative overhead, with the total financial impact estimated at 
approximately 11% of annual operating revenue—closely matching McKinsey's observation that data-driven 
healthcare organizations with mature AI capabilities typically realize an 8-15% improvement in profit margins through 
optimized operations and enhanced revenue cycle management [11]. 

6.2. Clinical Outcomes Through Advanced Machine Learning Models 

The modernized data infrastructure fundamentally transformed the organization's ability to deliver evidence-based, 
personalized care at scale through sophisticated machine learning applications. The implementation of comprehensive 
clinical decision support systems operating on the unified data platform enabled advanced predictive modeling and 
intervention protocols that produced measurable improvements in patient outcomes. The early sepsis detection system 
leveraged an ensemble machine learning approach combining gradient-boosted trees and recurrent neural networks to 
identify subtle physiological changes preceding clinical deterioration. This model achieved 89% sensitivity and 92% 
specificity in identifying sepsis risk approximately 6 hours before clinical manifestation, aligning with published 
research demonstrating that machine learning models operating on integrated clinical data streams can potentially 
reduce mortality rates by 18-29% through earlier intervention [12]. Beyond acute care applications, the organization 
implemented population health management capabilities driven by machine learning risk stratification models. Their 
diabetic patient management program applied random forest algorithms to predict complication risks based on 
longitudinal clinical data, increasing compliance with evidence-based care recommendations from 62% to 89% and 
resulting in a 42% reduction in preventable hospital admissions for this population. This outcome mirrors clinical 
research findings that integrated data platforms supporting coordinated care delivery with AI-driven risk prediction 
can reduce hospitalizations for chronic conditions by 35-50% [12]. The enhanced analytics capabilities also accelerated 
the organization's clinical research initiatives, with their machine learning-based trial matching algorithm increasing 
clinical trial enrollment by 317% by automatically identifying eligible patients based on comprehensive electronic 
health record data and genomic profiles stored within the unified data architecture. 

6.3. Future Machine Learning Roadmap and Innovation 

The healthcare organization's future technology roadmap builds upon their successful implementation while 
incorporating emerging machine learning capabilities that promise to further transform healthcare delivery. Their 
strategic planning incorporates precision medicine initiatives that integrate genomic, clinical, and social determinants 
data to create highly personalized care pathways through advanced multimodal learning approaches. This strategy 
aligns with research indicating that multimodal machine learning integration can improve treatment response rates by 
30-40% for certain conditions by matching interventions to specific patient characteristics [12]. The organization is 
expanding their machine learning architecture to support federated learning frameworks that enable secure 
collaboration with academic medical centers without compromising patient privacy. These distributed machine 
learning approaches are expected to accelerate biomedical discovery by increasing available training data volumes for 
rare disease research by an estimated 850% compared to single-institution studies while maintaining regulatory 
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compliance. The technology roadmap includes implementing advanced transformer-based natural language processing 
models to extract structured insights from unstructured clinical documentation, with pilot implementations 
demonstrating extraction accuracy exceeding 95% for key clinical concepts. The organization is also investing in 
reinforcement learning approaches for treatment optimization, developing models that can recommend personalized 
treatment pathways by learning from historical outcomes data across their patient population. These initiatives 
collectively represent the organization's commitment to continuous innovation in healthcare AI, establishing a 
foundation for increasingly sophisticated machine learning applications that directly impact patient outcomes while 
maintaining the highest standards of explainability and ethical deployment required in healthcare settings. 

Table 1 Performance Improvement Metrics After Data Infrastructure Transformation [11, 12]  

Performance Indicator Before Implementation After Implementation Improvement (%) 

Clinical Analytics Query Time 26.4 hours 37 minutes 97.7% 

System Availability 97.2% 99.98% 2.78% 

Data Integration Latency 4 hours 30 seconds 99.8% 

Server Utilization 24% 76% 216.7% 

7. Conclusion 

The successful transformation of the healthcare company's data infrastructure demonstrates the profound impact that 
thoughtfully integrated cloud, distributed processing, and machine learning technologies can have on organizational 
effectiveness and patient outcomes. By implementing a comprehensive solution centered on AWS services, Spark, 
Hadoop, and Kubernetes, the data engineering team created a scalable architecture capable of supporting increasingly 
sophisticated AI models while maintaining performance and reliability. The implementation of specialized features, 
stores, and dedicated ML pipelines enabled rapid development and deployment of predictive models that directly 
improved clinical care, from early sepsis detection to optimized resource allocation. The dual database approach 
addressed the complex reality of healthcare data, accommodating both structured patient records and unstructured 
medical information while providing optimized access patterns for different machine learning algorithms. Beyond the 
technical achievements, this case study illustrates the strategic business value of AI-enhanced data pipelines, as 
evidenced by quantifiable improvements in patient outcomes and operational efficiency. As healthcare continues to 
generate increasingly complex datasets, this implementation provides a blueprint for organizations seeking to harness 
their data assets through machine learning while maintaining the flexibility to adopt emerging AI methodologies such 
as federated learning and reinforcement learning for treatment optimization in the future.  
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