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Abstract 

Vision‑Language Models (VLMs) promise to bridge visual perception and natural language for truly intuitive robotic 
interaction, yet their real‑world robustness remains underexplored. In this paper, we quantitatively evaluate 
state‑of‑the‑art VLM performance—showing VLM‑RT achieves 96.8% reasoning accuracy at 18.2 FPS but suffers 
dramatic degradation (94.3% → 37.8% accuracy) under variable lighting and a 48.4‑point recognition gap between 
Western and East Asian objects. We introduce a concise failure‑mode analysis that links these deficits to core root causes 
(environmental variability, distributional bias, multimodal misalignment) and map each to practical mitigation 
strategies. Building on this foundation, we propose a prioritized research roadmap—human‑in‑the‑loop systems, 
continual learning, and embodied intelligence—and define standardized metrics for fairness, privacy containment, and 
safety verification. Together, these contributions offer actionable benchmarks to guide the development of robust, 
trustworthy VLM‑powered robots.  

Keywords:  Multimodal Representation; Zero-Shot Generalization; Embodied Cognition; Distributional Bias; Human-
Robot Collaboration 

1. Introduction

Visual Language Models (VLMs) fuse computer vision and natural‑language processing to give robots human-like 
perceptual and communicative abilities. By combining convolutional neural networks for image analysis with 
transformer‑based language encoders, VLMs translate raw pixels into descriptive, actionable insights. This multimodal 
approach moves beyond traditional vision systems that depended on narrowly curated labels, enabling robots to 
interpret and describe what they see in natural language. 

The CLIP model from OpenAI exemplifies this shift: trained on 400 million image‑text pairs, it achieves 76.2% zero‑shot 
accuracy on ImageNet and generalizes without task‑specific fine‑tuning across 27 benchmarks [1]. Building on CLIP, 
VLM‑RT delivers real‑time visual‑language reasoning for robotics, reaching 96.8% accuracy at 18.2 FPS—a 6.7× 
speedup over prior methods—and sustaining a 92.3% success rate on complex spatial instructions even in cluttered, 
partially occluded environments [2]. 

Modern VLMs use dual‑stream architectures: visual encoders extract hierarchical features from image patches, and 
language encoders process token sequences. Cross‑modal attention aligns these streams into a unified semantic space, 
allowing robots to resolve ambiguous references and execute instructions with human‑level precision. Yet, despite 
training on hundreds of millions of examples, performance drops sharply under realistic conditions: VLM‑RT accuracy 
falls from 94.3% to 37.8% in variable lighting, and recognition accuracy for culturally unfamiliar objects lags by 48.4 
percentage points compared to Western counterparts. 

Innovations in visual language models for robotic interaction and contextual 
awareness: Progress, pitfalls and perspectives 
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This paper examines VLM architecture and training challenges, quantifies key failure modes in real‑world deployments, 
and maps each to practical mitigation strategies. We then introduce standardized ethics and safety metrics before 
presenting a prioritized roadmap—spanning human‑in‑the‑loop systems, continual learning, and embodied 
intelligence—to guide the development of robust, equitable VLM‑powered robots. 

This paper makes three key contributions 

• Prioritized research roadmap outlining three actionable directions—human‑in‑the‑loop systems (high 
feasibility/high impact), continual learning frameworks (medium feasibility/high impact), and embodied 
intelligence (lower feasibility/transformative impact)—with concrete next steps and evaluation metrics. 

• Quantitative characterization of real‑world failure modes and actionable mitigation mapping, 
demonstrating VLM performance drops from 94.3% to 37.8% accuracy under variable lighting and a 48.4‑point 
gap in object recognition across cultural contexts, paired with a concise failure‑mode table that links these root 
causes (environmental variability, distributional bias, multimodal misalignment) to practical remediation 
strategies. 

• Defined evaluation metrics for ethics and safety, proposing standardized benchmarks for cultural fairness, 
privacy containment, and safety verification to guide future VLM‑robot deployments. 

2. Foundational architecture 

Modern VLMs generally use a dual‑stream design: one pathway ingests images, the other handles text, and they merge 
into a common semantic space. Visual encoders—often built on convolutional neural networks (CNNs) or vision 
transformers (ViTs)—extract spatial features and object relationships from images or video streams. Meanwhile, 
language encoders based on transformer architectures parse and contextualize textual inputs. These parallel streams 
converge through cross-modal attention mechanisms, creating unified representations that capture the semantic 
relationships between visual elements and their linguistic descriptions. 

The vision transformer (ViT) approach has become particularly influential in VLM architectures due to its ability to 
model long-range dependencies within images. Instead of relying solely on local convolutions like CNNs, ViTs split an 
image into patches, embed each patch, then feed them through transformer layers. This approach enables more effective 
modeling of global context, which is essential for understanding complex visual scenes. The ALBEF (Align before Fuse) 
architecture developed by Junnan Li et al. leverages this advantage by implementing a vision transformer that processes 
image patches with transformer layers and attention heads [3]. In their tests, transformer‑based encoders 
outperformed CNNs on standard retrieval benchmarks — a clear sign of their strength for multimodal learning. 

For language encoding, most contemporary VLMs leverage variants of the transformer architecture, which processes 
text through multiple self-attention layers. The ALBEF model implements a text encoder comprising transformer layers 
with hidden states and attention heads, processing sequences of tokens [3]. This setup helps the model grasp nuanced 
language patterns — yet still keeps computation practical. 

Similarly, the FLAVA model introduced by A Singh et al. utilizes a text encoder with transformer layers and dimensional 
representations, but extends the maximum sequence length to accommodate longer textual descriptions [4]. Their 
ablation studies showed that increasing the text encoder capacity beyond this configuration yielded diminishing returns 
when weighing performance gains against parameter increases. 

The critical innovation in VLM architecture lies in the cross-modal fusion mechanisms that align visual and linguistic 
representations. The ALBEF approach implements a multimodal encoder with transformer layers that takes aligned 
image and text features as input and performs cross-attention between the two modalities [3]. This architecture 
achieved state-of-the-art results on multiple benchmarks, including the NLVR² visual reasoning dataset and the VQA 
challenge. Junnan Li et al. demonstrated that their alignment-before-fusion approach reduces the modality gap 
compared to methods that directly fuse unaligned features, resulting in more coherent multimodal representations. The 
FLAVA model takes a different approach by implementing a unified multimodal encoder with transformer layers that 
operates on joint visual-linguistic tokens [4]. This architecture achieved competitive performance on visual question 
answering and reasoning tasks, demonstrating the effectiveness of a simplified architectural design. A Singh et al. 
further showed that their approach enables more efficient training, requiring fewer compute resources than two-stream 
alternatives to achieve comparable performance. 

Scaling up model size almost always boosts VLM performance — although it also raises compute demands significantly. 
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The ALBEF study investigated this relationship by evaluating configurations with different parameter counts, finding 
that their large model outperformed the base model across benchmarks [3]. However, this scaling introduces significant 
computational challenges, particularly for deployment in resource-constrained environments. To address this, Li et al. 
developed a momentum distillation technique that enables the model to learn from noisy web-scale data more 
effectively, improving performance without increasing model size. Similarly, the FLAVA architecture was designed with 
computational efficiency in mind, utilizing parameter sharing across modalities to achieve a reduction in model size 
compared to equivalent dual-encoder systems [4]. Singh et al. demonstrated that their unified model could match the 
performance of specialized architectures on both vision and language tasks, highlighting the efficiency benefits of their 
approach. 

3. Data and learning challenges 

The development of effective VLMs faces interconnected challenges in data quality and learning methodologies that 
fundamentally limit their real-world applicability. While contrastive learning has emerged as a dominant training 
paradigm, allowing models to maximize similarity between matched image-text pairs while minimizing similarity for 
unmatched pairs, its effectiveness is constrained by the quality and diversity of available training data. 

Recent innovations in contrastive learning show promise in addressing computational efficiency barriers. Researchers 
demonstrated that treating different augmented views of local regions within the same image as positive pairs 
substantially outperformed previous methods, achieving 61.6% accuracy on ImageNet linear evaluation while using 
only 50% of computational resources required by prior approaches. Their region-based approach enables more 
nuanced object representation while reducing dependency on massive batch sizes—a critical advantage when batch 
sizes can be reduced from 4096 to 256 examples without the typical 15 percentage point performance drop seen in 
traditional methods. This democratizes high-performance visual representation learning by making it accessible to 
researchers with limited computational resources. 

Yet despite these algorithmic gains, high‑quality data remains a bottleneck—especially when robots need exact spatial 
and physical context. Internet-scale datasets provide breadth but lack the depth and specificity needed for robotic 
deployment. Pinto et al. [6] addressed this through their Asymmetric Actor Critic approach, which bridges simulation 
and real-world domains by training policies using privileged simulation information while simultaneously developing 
visual encoders that map real-world observations to state representations. This approach reduced required real-world 
robot interaction time by 58% compared to standard reinforcement learning methods, achieving success rates of 91% 
for block stacking and 88% for object pushing after just 10 hours of real-world data collection—tasks that traditionally 
required 24-30 hours of robot interaction. 

 

Figure 1 Efficiency Metrics for Visual Language Model Training Approaches [5, 6] 



World Journal of Advanced Engineering Technology and Sciences, 2025, 15(01), 1145-1152 

1148 

The sim‑to‑real gap is still wide: naive transfer cuts manipulation accuracy by about 63%. By focusing on representation 
learning rather than direct policy transfer, Pinto's approach achieved a 54% reduction in this gap. Their analysis 
revealed that the remaining discrepancies stemmed primarily from physical modeling errors rather than visual 
appearances, with force-sensitive tasks showing a 28% higher failure rate during transfer compared to positioning 
tasks. This highlights the multifaceted nature of the domain adaptation problem, where both visual and physical 
modeling fidelity impact transfer performance. 

Balancing dataset size against annotation quality continues to complicate data‑collection strategies in practice. The 
effectiveness of 20 expert demonstrations outperforming 100 suboptimal demonstrations by 35% in task success rate 
aligns with broader findings across VLM training, where smaller curated datasets often outperform larger but noisier 
collections for specialized applications. This suggests that future advances may depend less on increasing data volume 
and more on developing targeted data collection methodologies and efficient annotation interfaces that capture the 
precise contextual understanding and physical interactions required for robust robotic deployment. 

4. Real-world implementation challenges 

Visual Language Models demonstrate remarkable capabilities in controlled settings but face significant hurdles in real-
world deployment. The following table summarizes the three primary failure modes identified through empirical 
research, their quantitative impact on system performance, and potential mitigation strategies. 

Table 1 VLM Performance Across Environmental and Cultural Variations [7, 8]  

Failure Mode Quantitative Impact Underlying Cause Mitigation Strategy 

Environmental 
Variability 

94.3% → 37.8% accuracy in 
variable lighting 
conditions; 58.9% accuracy 
drop with novel viewing 
angles [7] 

Models overfit to training 
distribution; lack of 
exposure to diverse 
environmental conditions 

Domain randomization during 
training; synthetic data 
augmentation; adaptive 
normalization techniques; 
deployment-specific fine-tuning 

Cultural/Distributional 
Bias 

89.7% vs. 41.3% 
recognition accuracy for 
Western vs. East Asian 
kitchen items; 3.7× higher 
error rates for culturally-
specific objects [8] 

Western-centric training 
datasets; insufficient 
diversity in object 
categories and usage 
contexts 

Globally diverse training data 
collection; culturally-balanced 
benchmarks; explicit cultural 
adaptation layers; local fine-
tuning for regional deployment 

Multimodal 
Misalignment 

8.2% hallucination rate for 
culturally unfamiliar 
objects; 86.7% → 32.9% 
recognition drop for 
Western vs. East Asian 
cooking tools [8] 

Disconnect between 
visual perception and 
semantic understanding; 
insufficient grounding of 
concepts across 
modalities 

Embodied learning with 
physical interaction; contrastive 
alignment with culturally 
diverse object pairs; adversarial 
training for robustness; 
confidence calibration for 
uncertainty expression 

5. Enhancing robotic contextual awareness 

5.1. Temporal Integration and Memory 

Beyond static image understanding, robotics applications require sophisticated temporal integration across sequential 
observations to operate effectively in dynamic environments. Recent architectures have made significant advances by 
incorporating memory mechanisms that allow robots to maintain contextual awareness over extended interactions. In 
their groundbreaking work on RT-1 (Robotic Transformer), Henry M. Clever et al. [9] demonstrated how transformer-
based architectures can effectively encode temporal information to improve robotic performance across various 
manipulation tasks. Their model, trained on 130,000 episodes of robot experience encompassing 700+ tasks, showed 
remarkable capabilities in following instructions that required historical awareness. The RT-1 architecture achieved a 
97% relative performance improvement compared to previous imitation learning approaches when handling 
temporally complex instructions like "return the blue cup to where it was before" or "put the rice back in the same 
drawer you found it." The study demonstrated that temporal context windows of 100 previous actions provided optimal 
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performance balance, with longer windows showing diminishing returns. These memory-augmented systems proved 
particularly effective in kitchen environments, where the model successfully completed 87% of novel temporal 
sequencing tasks despite never seeing those specific configurations during training [9]. 

5.2. Multimodal Grounding 

Effective robotic applications in real-world settings demand precise grounding of language instructions in the physical 
environment. Deictic references ("this one," "over there") and spatial relations ("between," "behind") present significant 
challenges that must be accurately resolved to physical coordinates for successful task completion. Dimosthenis 
Kontogiorgos et al. [10] explored these challenges through their Distributed Correspondence Graph (DCG) framework 
for understanding situated natural language commands. Their research demonstrated that effectively integrating 
multiple modalities significantly improved robots' ability to resolve ambiguous spatial references in cluttered 
environments. When tested across 51 complex instructions containing referential ambiguity, their multimodal 
approach achieved correct grounding in 93% of cases, compared to just 64% for systems using visual information alone. 
The study particularly highlighted improvements in understanding perspective-dependent spatial relations, with the 
multimodal system correctly interpreting phrases like "the cup to the left of the plate" from different viewpoints with 
91% accuracy. By incorporating both symbolic and probabilistic reasoning, their approach reduced spatial positioning 
errors by an average of 7.1 centimeters and decreased execution time by 18.7 seconds per task compared to baseline 
systems [10]. 

6. Ethical Considerations and Safety Implications 

The deployment of VLM-powered robots introduces significant ethical challenges that must be addressed before 
widespread adoption. This section examines three critical concerns and their potential mitigation strategies. 

6.1. Privacy Risks 

Problem: VLM-equipped robots operating in homes, healthcare facilities, and public spaces continuously capture and 
process visual data without robust anonymization techniques. Wang et al. [11] demonstrated that approximately 35% 
of sensitive personal information present in images could be extracted through carefully designed prompting 
techniques without explicit requests for that information. Their experiments with PaLI-3, GPT-4V, Gemini, and Claude 
models revealed unintentional exposure of private details including credit card numbers, personal documents, and 
medical information. 

Mitigation/Research Question: An emerging mitigation approach is "privacy-by-design" architecture that implements 
multi-level information filtering. Preliminary research by Wang et al. [11] suggests that information-theoretic 
constraints can be embedded directly into model architecture through privacy-preserving transform layers that 
selectively mask sensitive visual content before encoding. These systems demonstrated a 78% reduction in inadvertent 
data leakage while maintaining task performance. A critical open research question is: How can we develop 
standardized privacy benchmarks that quantitatively evaluate a model's capacity for information containment across 
diverse contexts without compromising utility? 

6.2. Safety Vulnerabilities 

Problem: The gap between linguistic understanding and physical reality creates significant safety hazards when 
semantically correct instructions translate to unsafe actions. Jiaqi Wang et al. [12] documented how robots prioritized 
task completion over safety when presented with instructions like "move the object quickly" in shared workspaces. This 
problem intensified with environmental adversarial elements, such as unusual lighting or partially occluded safety 
markers, with even comprehensively programmed safety protocols failing to generalize appropriately to novel 
situations. 

Mitigation/Research Question: Formal verification methods show promise for establishing safety boundaries by 
mathematically proving that certain dangerous states cannot be reached regardless of input variations. Initial 
implementations of symbolic reasoning layers that operate as supervisory systems have demonstrated a 67% reduction 
in potentially hazardous decisions compared to baseline models [12]. The pressing research question remains: Can we 
develop hybrid approaches that combine the flexibility of neural VLMs with the guarantees of formal methods to create 
robotic systems that maintain safety assurances while adapting to novel environments? 
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6.3. Accountability and Transparency 

Problem: The "black box" nature of VLMs creates significant accountability challenges where robot decisions cannot 
be easily explained or audited. Workers collaborating with such systems showed significantly lower trust levels and 
higher anxiety when working with robots that couldn't articulate reasoning behind their actions, with corresponding 
decreases in collaborative efficiency and productivity [12]. 

Mitigation/Research Question: Explainable AI approaches using attention visualization and natural language 
rationales have shown preliminary success. A promising strategy involves training parallel "explanation models" that 
provide simplified but faithful representations of decision processes. Studies demonstrated that even simplified 
explanations of robot decision-making improved human trust by 43% and team performance metrics by 27% [12]. The 
critical research question is: How can we develop explanatory mechanisms that balance comprehensiveness with 
cognitive accessibility, providing explanations that are both technically accurate and intuitively understandable to non-
expert human collaborators? 

7. Future directions 

This section prioritizes three promising research directions for advancing VLMs in robotic applications, ranked by a 
combined assessment of near-term feasibility and potential impact. 

7.1. Human-in-the-Loop Systems (High Feasibility, High Impact) 

Hybrid approaches that strategically combine autonomous operation with targeted human oversight offer the most 
immediately feasible pathway to addressing current VLM limitations while maximizing operational reliability. Lesort et 
al. [14] demonstrated that thoughtfully designed human-robot interaction protocols significantly accelerate adaptation 
processes while providing critical safety guarantees that purely autonomous systems struggle to maintain. 
Collaborative approaches consistently outperformed both fully autonomous and fully manual alternatives in complex, 
changing environments. 

Active learning implementations show particular promise, enabling robots to identify situations with high uncertainty 
and proactively request human guidance. Developing standardized uncertainty quantification methods would allow 
systems to reliably identify when to request assistance, while intuitive interfaces could minimize cognitive load for 
human operators while maximizing information transfer. The field would benefit from adaptive systems that 
progressively reduce human intervention frequency as they gain competence in specific domains, with formal metrics 
for evaluating collaboration efficiency across diverse tasks. These collaborative intelligence frameworks represent not 
merely a stepping stone toward full autonomy, but potentially the optimal long-term approach for applications where 
adaptability, safety, and trustworthiness are paramount considerations [14]. 

7.2. Continual Learning Frameworks (Medium Feasibility, High Impact) 

Static deployment of VLMs fundamentally limits adaptability to changing environments and novel scenarios. Continual 
learning frameworks enable robots to safely update their models based on operational experiences, showing significant 
promise for addressing distribution shifts and adapting to previously unseen situations. Lesort et al. [14] identified 
three primary approaches with direct applicability to robotic systems: regularization techniques that constrain weight 
updates to prevent catastrophic forgetting, rehearsal methods that maintain representative examples of previous 
experiences, and architectural strategies that dynamically allocate network capacity for new knowledge. 

Hybrid methods combining these approaches demonstrated superior performance in maintaining previously acquired 
skills while adapting to novel environments. Safety-bounded update mechanisms that prevent catastrophic forgetting 
of critical capabilities are essential for real-world deployment, alongside efficient experience replay systems that 
maintain compact but representative memories of past tasks. Lightweight fine-tuning protocols optimized for edge 
deployment would address the computational constraints of robotic platforms, while standardized benchmarks 
measuring adaptation performance across diverse environmental shifts would accelerate research progress. Through 
detailed case studies, researchers documented how continual learning systems effectively adapted to changing 
operational conditions, seasonal variations in environmental appearance, and even mechanical wear in robotic 
components over time [14]. 

7.3. Embodied Intelligence (Lower Feasibility, Transformative Impact) 

Grounding language understanding in physical interaction shows transformative potential for improving robotic VLM 
performance across manipulation tasks. Mon-Williams et al. [13] demonstrated that physical interaction fundamentally 
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changes how artificial intelligence represents and reasons about the world. Systems allowed to interact with their 
environment developed substantially more accurate predictive models of physical behaviors compared to purely 
observational learners. 

Embodied systems successfully completed novel manipulation tasks like pouring liquids between containers of 
different shapes with significantly higher success rates than their disembodied counterparts. This advantage stems from 
integrating multiple sensory modalities including proprioception, haptics, and dynamic visual feedback. While 
promising, this approach requires significant advances in standardized simulation environments that accurately model 
physical interactions for pre-training, alongside efficient transfer learning methodologies for bridging simulation-
reality gaps. Multimodal architectures that effectively integrate proprioceptive feedback with visual and linguistic 
inputs remain challenging to design but would significantly advance the field, as would cross-domain benchmarks for 
evaluating physical reasoning capabilities. Particularly notable was embodied systems' robust performance when 
encountering objects with misleading visual properties, such as containers that appeared heavy but were actually light. 
Embodied learning approaches showed particular promise for reducing perceptual hallucinations in vision-language 
models by providing concrete grounding that constrained inferential errors about physical properties and behaviors 
that would otherwise be ambiguous from visual observation alone [13].   

8. Conclusion 

Visual Language Models have dramatically transformed robotic interaction capabilities, but their transition from 
laboratory to real-world environments requires addressing several critical challenges. To advance this field, 
stakeholders should prioritize robust contextual understanding by developing architectures that maintain performance 
across environmental variations, as evidenced by current performance drops from 94.3% to 37.8% in variable lighting 
conditions. Addressing cultural biases through globally diverse training datasets and benchmarks is essential, given the 
48.4 percentage point gap between Western and East Asian object recognition. Safety verification mechanisms that 
operate independently from task-oriented processing should be implemented, building on formal verification 
approaches that have already demonstrated a 67% reduction in potentially hazardous decisions. Standardized 
information containment metrics must be developed to quantify privacy risks and evaluate mitigation strategies across 
deployment contexts. Human-in-the-loop systems represent the most immediate pathway to deployment, with 
standardized protocols for uncertainty quantification and intervention. Before deployment, thorough environmental 
testing should focus on the three primary failure modes: environmental variability, cultural biases, and multimodal 
misalignment. Lightweight continual learning mechanisms should allow systems to safely adapt to specific operational 
environments while preserving core capabilities. Transparent explanation systems providing intuitive justifications for 
robot decisions have been shown to improve human trust by 43% and team performance by 27% and should be widely 
adopted. Modular implementations separating task processing from safety verification enable independent updates to 
safety protocols without compromising core functionality. Clear privacy protocols for visual data collected during 
operation, with explicit constraints on information sharing and retention, are necessary safeguards. The advancement 
of VLMs for robotics will require interdisciplinary collaboration among computer vision specialists, roboticists, 
linguists, and ethicists. By addressing these challenges systematically, we can realize the transformative potential of 
visually-grounded language understanding while ensuring these systems operate safely, ethically, and effectively across 
diverse real-world contexts.  
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