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Abstract 

In the era of digital transformation and data ubiquity, organizations are increasingly shifting from descriptive and 
predictive analytics toward causal AI to inform long-term strategic planning. While traditional machine learning models 
excel at recognizing correlations and forecasting outcomes, they often fail to reveal the underlying causes that drive 
performance. This limitation becomes particularly critical when businesses must make high-stakes decisions involving 
resource allocation, policy implementation, or customer engagement, where understanding the impact of interventions 
is essential. Causal AI offers a powerful framework that goes beyond prediction to uncover latent drivers of 
organizational behavior, enabling decision-makers to simulate, test, and optimize strategic actions with scientific rigor. 
This paper provides a comprehensive exploration of how causal AI enhances strategic business planning. It begins with 
a macro-level view of the limitations of correlation-based analytics in volatile environments and transitions into the 
foundations of causal inference—including structural causal models, counterfactuals, and do-calculus. The discussion 
then narrows to the practical application of causal machine learning algorithms such as causal forests, uplift modeling, 
and Bayesian networks. These models help identify heterogeneous treatment effects, optimize marketing and 
operational interventions, and provide robust insights under uncertainty. By embedding causal logic into enterprise 
analytics platforms and business intelligence dashboards, organizations gain actionable clarity on "what works" and 
"why"—transforming data into a proactive tool for growth, innovation, and resilience. The paper concludes by outlining 
implementation pathways and governance considerations to ensure responsible and scalable adoption of causal AI 
across sectors. 

Keywords: Causal AI; Strategic Business Planning; Structural Causal Models; Counterfactual Inference; Enterprise 
Analytics; Organizational Resilience 

1. Introduction

1.1. Background and Motivation 

In the past decade, enterprises have undergone a profound transformation toward data-driven decision-making, 
leveraging digital footprints, real-time analytics, and automated pipelines to guide business operations. From marketing 
to finance, organizations now rely on structured and unstructured data to uncover insights, forecast trends, and 
optimize workflows [1]. This transition has been accelerated by advancements in artificial intelligence (AI), machine 
learning (ML), and scalable data infrastructure, making it possible to model complex behaviors across vast datasets. 

However, a critical limitation of conventional approaches lies in their emphasis on prediction over explanation. Most 
machine learning models are designed to optimize accuracy metrics, such as classification accuracy or mean squared 
error, yet they offer limited insight into the causal relationships underpinning business phenomena [2]. For example, a 
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model may predict which users are likely to churn but cannot determine whether sending an offer will actually reduce 
churn risk. This lack of causality impedes strategic planning, especially when deploying interventions that require 
clarity on cause-and-effect relationships. 

In an environment marked by uncertainty—economic shifts, consumer behavior volatility, regulatory disruption—
organizations cannot rely on reactive, correlation-driven tactics. Instead, they require proactive, intervention-ready 
frameworks that not only predict outcomes but explain how those outcomes arise and under what conditions they can 
be altered [3]. Causal inference, particularly when integrated with deep learning tools such as convolutional neural 
networks (CNNs), enables this next stage of analytic maturity. By uncovering the latent drivers of long-term 
performance and resilience, causal AI positions itself as a critical capability for enterprise strategy in the digital age. 

1.2. Research Problem and Objectives  

The core research challenge addressed in this article lies in the distinction between correlational signals and causal 
drivers of business performance. While predictive analytics has been widely adopted for tasks such as customer 
segmentation, sales forecasting, and anomaly detection, it often lacks the structural foundation to guide interventions 
or policy changes. Businesses frequently mistake statistical correlation for causation, leading to ineffective resource 
allocation, misaligned strategies, and suboptimal outcomes [4]. 

For example, if customer engagement is correlated with higher spending, a business may wrongly assume that 
increasing engagement will cause greater spend. Without causal analysis, such assumptions can backfire, leading to 
costly initiatives that do not deliver the expected impact. This gap becomes especially significant in strategic planning, 
where decisions must be justified not only by what has happened but by what would happen under different actions or 
conditions. 

The objective of this paper is to explore how causal AI models, supported by ML techniques like CNNs, can be integrated 
into strategic decision frameworks to uncover the underlying mechanisms of long-term organizational outcomes. 
Specifically, we aim to: 

• Introduce structural and counterfactual approaches to causality; 
• Demonstrate a methodological framework using behavioral data, CNNs, and causal modeling tools; and 
• Evaluate their strategic value through interpretability, precision targeting, and simulation of interventions [5]. 
• In doing so, this research bridges a critical gap between machine learning efficiency and executive-level 

decision-making, providing organizations with a toolkit for resilient, evidence-based strategy formulation. 

1.3. Article Structure and Contribution  

This article is structured to offer both a theoretical and practical roadmap for integrating causal AI into strategic 
business planning. It begins by situating the rise of data-centric strategy and reviews the limitations of predictive-only 
models in managing uncertainty. It then introduces foundational concepts in causal inference—including structural 
causal models, counterfactual reasoning, and the use of the "do" operator to estimate intervention effects [6]. The 
distinction between observation and manipulation is emphasized, setting the stage for applied causal methodologies. 

The methodology section outlines a comprehensive pipeline combining CNN-based behavioral feature extraction with 
treatment effect estimation using uplift modeling and causal forests. A multi-stage experimental design is detailed, 
involving real-world behavioral data, treatment assignment, and counterfactual simulation to predict long-term 
outcomes of strategic decisions. Implementation details—such as data normalization, model architecture, and outcome 
metrics—are thoroughly addressed to support replicability. 

Subsequent sections focus on results analysis, including interpretation of causal estimates, heterogeneous treatment 
effects, and KPI impact by customer segment. Business intelligence integration is also discussed, highlighting how causal 
insights can be embedded into dashboards for cross-functional access and execution [7]. 

The key contribution of this article lies in demonstrating a seamless integration of machine learning and causal 
inference, showing how this synthesis enables decision-makers to identify not just what is likely to happen, but what 
can be changed and how. This hybrid paradigm moves beyond prediction to strategic influence, offering actionable, 
transparent, and resilient insights for enterprise leaders. 
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2. Literature review  

2.1. Traditional Predictive Analytics and Limitations  

Traditional predictive analytics has long been the foundation of data-driven decision-making in enterprises, offering 
powerful tools to forecast outcomes such as customer churn, sales trends, or product demand. These models, including 
linear regression, logistic regression, decision trees, and ensemble methods like random forests and gradient boosting, 
identify statistical patterns and relationships between input variables (features) and outcomes (targets) [6]. In retail, 
for example, predictive models are used to forecast which customers are likely to make repeat purchases, enabling 
timely marketing interventions. 

Despite their effectiveness in forecasting, these models have a critical limitation: they cannot infer causality. Predictive 
algorithms are optimized for accuracy, not understanding. They rely on correlations, meaning they may capture 
spurious relationships that arise due to confounding variables or coincidental trends. A model might predict high 
purchase likelihood based on certain web behaviors, but it does not determine whether those behaviors cause the 
purchases or simply accompany them [7]. 

This limitation becomes particularly problematic when organizations attempt to act on model predictions. Decision-
makers require answers to “what-if” questions, such as whether sending a discount will change a customer’s behavior 
or if reallocating resources to one channel will improve conversion rates. Predictive analytics cannot address such 
questions, as it lacks the structural framework to distinguish intervention effects from observational patterns [8]. 

In high-stakes environments—such as financial services, healthcare, and public policy—relying solely on predictive 
models risks deploying strategies based on misleading signals. As a result, there is a growing consensus that decision 
systems must go beyond correlation and embrace frameworks capable of quantifying causal relationships to support 
robust, evidence-based action. 

2.2. Overview of Causal Inference in Business Contexts  

Causal inference refers to the process of identifying and estimating the effects of one variable on another, especially in 
the context of deliberate interventions. Unlike predictive modeling, which focuses on correlations, causal inference aims 
to determine whether changing one factor (e.g., launching a new pricing strategy) will lead to a specific outcome (e.g., 
increased revenue) [9]. This distinction is central to strategic business planning, where leaders are less concerned with 
patterns and more interested in levers for influence. 

In business contexts, causal inference is typically applied to evaluate treatments, such as marketing campaigns, policy 
changes, or operational adjustments. These treatments can be analyzed using various causal frameworks, including 
randomized controlled trials (RCTs), observational study adjustments, and counterfactual modeling. RCTs, considered 
the gold standard, randomly assign treatments to control for confounding variables and ensure unbiased estimates of 
treatment effects. However, RCTs are often impractical in large-scale commercial settings due to cost, ethical, or 
logistical constraints [10]. 

In response, companies are adopting quasi-experimental techniques such as propensity score matching, difference-in-
differences, and regression discontinuity designs. These approaches use observational data to approximate causal 
conclusions where randomization is not feasible. For instance, an online retailer may compare users who saw a 
promotion to those who didn’t, adjusting for prior purchase behavior to estimate the campaign’s impact [11]. 

Causal inference offers businesses a robust mechanism to simulate alternate decisions, optimize interventions, and 
prioritize actions based on expected outcomes, not just historical trends. It transforms data analysis from a descriptive 
function into a strategic forecasting engine capable of driving measurable change. 

2.3. Machine Learning and Causality: Emerging Integration  

The convergence of machine learning and causal inference is giving rise to a powerful new field known as Causal 
Machine Learning (Causal ML). This integration enables organizations to scale causal estimation using the flexibility 
and complexity-handling capabilities of modern ML algorithms. Unlike traditional statistical methods, causal ML is 
designed to manage high-dimensional data, nonlinear interactions, and individual-level treatment heterogeneity—all 
critical for accurate intervention modeling in enterprise settings [12]. 
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One widely adopted approach is uplift modeling, also known as true-lift modeling. Unlike conventional classification 
models that predict outcomes (e.g., conversion), uplift models predict the incremental effect of a treatment on an 
individual’s behavior. This means they estimate not whether a customer will buy, but whether they will buy because 
they received a promotion. Uplift modeling segments users into four categories: Persuadables (positive treatment 
effect), Sure Things (would act regardless), Lost Causes (unaffected), and Do Not Disturb (negatively affected) [13]. This 
targeting precision dramatically improves marketing ROI and reduces customer fatigue. 

Another breakthrough in causal ML is Causal Forests, an adaptation of random forests that estimates Conditional 
Average Treatment Effects (CATEs). Causal forests partition the feature space to uncover heterogeneity in treatment 
response, allowing for granular, segment-level optimization [14]. For example, a bank may use causal forests to 
determine which credit risk segments benefit most from financial literacy interventions, informing personalized 
strategies. 

Deep learning models, particularly convolutional neural networks (CNNs), are also entering the causal inference space. 
While CNNs are primarily known for image and pattern recognition, they can be repurposed to extract structured 
features from high-frequency behavioral sequences—such as clickstreams or time-stamped interactions [15]. These 
features serve as rich inputs into causal models, enabling fine-grained segmentation and treatment effect prediction. 
For instance, CNNs can detect nuanced temporal patterns in user behavior that signal responsiveness to retention 
strategies. 

As causal ML continues to evolve, it bridges the gap between explainability and scalability. It empowers enterprises not 
only to predict what will happen, but to strategically influence outcomes through targeted, evidence-based 
interventions—turning passive analytics into proactive levers for organizational performance. 

 

Figure 1 Comparative diagram of predictive vs. causal AI pipelines 
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3. Theoretical framework  

3.1. Structural Causal Models and Do-Calculus  

Structural Causal Models (SCMs) form the backbone of modern causal inference, offering a mathematical and graphical 
framework to represent cause-and-effect relationships in complex systems. Unlike purely statistical models that focus 
on correlation, SCMs explicitly define how variables influence each other through structural equations and causal 
diagrams [11]. These diagrams are typically represented as Directed Acyclic Graphs (DAGs), where each node denotes 
a variable, and edges represent causal pathways. This structure allows analysts to visualize and test assumptions about 
confounding variables, mediators, and colliders, which are often invisible in standard predictive modeling. 

One of the most powerful aspects of SCMs is their ability to distinguish between observation and intervention. This is 
operationalized using do-calculus, a formal system introduced by Judea Pearl that enables reasoning about 
interventional distributions such as P(Y | do(X))—the probability of an outcome Y when a variable X is forcibly set, 
simulating a real-world intervention [12]. Do-calculus includes a set of rules that help derive post-intervention 
distributions from observational data under specific assumptions encoded in the DAG. 

For instance, in a marketing context, SCMs can be used to determine whether sending a discount offer (X) causes an 
increase in conversion (Y), or whether both are influenced by an unobserved variable like customer loyalty. By 
identifying and adjusting for these confounders, businesses can make credible claims about causal impact. 

SCMs thus provide the theoretical foundation for causal AI in strategic planning. They transform business analytics from 
a retrospective exercise to a forward-looking simulation engine, capable of evaluating hypothetical scenarios and 
planning interventions that are likely to yield measurable and intentional effects [13]. 

3.2. Counterfactual Reasoning and Business Simulation  

Counterfactual reasoning is a key component of causal analysis that seeks to answer “what if” questions—what would 
have happened if a different action or decision had been taken. This is distinct from observational or even interventional 
reasoning, as it involves constructing a hypothetical alternative reality based on the same underlying data structure 
[14]. In business contexts, counterfactuals allow decision-makers to simulate and compare outcomes under different 
strategic scenarios, guiding resource allocation and policy design. 

Technically, counterfactuals are modeled within the framework of Structural Causal Models. The process begins by 
observing a real-world instance—e.g., a customer who received a retention offer and renewed their subscription. Using 
the model, a counterfactual estimate is produced to infer whether the customer would have renewed without the offer. 
This allows businesses to estimate individual treatment effects (ITEs) and segment customers by responsiveness, 
informing more efficient intervention strategies [15]. 

Business simulation using counterfactuals enables enterprises to conduct virtual experiments at scale. Rather than 
relying solely on A/B testing, which can be costly and time-consuming, firms can simulate various operational strategies 
and evaluate their projected outcomes. For example, a logistics company may model how reducing delivery time impacts 
customer retention across different regions, controlling for seasonal variation and product category [16]. 

Counterfactual reasoning also supports fairness auditing and impact assessment. Organizations can evaluate whether 
interventions have disparate effects across demographic groups, helping ensure ethical and inclusive decision-making. 
As such, it forms the computational core of causal AI’s ability to simulate, adapt, and optimize business strategies in 
uncertain environments. 

3.3. Framework for Causal AI in Strategic Planning  

The integration of causal AI into strategic planning involves a systematic framework that connects interventions to long-
term business outcomes. This framework begins with problem formalization, where decision-makers define the 
treatment (e.g., pricing change), the outcome (e.g., profit margin), and relevant confounders (e.g., product seasonality). 
A Structural Causal Model is then constructed to encode domain knowledge and assumptions in the form of a causal 
graph [17]. 

Next, feature representations are extracted from historical behavioral or transactional data. If complex patterns exist—
such as in time-series logs or user interaction flows—deep learning models like CNNs can be used to generate compact 
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and expressive feature embeddings. These embeddings are passed into causal ML models such as uplift models or causal 
forests to estimate heterogeneous treatment effects. 

The framework culminates in a decision simulation layer, where planners can evaluate “what-if” scenarios and optimize 
interventions. By using counterfactuals and do-calculus, the long-term ripple effects of strategies—such as marketing 
personalization, product bundling, or policy reform—can be assessed across multiple customer segments [18]. 

This end-to-end pipeline allows strategic teams to move beyond prediction and into causal reasoning, enabling 
evidence-based, adaptive planning that directly ties analytic insights to organizational performance and resilience. 

4. Methodology 

4.1. Research Design Overview  

This study employs a mixed-method research design, integrating empirical behavioral data with machine learning and 
causal inference modeling to uncover latent drivers of strategic business outcomes. The approach blends quantitative 
data analysis, including the use of Convolutional Neural Networks (CNNs) for feature extraction, with causal modeling 
techniques such as uplift modeling and causal forests to simulate intervention effects across diverse customer segments 
[15]. This combination allows for the identification of not only high-level patterns but also causal relationships that 
inform actionable strategic decisions. 

The research is structured around three core stages: data preparation and feature engineering, causal model training 
and evaluation, and simulation of strategic scenarios. Behavioral data is collected from a real-world e-commerce 
platform over a multi-period timeframe, capturing users’ interactions with products, campaigns, and digital 
experiences. The model development process begins by encoding these behaviors into structured inputs using domain-
specific and data-driven feature construction methods, including Recency-Frequency-Monetary (RFM) and session 
funnel analysis [16]. 

Once transformed, the behavioral features are processed through CNN layers to capture temporal and spatial 
dependencies, producing dense embeddings that represent each user's interaction signature. These embeddings are 
then fed into causal ML models, trained to estimate Conditional Average Treatment Effects (CATEs) for specific 
interventions such as promotional emails or loyalty program exposure [17]. 

The final stage involves the application of counterfactual reasoning to simulate "what-if" business scenarios under 
varying levels of strategic intervention. This end-to-end pipeline—from data capture to simulation—provides a robust 
framework for evaluating the long-term impact of strategic actions in a dynamic environment. The mixed-method 
design ensures both statistical rigor and real-world relevance, enabling organizations to blend predictive precision with 
evidence-based strategic foresight. 

4.2. Dataset and Business Context  

The dataset used in this study originates from a mid-sized e-commerce retailer operating in the consumer electronics 
and lifestyle category. It encompasses a 12-month period of user interaction logs, transactional records, and marketing 
campaign data. The goal is to understand the impact of various strategic interventions—such as targeted discounts, 
personalized recommendations, and loyalty rewards—on key business outcomes including revenue per user, retention, 
and engagement longevity [18]. 

The dataset includes over 150,000 unique user IDs, each linked to a time-stamped sequence of actions, including page 
visits, cart additions, product views, and purchases. Each user session is segmented chronologically, allowing for the 
capture of real-time behavioral sequences. In addition to behavioral logs, the data includes metadata such as device 
type, browser, referral source, and campaign exposure, providing context for user interactions across marketing and 
transactional touchpoints. 

Transactional history is detailed, featuring order amounts, timestamps, item categories, and discount utilization. 
Campaign data includes information on email opens, click-through rates, and conversion from specific promotional 
flows. These components allow for the definition of treatments, such as receipt of a promotional code or display of a 
recommended bundle, and measurement of outcomes, such as subsequent spending or repeat visits [19]. 
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This dataset is well-suited for causal inference due to the presence of naturally occurring treatment-control pairs, non-
random exposure variations, and rich temporal granularity. The business context—where frequent micro-decisions can 
aggregate into long-term customer value—provides an ideal environment to test the effectiveness of causal AI for 
strategic planning and validate its potential to drive sustainable business performance. 

4.3. Feature Engineering  

Feature engineering is a critical step in translating raw behavioral logs into meaningful inputs for causal and predictive 
modeling. In this study, we employ both domain-specific techniques and automated feature extraction using CNNs to 
derive a robust behavioral feature set. The foundation of the feature space is the RFM framework—capturing recency 
(time since last purchase), frequency (number of purchases over time), and monetary value (total spend). These metrics 
offer a compact representation of customer value and lifecycle stage [20]. 

Additional features are constructed to capture session-level dynamics, including average session duration, click depth, 
bounce rate, and time-of-day activity. Users are further characterized through conversion funnel analysis, identifying 
drop-off points and movement across key stages such as product view → add-to-cart → checkout → purchase. These 
funnel-based features reflect intent and behavioral friction, offering key signals for segmentation and targeting [21]. 

Derived features also include promotion responsiveness, calculated as the difference in engagement or revenue 
between treated and untreated periods. This variable is useful for training uplift models, where the goal is to isolate the 
incremental impact of interventions. Furthermore, content diversity, time since last interaction, and device-switch 
frequency are encoded to capture digital behavior richness. 

To support deep learning-based modeling, raw time-series data from user sessions is processed through a CNN, using 
sliding windows to retain temporal order and encode sequential dependencies. The convolutional layers learn 
hierarchical interaction patterns that are not easily captured through static features, allowing the model to distinguish 
between routine and anomalous behavior [22]. 

The final feature matrix integrates manually engineered and CNN-derived features, ensuring that both expert 
knowledge and data-driven representations inform the causal modeling pipeline. This dual-layer feature strategy 
supports robust estimation of treatment effects and enables fine-grained strategic simulations across behavioral 
archetypes. 

4.4. Causal Modeling Pipeline with CNN/ML  

The proposed causal modeling pipeline integrates deep learning-based feature embedding, machine learning-driven 
treatment effect estimation, and counterfactual simulation to evaluate strategic interventions. This pipeline is designed 
to quantify the impact of specific business actions—such as promotions or user interface (UX) changes—on key 
performance outcomes. The five-step framework outlined below enables scalable, data-driven strategic planning 
grounded in causal inference principles. 

4.4.1. Step 1: Feature Embedding Using CNN 

The first step involves processing raw, time-stamped behavioral data using Convolutional Neural Networks (CNNs). 
User interactions—such as page visits, search queries, and cart modifications—are structured into sequential time-
series windows. These windows are converted into multi-dimensional matrices where rows represent time intervals 
and columns represent encoded events (e.g., event type, product category, engagement score). CNNs are applied to these 
matrices to extract hierarchical spatial-temporal features that capture patterns like repeated visits before purchase or 
interactions with high-value products [19]. This approach allows for automatic learning of behavioral embeddings that 
reflect not only frequency but also sequence and intensity of actions. 

4.4.2. Step 2: Treatment Definition 

Once user behavior has been embedded, the next step is to define the treatment variable—the specific business 
intervention whose causal impact we aim to estimate. In the context of this study, treatments include receipt of 
promotional emails, exposure to recommended bundles, and interface redesigns (e.g., personalized landing pages). 
These treatments are recorded as binary or categorical indicators, where treated units received the intervention while 
control units did not. Crucially, treatments must vary naturally across the population and be time-stamped to enable 
temporal alignment with outcomes [20]. 
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4.4.3. Step 3: Outcome Metrics 

To estimate treatment effects, clearly defined outcome variables are needed. For this pipeline, we consider multiple 
outcomes aligned with long-term business goals, including: 

Revenue per user over a 30-day window post-treatment 

Engagement longevity, measured by the number of sessions or active days 

Conversion rate, indicating the proportion of treated users who completed a purchase. These outcomes are selected 
for their relevance to both financial performance and customer retention. Each outcome is lagged appropriately from 
the treatment to reflect realistic causality and avoid simultaneity bias [21]. 

4.4.4. Step 4: Uplift Modeling and CATE Estimation 

With features, treatments, and outcomes defined, the pipeline moves to uplift modeling, which estimates the Conditional 
Average Treatment Effect (CATE) for individual users. Uplift models differ from traditional classifiers by predicting the 
difference in outcome likelihood between treated and untreated conditions. We employ Causal Forests—an extension 
of Random Forests built to partition the feature space while preserving treatment-control integrity [22]. Causal Forests 
provide not only average treatment effects but also heterogeneous effects across user segments. 

Alternatively, a T-Learner framework may be used, which trains two separate models—one on treated users and 
another on untreated—to learn the outcome function for each group. The individual treatment effect is then estimated 
as the difference in predicted outcomes between the two models for each user [23]. These models are evaluated using 
metrics such as Qini coefficient, uplift at top decile, and out-of-sample treatment effect calibration. 

4.4.5. Step 5: Simulation of Interventions via Counterfactual Estimation 

The final step involves simulating strategic decisions by leveraging counterfactual estimates. For each user, the pipeline 
generates two potential outcomes: one assuming the treatment occurred, and one assuming it did not. The difference 
represents the individual treatment effect, which can be aggregated across segments to estimate expected business 
impact under varying levels of intervention coverage [24]. 

For example, simulation can estimate the total revenue gain if only the top 30% of users (ranked by predicted uplift) 
receive a promotion. These simulations inform budget allocation, campaign targeting, and strategic prioritization. 
Furthermore, by running simulations under multiple hypothetical treatments, the pipeline can support policy 
optimization, helping leaders choose the most impactful intervention for each segment [25]. 

In summary, this end-to-end pipeline—from CNN-based embedding to counterfactual simulation—provides a scalable, 
interpretable, and actionable causal inference framework. It empowers organizations to move beyond prediction and 
toward evidence-based strategic experimentation, ensuring that every decision is aligned with measurable, long-term 
performance outcomes. 
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Figure 2 Flow diagram of the pipeline integrating CNN, treatment modeling, and causal inference 

5. Implementation and experimental setup  

5.1. Data Preprocessing and CNN Training  

Effective data preprocessing is foundational to any deep learning pipeline, especially when using Convolutional Neural 
Networks (CNNs) to extract behavioral features from user session logs. The preprocessing phase ensures that input 
data is structured, normalized, and encoded in a way that captures both temporal patterns and event semantics. 

The first step involves segmenting raw behavioral data using sliding windows. Each user session is broken into fixed-
size intervals—for example, 15-minute or 1-hour chunks—where each window captures a sequence of events such as 
clicks, page visits, and cart interactions. Sliding windows help preserve chronological dependencies while enabling the 
model to learn patterns in user behavior over time. Each window is represented as a 2D matrix, where rows correspond 
to time intervals and columns to event types, numerical encodings, or intensity scores [23]. 

Next, all behavioral features within each session are subjected to normalization. Continuous variables, such as time 
spent on a product page or cart value, are scaled using min-max normalization to fit within the [0,1] range. This helps 
prevent skewed learning due to disparate feature magnitudes. Categorical variables, such as device type or referral 
channel, are one-hot encoded to preserve categorical distinctions while maintaining compatibility with CNN filters [24]. 

Once the preprocessing is complete, these matrices are input into a 1D or 2D CNN architecture, depending on the 
granularity of the temporal structure. The network typically includes convolutional layers for pattern detection, pooling 
layers to reduce dimensionality, and fully connected layers for embedding generation. Dropout and batch normalization 
are incorporated to minimize overfitting and stabilize training. The output embeddings serve as condensed behavioral 
signatures that reflect temporal engagement patterns and interaction depth [25]. 

These embeddings are used as inputs for the subsequent uplift modeling phase, ensuring that the causal models operate 
on robust, temporally-aware representations of user behavior. 
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5.2. Training Uplift Models with Treatment/Control Groups  

With CNN-derived behavioral embeddings in place, the next phase involves training uplift models to estimate treatment 
effects across the population. Uplift modeling requires well-defined treatment and control groups, where treatments 
represent real-world interventions such as receiving an email, viewing a promotion, or being offered a discount. These 
binary labels are aligned with corresponding outcome variables, like post-treatment conversion, revenue, or session 
frequency [26]. 

One key consideration in uplift modeling is ensuring sampling balance between treated and untreated users. 
Imbalanced treatment assignment can lead to biased models. To mitigate this, stratified sampling or propensity score 
matching is employed, ensuring that users in both groups are comparable in terms of baseline characteristics. 
Oversampling techniques may also be used for underrepresented treatment groups to maintain sufficient training 
diversity [27]. 

Two model families are employed: the Causal Forest and T-Learner. Causal Forests partition the data while preserving 
treatment/control stratification, enabling the estimation of Conditional Average Treatment Effects (CATEs) for each 
user. T-Learners, by contrast, build two separate models—one for treated and one for control—and compute the 
difference in predicted outcomes. Both methods leverage CNN embeddings as feature inputs, thus benefiting from high-
resolution behavioral encoding [28]. 

Model performance is evaluated using uplift-specific metrics. The Qini coefficient, an analog to the Gini coefficient, 
measures the cumulative gain of targeting users ranked by uplift. Another critical metric is uplift at top-k, which assesses 
how effective the model is at identifying the top-k percent of users who respond positively to treatment. A well-
performing model will show a sharp gain curve and high top-k uplift, indicating its capacity to allocate interventions 
efficiently [29]. 

These models provide a refined understanding of who benefits from specific actions and quantify the incremental 
impact of strategic decisions, guiding campaign optimization and resource allocation. 

5.3. Platform Integration and Testing Environment  

To transition from modeling to decision-making, the causal uplift framework must be embedded within the 
organization’s Business Intelligence (BI) infrastructure. Integration involves mapping uplift scores, treatment effects, 
and outcome probabilities into interactive dashboards used by strategic, marketing, and operations teams. This ensures 
that causal insights are not siloed within data science functions but become part of daily enterprise workflows [30]. 

The uplift model outputs—such as CATE estimates and user uplift scores—are exported as structured data layers and 
connected to BI tools like Tableau, Power BI, or Looker. Visual dashboards display ranked user segments, uplift 
distributions, and predicted KPI shifts. These dashboards also allow filtering by segment attributes—demographics, 
behavior scores, campaign touchpoints—to support cross-functional planning and decision-making [31]. 

A testing environment is deployed to simulate real-world application of strategic interventions. Decision-makers can 
select a treatment (e.g., 15% discount) and a targeting strategy (e.g., top 25% uplift scorers), and the system forecasts 
potential uplift in revenue, churn reduction, or customer engagement. These simulations are powered by counterfactual 
estimates generated in the modeling phase, allowing teams to test multiple scenarios before execution [32]. 

Additionally, feedback loops are integrated to measure real-world effectiveness post-deployment. As interventions are 
executed, actual outcomes are compared to predicted values, enabling continuous learning and model refinement. 
Discrepancies between expected and actual outcomes can prompt feature reengineering or model recalibration, 
creating an adaptive causal learning system [33]. 

Platform integration ensures that causal AI insights are not abstract analytics outputs, but concrete, interpretable tools 
for strategic business planning, helping organizations respond to uncertainty with evidence-backed agility. 
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Table 1 Model Configuration Parameters 

Component Parameter Value / Setting Description 

Input Session Window Size 10 time steps Number of sequential interactions in each session 
window 

 
Feature Dimensions 20 features per step Encoded behavioral signals (clicks, time, product 

views, etc.) 

CNN Layer 1 Filters 64 Number of convolutional filters 
 

Kernel Size 3 Width of the filter for local pattern detection 
 

Activation ReLU Non-linearity applied to convolutional output 

CNN Layer 2 Filters 32 Reduced depth for deeper hierarchical learning 
 

Kernel Size 3 Second convolutional layer for pattern refinement 
 

Pooling MaxPooling (2) Downsamples the feature map to reduce 
dimensionality 

Dropout 
Layer 

Dropout Rate 0.3 Prevents overfitting by randomly dropping units 

Flatten Layer Output Size Auto-derived Converts multi-dimensional output to 1D vector 

Dense Layer Neurons 128 Fully connected layer for embedding generation 
 

Activation ReLU Ensures non-linearity in the learned 
representation 

Training Batch Size 64 Number of samples per training iteration 
 

Epochs 25 Full training passes over the dataset 
 

Optimizer Adam Adaptive learning rate optimization algorithm 
 

Learning Rate 0.001 Step size for model weight updates 

Output Embedding Vector 
Size 

128 Final feature vector used for uplift model input 

Uplift Model Algorithm Causal Forest & T-
Learner 

Used to estimate treatment effect (CATE) per user 

 
Trees (for Causal 
Forest) 

500 Number of trees in the ensemble 

 
Max Depth 6 Controls complexity of each decision tree 

Table 2 Description of Outcome Variables and Metrics 

Outcome 
Variable 

Description Metric Type Purpose in Analysis 

Conversion Whether the user completed a 
purchase post-treatment 

Binary (0/1) Core success metric for campaign 
effectiveness 

Revenue per 
User 

Total monetary value of transactions 
by user in the evaluation window 

Continuous ($) Financial impact assessment; used 
in ROI calculation 

Engagement 
Longevity 

Number of active days post-
intervention 

Integer (days) Captures sustained user interest 
and platform retention 

Churn 
Probability 

Likelihood of user disengaging within 
30 days 

Probability (0–1) Risk mitigation and retention 
modeling 
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Time to 
Conversion 

Duration between treatment 
exposure and first purchase 

Continuous 
(hours/days) 

Behavioral speed of response; used 
in campaign pacing strategies 

Uplift Score 
(CATE) 

Estimated individual treatment effect 
from model 

Continuous (%) Targeting efficiency indicator; used 
to rank users by responsiveness 

ROI Impact Estimated return on investment 
based on intervention vs. control 
comparison 

Percentage (%) Measures the cost-efficiency of each 
strategic action 

6. Results and analysis  

6.1. Model Performance and Validation  

Model performance evaluation in causal inference settings requires a combination of predictive accuracy metrics and 
uplift-specific validation strategies. Traditional measures such as accuracy, precision, recall, and F1-score are useful 
during the CNN-based behavioral embedding and initial outcome prediction phases but are insufficient for assessing 
the core goal of causal modeling—estimating the incremental impact of interventions [27]. Therefore, uplift-specific 
metrics such as the Qini coefficient, uplift at top-k, and area under the uplift curve (AUUC) were employed to evaluate 
model effectiveness. 

The Qini coefficient quantifies the separation between users with positive and neutral/negative responses to treatment, 
helping validate how well the model ranks users by their sensitivity to interventions. A high Qini coefficient in our 
experiments (0.28) indicated that the uplift model effectively prioritized users who were most likely to benefit from 
treatments. Uplift at top-10% was another critical benchmark, with the top decile contributing to 38% of the total 
incremental revenue, underscoring the model’s targeting efficiency [28]. 

To validate model stability, five-fold cross-validation was used across different temporal cohorts. Performance 
remained consistent across holdout sets, indicating that the model generalized well and avoided overfitting to specific 
behavioral periods. Additionally, counterfactual validation was performed by comparing predicted uplift scores to real-
world outcomes in delayed-execution cohorts, where treatments were withheld from a subset of high-uplift users. The 
observed differences in outcomes aligned closely with predicted uplift magnitudes, supporting the internal validity of 
the causal estimates [29]. 

Precision and recall were also calculated on predicted outcome classes (purchase vs. no purchase) for treated and 
untreated segments. While high recall was observed in the treated group (0.84), precision was more balanced after 
calibration (0.76 treated vs. 0.73 control), confirming that outcome predictions were reliable enough to support 
counterfactual reasoning. The final uplift model outperformed baseline classifiers and non-causal alternatives such as 
regular logistic regression, which could not differentiate between correlation and causation. 

Overall, the combined use of CNN embeddings, Causal Forest estimation, and targeted validation metrics provided a 
robust evaluation framework that confirmed both predictive and causal effectiveness, essential for real-world strategic 
planning deployment. 

6.2. Causal Insights and Interpretation  

One of the most valuable outcomes of the causal modeling framework is its ability to generate interpretable insights 
into segment-wise treatment effects, revealing how different user groups respond to business interventions. By 
estimating Conditional Average Treatment Effects (CATEs) for individual users, the model illuminated significant 
heterogeneity across behavioral and demographic cohorts. These differences are not visible through traditional 
analytics, which often assume homogeneous treatment effects [30]. 

For example, the model identified that mid-frequency users with moderate session depth but high content diversity 
showed the highest uplift from personalized bundle promotions. Their average treatment effect was nearly double that 
of high-frequency users, who appeared to be less responsive, possibly due to established purchasing habits. Conversely, 
low-frequency users exhibited negative uplift values in response to promotional emails, suggesting potential backlash 
or disengagement when pushed too aggressively [31]. 
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The model also highlighted latent performance drivers, such as multi-device usage and late-night browsing behavior, 
which consistently correlated with positive treatment response. These factors were not prioritized in earlier rule-based 
segmentation schemes but were uncovered through CNN feature importance visualization and local interpretable 
model-agnostic explanations (LIME) techniques. These latent indicators offered new directions for targeting and 
product personalization, particularly in refining loyalty and reactivation strategies [32]. 

In terms of campaign effectiveness, uplift modeling showed that users exposed to interface redesigns—including 
simplified checkout and dynamic product carousels—responded more favorably than those who only received price-
based incentives. This insight reshaped assumptions about which interventions drive long-term engagement and 
underscored the importance of UX experimentation in performance optimization. 

Moreover, causal heatmaps enabled visual exploration of treatment effect distributions across key segments, facilitating 
cross-functional collaboration between marketing, design, and product teams. These insights not only informed tactical 
decisions but also supported strategic planning discussions around resource allocation and channel prioritization, 
making causal AI a critical input into quarterly and annual roadmap development. 

The richness of these segment-level insights, when paired with intuitive dashboards, transformed complex causal 
estimates into actionable, narrative-driven intelligence for decision-makers—ensuring both technical rigor and 
business relevance. 

6.3. Impact on Strategic KPIs  

The integration of causal modeling into strategic decision workflows had a measurable impact on several key 
performance indicators (KPIs), particularly those tied to return on investment (ROI), churn reduction, and customer 
engagement longevity. By prioritizing interventions using individualized treatment effect estimates, the business 
achieved more efficient allocation of resources and higher marginal gains per dollar spent [33]. 

In pilot deployment, targeting only the top 20% of users by uplift score led to a 19.3% increase in average ROI compared 
to campaigns that targeted the general population. This improvement was driven by reducing expenditures on “sure-
thing” and “lost-cause” segments and focusing efforts on persuadable users, whose behavior could be significantly 
influenced by the treatment. These results were particularly notable in the retention campaign, where churn among 
high-risk segments dropped by 14% in the uplift-optimized cohort versus the control group [34]. 

 

Figure 3 Heatmap of conditional average treatment effect(CATE) across customer segment 

The modeling framework also supported longitudinal scenario forecasts, where various levels of intervention coverage 
were simulated over six-month periods. These simulations projected not only short-term gains in conversion and 
revenue, but also improvements in lifetime value (LTV) and net promoter scores (NPS). For instance, interventions 
optimized using CATE estimates predicted a 12% boost in LTV over a three-quarter horizon when deployed 
continuously with model updates [35]. 
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These forecasts allowed leadership to test strategic levers virtually, reducing the need for high-cost experimentation 
while maintaining agility in decision-making. The ability to simulate, measure, and refine interventions through 
counterfactual estimation positioned causal AI as a central planning tool—moving beyond descriptive analytics to 
become a driver of sustained, data-informed organizational performance. 

Table 3 Uplift Values and ROI Impact by Segment 

Customer 
Segment 

Estimated Uplift 
(%) 

Incremental 
Conversions 

Avg Spend per 
Conversion ($) 

Estimated ROI 
Impact (%) 

Segment A 12.4 1,850 78.50 19.2 

Segment B 7.9 1,220 65.30 11.6 

Segment C -1.5 -130 71.20 -2.1 

Segment D 5.6 970 59.10 8.4 

Segment E 9.2 1,410 66.80 14.3 

7. Discussion  

7.1. Implications for Strategic Business Planning  

The adoption of causal AI carries far-reaching implications for strategic business planning, transforming how 
organizations design policies, allocate resources, and assess risk. At the core of this transformation is a shift from 
reactive, correlation-based decision-making to a forward-looking, intervention-oriented mindset. By explicitly 
modeling the causal pathways between actions and outcomes, businesses gain the ability to simulate strategic levers, 
evaluate multiple scenarios, and implement changes with measurable confidence [32]. 

One major implication lies in the advancement of data-driven policy design. Traditional business policies—such as 
pricing schemes, promotional calendars, or retention strategies—are often based on heuristics or lagging indicators. 
Causal inference enables planners to craft policies grounded in individualized treatment effects and validated uplift 
scores. For example, rather than offering a blanket 20% discount, businesses can target only those users whose 
predicted behavioral change exceeds a threshold, thereby optimizing spend and avoiding unintended consequences like 
margin erosion or brand dilution [33]. 

Moreover, causal AI supports the development of an evidence-based experimentation culture. Instead of relying solely 
on A/B testing, which is often constrained by cost, ethics, or operational complexity, organizations can simulate 
interventions across segments and time horizons using counterfactual estimation. This not only expands the range of 
testable scenarios but also enables rapid iteration without risking live performance metrics. In practice, this allows 
firms to compare the potential impact of multiple campaign strategies in advance, selecting the one with the highest 
forecasted ROI [34]. 

The deployment of such simulation engines also encourages cross-functional alignment. Marketing, product, operations, 
and finance teams can use shared causal dashboards to evaluate strategies based on both short-term impact and long-
term sustainability. This integrated approach fosters a culture of transparency and analytical accountability, moving 
strategic planning away from intuition and toward rigorous, data-informed execution. 

7.2. Comparative Value of Causal vs. Predictive Approaches  

While predictive modeling remains a vital part of enterprise analytics, its scope is limited to estimating outcomes based 
on historical correlations. These models can identify which users are likely to convert, churn, or engage, but they cannot 
determine whether an action causes a change in that behavior. This distinction becomes critical when organizations are 
making decisions that involve resource deployment or customer intervention [35]. 

Causal AI offers a significant advantage in terms of resource efficiency. By identifying which individuals are most likely 
to change behavior as a result of treatment (i.e., high-uplift users), organizations can reduce waste and avoid 
misallocating resources to users who would act the same regardless of intervention. Predictive models might classify 
these users as high-value, but only causal models can indicate whether that value is actionable [36]. 
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In addition to efficiency, causal methods offer better risk mitigation. Acting on spurious correlations may produce 
short-term gains but introduce long-term volatility or customer backlash [41]. For example, pushing high-frequency 
emails based on predicted engagement might increase opt-outs if the causal relationship is not understood. Causal AI 
mitigates such risks by validating decisions against counterfactual logic and simulated long-term effects, making it a 
superior tool for strategic and sustainable planning [40]. 

7.3. Limitations and Assumptions  

Despite its advantages, the deployment of causal AI is not without limitations. One primary concern is observational 
bias—since most business data is non-randomized, unmeasured confounders can distort causal estimates. This risk 
necessitates careful model design, including the use of DAGs, domain knowledge, and sensitivity analyses to account for 
hidden variables [37]. 

Another limitation is feature completeness. CNN-based embeddings and uplift models rely on the quality and breadth 
of input data. If key behavioral signals are missing or misrepresented, model accuracy and inference validity will suffer. 
Regular updates and feature audits are essential to maintain robustness [38]. 

Lastly, external validity remains a challenge. Treatment effects estimated in one business context or timeframe may not 
generalize to another, particularly in volatile environments. Continuous model retraining, cohort validation, and 
simulation under uncertainty are necessary to extend findings beyond their original scope and ensure scalable strategic 
applicability [39]. 

8. Conclusion and future work  

8.1. Summary of Findings  

This study presented an end-to-end framework for integrating Causal AI into strategic business planning, 
demonstrating its ability to move beyond prediction and into the realm of influence-based decision-making. By 
combining convolutional neural networks (CNNs) for behavior-based feature extraction with causal machine learning 
methods such as uplift modeling and causal forests, we established a methodology capable of identifying heterogeneous 
treatment effects and simulating the outcomes of interventions at both individual and cohort levels. 

The modeling pipeline successfully estimated counterfactual outcomes, allowing businesses to test the likely impact of 
strategic levers—such as promotions, interface changes, or targeted communications—without costly or time-delayed 
experimentation. Performance validation using metrics like uplift at top-k and Qini coefficients confirmed the model's 
ability to efficiently identify persuadable users and deliver measurable improvements in ROI and retention. Insights 
from the causal heatmaps and segment-wise CATE analysis further revealed latent drivers of performance, offering a 
new dimension of strategic visibility. 

Moreover, the deployment of causal estimates into business intelligence dashboards enabled cross-functional teams to 
simulate and optimize policy design, transforming complex analytics into intuitive tools for operational and strategic 
decision-making. Collectively, the integration of causal AI empowers organizations to not only predict what will happen, 
but determine what should be done to achieve desirable long-term outcomes. 

This study affirms that causal modeling—when properly embedded into business workflows—can drive adaptive, 
efficient, and evidence-based strategy, equipping enterprises with the tools to thrive in dynamic and uncertain 
environments. 

8.2. Recommendations for Enterprise Adoption  

To effectively deploy Causal AI at scale, enterprises should consider a structured approach encompassing training, 
toolchain development, and governance. First, cross-functional training programs should be introduced to build causal 
literacy across data science, product, and strategy teams. Decision-makers must understand the differences between 
correlation, prediction, and causation to apply insights appropriately. 

Second, organizations should invest in a modular toolchain, integrating CNN-based behavior modeling, causal inference 
engines (e.g., uplift modeling, CATE estimation), and counterfactual simulators within existing business intelligence 
platforms. Open-source libraries can be combined with cloud-native infrastructure to support agile model development, 
validation, and deployment. 
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Third, governance mechanisms must ensure transparency, fairness, and repeatability in causal estimates. This includes 
documentation of treatment definitions, versioning of causal graphs, and regular audits of model drift and bias. Ethical 
oversight is particularly crucial when interventions affect user experience, access, or pricing. 

By embedding these elements, enterprises can align Causal AI with their strategic priorities and compliance standards, 
accelerating the transition from reactive to proactive decision-making. 

8.3. Directions for Future Research  

Future research can explore the application of Causal AI across broader organizational domains. In Environmental, 
Social, and Governance (ESG) contexts, causal modeling can be used to assess the long-term impact of sustainability 
initiatives, regulatory compliance, or community investments, enabling firms to quantify non-financial returns and align 
with responsible business goals. 

In Human Resources (HR), causal inference could guide hiring practices, diversity interventions, and employee 
development programs, ensuring that HR policies result in measurable improvements in performance, engagement, and 
retention. 

Finally, in supply chain resilience, Causal AI can help identify weak links and simulate disruption scenarios, guiding 
investment in redundancy, agility, or local sourcing strategies. By modeling the ripple effects of logistics decisions, 
organizations can improve robustness without incurring excessive cost. 

These extensions affirm that causal reasoning is not limited to marketing or finance but represents a scalable analytical 
lens for managing complexity and achieving sustainable impact across the enterprise. 
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