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Abstract 

Advancements in machine learning have introduced powerful tools for enhancing seismic hazard assessment, offering 
improved predictive capabilities compared to traditional regression models. This study leverages machine learning 
algorithms to develop data-driven ground-motion models (GMMs) for predicting peak ground acceleration (PGA), a key 
parameter in seismic hazard analysis. Both parametric and nonparametric regression techniques, including linear 
regression, polynomial regression with second-degree terms, decision tree, and random forest, are employed. The 
models are trained on a comprehensive dataset comprising over 10,000 ground-motion records from small-to-
moderate earthquakes (magnitude 3.5 to 5.8) with hypocentral distances up to 200 km. Predictor variables such as 
moment magnitude (Mw), hypocentral distance (Hypo-D), average shear wave velocity in the upper 30 meters (VS30), 
and focal depth (Ztor) are utilized to capture the complex relationship. Performance evaluation reveals that the random 
forest model significantly outperforms traditional regression-based GMMs like linear regression, demonstrating its 
potential to enhance seismic hazard assessment, particularly for regions prone to similar earthquakes.   

Keywords: Machine learning; Regression Model; Seismic hazard assessment; Decision Tree; Random Forest; Ground-
motion models (GMMs); Peak ground acceleration (PGA); Predictive modeling; Earthquake engineering 

1. Introduction

Ground-motion models (GMMs) are fundamental tools in seismic hazard analysis, contributing to the development of 
hazard maps, earthquake-resistant building codes, and risk reduction strategies [1, 2, 3]. Among their key applications, 
GMMs are widely used to predict Peak Ground Acceleration (PGA) - a crucial parameter in site response analysis and 
structural design. Extensive research has been conducted in seismic analysis to enhance site response modeling. For 
instance, Najafizadeh et al. investigated the site response of various geological formations, including 2D triangular, 
irregular triangular, and rectangular alluvial deposits [4, 5, 6]. Similarly, Pakniat et al. developed SEISGRASP, a software 
package designed for signal processing, soil profile analysis, and comprehensive site response analysis results [7, 8]. 
Tools like SEISGRASP demonstrate the growing role of advanced computational methods in refining seismic hazard 
assessments. Earthquake records and their characteristics are also used in many structural analyses like seismic 
fragility assessment of buildings [9]. Ground motion models are based on factors such as earthquake magnitude, source-
to-site distance, and site-specific conditions. Traditional empirical GMMs often utilize predefined functional forms to 
model ground motion parameters, as demonstrated by several seminal works [10, 11, 12]. While effective, Traditional 
ground motion prediction equations (GMPEs) rely on statistical regression with predefined functional forms to estimate 
intensity measures like PGA and pseudo-spectral acceleration (PSA). However, these models often face limitations in 
capturing nonlinear relationships and handling large datasets [13]. Recent advances in machine learning (ML) have 
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introduced powerful nonparametric alternatives to classical regression techniques. Unlike traditional approaches, ML 
methods do not require predefined functional forms, enabling them to capture complex nonlinear relationships and 
adapt to large, high-dimensional datasets. Recent advances in environmental and geotechnical modeling increasingly 
emphasize hybrid methods that combine machine learning with traditional physics-based approaches to enhance 
predictive performance and computational efficiency. In recent work, machine learning models such as regression trees 
have been effectively used in flood forecasting, particularly in data-scarce regions [14]. Similarly, recent research has 
applied data-driven techniques to track and simulate the environmental transport of emerging contaminants like 
microplastics, integrating experimental insights with computational [15, 16, 17]. These approaches highlight the power 
of machine learning in capturing complex, nonlinear relationships in physical systems. Building on this concept, the 
current study applies machine learning algorithms to seismic hazard analysis, focusing specifically on predicting peak 
ground acceleration (PGA). By leveraging models such as genetic algorithms, simulated annealing, and regression-based 
techniques, this work demonstrates how machine learning can improve the estimation of PGA using seismic input 
parameters—especially in cases where traditional analytical models struggle with variability and limited data. This 
flexibility is particularly beneficial in regions with sparse earthquake data or complex geological conditions. Studies 
such as [18, 19, 20, 21, 22] have demonstrated the efficacy of ML techniques like artificial neural networks (ANN), 
random forest regressors (RFR) in developing GMMs. Induced earthquakes, often triggered by human activities such as 
fluid injection, present unique challenges due to their shallow depths and distinct attenuation characteristics [2, 8]. 
Traditional GMMs, which are primarily designed for tectonic earthquakes, may not fully capture these differences. 
Machine learning offers a flexible framework for modeling induced seismicity, leveraging historical records to better 
understand the behavior of small-to-moderate magnitude events. For instance, Alidadi et.al [18], developed a region-
specific GMM for induced earthquakes in Central and Eastern North America (CENA), providing valuable insights into 
the unique attenuation patterns of these events [22]. 

In this study, we employ several supervised ML algorithms, including linear regression, polynomial regression, decision 
tree and random forest, to develop GMMs tailored to small-to-moderate induced earthquakes. After evaluating the 
accuracy of each model, the Random Forest Regressor was identified as the most reliable model, providing the best 
performance in terms of predictive accuracy. This research enhances our understanding of ground motion prediction 
for induced seismicity and contributes to more accurate seismic hazard assessments. Utilizing moment magnitude 
(Mw), hypocentral distance (Hypo-D), and VS30 as predictor variables. Our models aim to forecast PGA with improved 
reliability. This research contributes to advancing data-driven GMMs, addressing critical challenges in seismic hazard 
assessments for induced seismicity. 

2. Material and methods  

2.1. Data collection and Preprocessing  

In this study, the data used for training the machine learning models comes from the NGA-West2 database, an expansion 
of the NGA-West1 database. The dataset includes ground-motion data from small-to-moderate magnitude earthquakes 
in California, as well as global strong ground motion recordings from shallow crustal earthquakes in active tectonic 
regions, such as Japan, New Zealand, and Italy, recorded after the year 2000. This updated version of the database, 
compiled by the Pacific Earthquake Engineering Research Center (PEER) [23], contains 21,538 recordings and is 
specifically designed for developing GMMs for shallow crustal earthquakes. 

The recordings consist of uniformly processed time series and response spectral data, which include instrument-
corrected, median, orientation-independent horizontal components (RotD50-d030) of ground-motion intensity 
measures (GMIMs). These GMIMs represent the 50th percentile of the response spectra across all nonredundant 
rotation angles [11]. The database covers a broad range of regions and includes detailed metadata on earthquake 
characteristics and site conditions. 

There are numerous parameters recorded during an earthquake. To simplify the model, a selection of parameters is 
made based on findings from previous studies in this area. Additionally, a correlation matrix is presented to illustrate 
the relevance of each parameter to the observed PGA, helping to identify the most influential factors for prediction 
(figure 1). The input parameters chosen for the machine learning models include: 

• Moment Magnitude (M): A unitless measure of earthquake size. 
• Hypocenter Distance (Hypo-D): The distance (in km) from the earthquake’s hypocenter to the station. 
• Depth to the Top of the Rupture Plane (Ztor): Depth (in km) from the ground surface to the top of the fault 

rupture plane. 
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• VS30: The time-averaged shear wave velocity (in m/s) in the top 30 meters of the soil. 

 

Figure 1 Correlation matrix of features and target parameter before transformation and standardization  

2.2. Feature Engineering  

Feature engineering in this study involves the transformation and scaling of input data to optimize model performance 
and improve predictive accuracy. Preliminary data analysis revealed that the logarithmic transformation of certain 
input variables significantly improves model convergence and performance, particularly for variables that exhibit 
strong skewness. Figure 2 illustrates the correlation between the transformed features. It is evident that the increase in 
correlation values highlights the impact of the feature transformations and standardization process. 

The key features of transformations are as follows: 

• Logarithmic Transformation: The input variables Hypo-D and VS30, along with the output PGA, are 
transformed using the natural logarithm. This transformation addresses the positive skewness in these 
variables, making the distribution more suitable for machine learning algorithms, particularly those that 
assume normality in the data. 

• Standardization: Given that most machine learning algorithms are sensitive to the scale of numerical features, 
all parameters are standardized to have a mean of 0 and a standard deviation of 1. Standardization is 
particularly important for algorithms like linear regression and support vector machines, which rely on 
gradient-based optimization methods. Without standardization, features with larger numerical ranges would 
dominate the model training, leading to biased or inefficient learning [24]. Standardizing the features ensures 
that the model can treat all features equally, improving convergence speed and overall performance. 

The dataset, after these preprocessing steps, is now ready to be fed into machine learning algorithms for training. These 
steps ensure that the data is both clean and properly scaled, enabling the models to learn effectively from the input 
features. 
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Figure 2 Correlation matrix of features and target parameter after transformation and standardization 

2.3. Machine Learning Models 

The estimation of GMIM is approached as a regression problem, where the Ground Motion Model (GMM) is represented 
as follows: 

ln⁡(PGA) = function[M, ln⁡(Hypo − D), Z_tor, ln⁡(V_s30)]⁡⁡………… (1) 

In this equation, PGA represents peak ground acceleration, M is the moment magnitude, Hypo-D is the hypocentral 
distance, Ztor denotes the depth to the top of the ruptured plane, and VS30 refers to the average shear wave velocity in 
the upper 30 meters of soil. The data used in this study is based on real earthquake observations and is not synthetic or 
artificially generated. The relationships between the parameters in the data are unknown, which makes it challenging 
to model. To address this, we began with the simplest approach, using linear regression, which serves as a baseline 
model. From there, we progressively enhanced the model by incorporating more advanced techniques and selecting 
additional parameters to capture more complex relationships. Five machine learning methods were implemented for 
modeling: linear regression, lasso regression, polynomial regression, decision tree, and random forest. These models 
were chosen to compare the performance of both linear and nonlinear regression techniques, offering insights into how 
different model architectures handle seismic data. While linear and lasso regression act as baseline models, the 
polynomial regression, decision tree, and random forest models provide more flexible frameworks that can better 
capture nonlinear, complex relationships within the data. 

The machine learning algorithms were implemented in Python, and several libraries were used to facilitate the modeling 
process, including: 

• Scikit-learn for model implementation, training, and evaluation. 
• NumPy for numerical operations and data manipulation. 
• Pandas for handling and preprocessing the dataset. 
• Matplotlib and Seaborn for visualizing data and results. 

To evaluate model performance on both the training and unseen data, Mean Squared Error (MSE) and R-squared (R²) 
metrics were used. These metrics provide a comprehensive assessment of each model's ability to generalize and fit the 
observed data. 
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• Mean Squared Error (MSE) 

MSE represents the variance of the residuals. In general, the smaller variance the better, however, MSE is not expressed 
on the same scale as the depended variable, making this metric somewhat difficult to interpret. N, y and 𝑦̂  represent 
the number of values, actual values and predicted value, respectively. 

𝑀𝑒𝑎𝑛⁡𝑆𝑞𝑢𝑎𝑟𝑒𝑑⁡𝐸𝑟𝑟𝑜𝑟 =
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑁

𝑖=1

⁡ (2) 

• R-squared 

The coefficient of determination, or R², indicates the proportion of the variance in the dependent variable that is 
accounted for by the linear regression model. It ranges from 0 to 1, with a value of 1 meaning the model perfectly 
explains all the variance, and a value of 0 indicating that the model explains none of the variance. Negative R² values 
suggest that the model performs worse than simply predicting the mean value each time. In the formula, y, 𝑦̅  and 𝑦̂ 
represent actual value and average of actual values and predicted value, respectively. 

𝑅2_𝑠𝑐𝑜𝑟𝑒 = 1 −
(𝑦𝑖 − 𝑦̂𝑖)

2

(𝑦𝑖 − 𝑦̅𝑖)
2

 (3) 

To visually assess model performance, predicted values are plotted against actual values on a 2D scatter plot. An x = y 
reference line is included to indicate perfect predictions. Data points clustering closely around this line reflect stronger 
model performance. The closer the data points are to the line, the better the model performs. This indicates that the 
model accurately capturing the relationship between the variables, highlighting instances of underfitting, overfitting, or 
systematic error patterns that may warrant further investigation. Each model is explained in the following sections. 

• linear and lasso regression 

In this study, linear regression was selected due to its simplicity and ease of interpretation, particularly in scenarios 
where a linear relationship between the input features and peak ground acceleration (PGA) can be reasonably assumed. 
Linear regression's straightforward approach makes it ideal for establishing baseline models and gaining insights into 
the impact of individual features on the target variable. 

In contrast to linear regression, lasso regression was employed to enhance feature selection through the application of 
regularization. Lasso regression introduces a penalty term that shrinks the coefficients of less relevant predictors, 
effectively reducing their influence and, in some cases, setting them to zero. This technique streamlines the model by 
focusing only on the most impactful features. By doing so, lasso regression mitigates the risk of overfitting and enhances 
the model's generalization capability on unseen data. 

To ensure optimal performance, the regularization parameter (alpha) in the lasso regression model was tuned using 
cross-validation. Cross-validation helps balance the trade-off between bias and variance by partitioning the data into 
multiple folds and ensuring consistent model evaluation across subsets. This process optimizes prediction accuracy by 
identifying the alpha value that minimizes error while maintaining model stability. 

While linear regression retains all input features, lasso regression refines the model by excluding less significant 
predictors. This targeted selection of impactful features often results in improved model performance and better 
interpretability, particularly in datasets with numerous correlated variables. 

To evaluate the performance of all models, the dataset was divided into 80% training and 20% test sets. Cross-validation 
was applied specifically in the lasso regression model to address potential issues related to data skewness or variance 
inconsistencies across folds and find the best alpha. 

Performance metrics, including Mean Squared Error (MSE) and R-squared (R²), were calculated for both models. Each 
model achieved an MSE value of 0.167 and an R-squared value of 0.827. These results indicate that the models 
collectively explain approximately 83% of the variability in PGA values. However, the remaining 17% of the variability 
remains unexplained, suggesting potential room for improvement. Incorporating additional features or adopting more 
advanced machine learning models, such as polynomial regression or ensemble methods, may enhance predictive 
accuracy. To visually assess model fit, scatter plots were generated to compare actual versus predicted PGA values 



World Journal of Advanced Research and Reviews, 2025, 26(02), 856-867 

861 

(Figure 3-4). Also, table 1 represents the factor of each parameter in linear regression and Lasso regression obtained 
from Scikit learn library of python. 

 

Figure 3 Linear regression scatter plot of actual ln (PGA) and predicted ln (PGA) 

 

 

Figure 4 Lasso regression scatter plot of actual ln (PGA) and predicted ln (PGA) 

Table 1 Linear and Lasso Regression Parameters 

Parameters Linear Regression Lasso Regression 

Magnitude 0.56059374 0.559839 

Hypo_D -0.62959772 -0.628711 

Ztor 0.13716594 0.136225 

Vs30 -0.10435275 -0.103690 

Bias 0.00077 0.00077 
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• Polynomial regression 

Polynomial regression is an extension of linear regression designed to capture more complex relationships between 
independent variables (features) and the dependent variable (PGA). Unlike linear regression, which assumes a straight-
line relationship, polynomial regression introduces higher-degree terms to account for potential non-linear patterns in 
the data. By incorporating these additional terms, the model gains flexibility to fit curved trends, which may better 
reflect the behavior of PGA in response to various seismic parameters. 

In this study, second-degree polynomial terms were added to the model to improve its ability to capture non-linear 
dependencies between the features and PGA. This decision was guided by the need to balance model complexity and 
performance. It is important to mention that including excessively high-degree terms can increase the risk of overfitting, 
where the model fits the training data too closely and performs poorly on unseen data. To ensure the model's robustness 
and generalizability, cross-validation was applied.  

The performance of the polynomial regression model was evaluated using two key metrics: Mean Squared Error (MSE) 
and R-squared (R²). The polynomial regression model achieved an MSE of 0.164 and an R-squared value of 0.830. These 
results indicate improved predictive performance compared to the linear regression models. The improved R-squared 
value suggests that the polynomial regression model explains a greater proportion of the variability in PGA values. 
Despite this improvement, the R-squared value of 0.83 indicates that approximately 17% of the PGA variability remains 
unexplained. This highlights the potential need for incorporating additional influential features or exploring more 
sophisticated machine learning algorithms to further enhance model performance. 

Figure 5 visualizes the model's effectiveness. The parametric model of second-degree terms which is a combination of 
main parameters, and a bias term is also shown in table 2. In the following table 𝑥1⁡, 𝑥2, 𝑥3, 𝑥4 stand for Magnitude, Ztor, 
Hypo-D and Vs30, respectively. 

 

Figure 5 The polynomial scatter plot of actual ln (PGA) and predicted ln (PGA) 

Table 2 Polynomial Regression Parameters 

Parameter Value Parameter Value 

𝑥1 0.59000 𝑥2 0.131121 

𝑥3 -0.65780 𝑥4 -0.09610 

𝑥1
2 -0.03550 𝑥2

2 0.01094 

𝑥3
2 0.023779 𝑥4

2 -0.039178 

𝑥1𝑥2 0.000361 𝑥1𝑥3 -0.01481 

𝑥1𝑥4 0.00391 𝑥2𝑥3 -0.024385 

𝑥2𝑥4 -0.027506 𝑥3⁡𝑥4 -0.00706 

Biase 0.06798 
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• Decision tree 

A decision tree is a versatile machine learning model that predicts outcomes by recursively partitioning the data into 
smaller subsets based on specific conditions. Each split is chosen to maximize the homogeneity of the resulting groups 
concerning the target variable. Decision trees are particularly effective in capturing complex, nonlinear relationships 
between input features and the dependent variable, making them a suitable choice for earthquake engineering data 
where interactions between seismic parameters can be intricate. In this study, a decision tree regression model was 
developed and evaluated using cross-validation to ensure reliable performance. The decision tree model achieved the 
following performance metrics: 

Mean Squared Error (MSE): 0.25 

R-squared (R²) on the Test Set: 0.74 

Mean Squared Error (MSE): 0.00 

R-squared (R²) on the Training Set: 1.00 

While the training set R² value of 1.00 indicates that the model fits the training data perfectly, this is a strong indication 
of overfitting. Overfitting occurs when the model memorizes the training data rather than learning its underlying 
patterns, causing poor generalization to new data. The test set R² of 0.74, which is notably lower than the training set 
score, further confirms this issue. Figure 6 illustrates the actual versus predicted PGA values of the training set for the 
decision tree model. The alignment of points precisely along the x = y line suggests that the model has memorized the 
training data. However, this level of precision typically fails to translate to unseen data, explaining the model's weaker 
test performance. 

 

Figure 6 The decision tree training data scatter plot of actual ln (PGA) and predicted ln (PGA) 

To enhance model performance and mitigate overfitting, several strategies can be employed: 

• Pruning the Decision Tree 

Pruning simplifies the model by trimming branches that contribute little to predictive accuracy. By removing these less 
impactful branches, the model becomes less specialized to the training data, improving its ability to generalize. 

Techniques such as cost complexity pruning effectively control the trade-off between model accuracy and complexity 
by introducing a regularization parameter. 

•  Limiting Tree Depth 
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Restricting the maximum depth of the tree helps prevent it from becoming overly complex. Setting a reasonable depth 
limit (e.g., 3–7 levels) can improve the model’s ability to generalize to new data. 

• Adjusting Minimum Sample Requirements 

Increasing the minimum number of samples required for node splits or leaf formation helps reduce the risk of overly 
specific, narrow splits that contribute to overfitting. 

• Using Random Forests 

Random forests mitigate overfitting by combining multiple decision trees, each trained on different subsets of the data 
and features. This ensemble method effectively reduces variance and enhances model stability. 

In this study, to overcome the overfitting problem, Random Forest algorithm is implemented which is described in next 
section. 

• Random Forest algorithm 

The Random Forest model is a robust and highly effective machine learning technique that improves prediction 
accuracy by aggregating the outputs of multiple decision trees. Each individual tree in the random forest makes an 
independent prediction based on a subset of the data and features. The final prediction is determined by averaging the 
individual predictions from all the trees. This ensemble learning approach helps mitigate the overfitting problem often 
associated with individual decision trees, where a model becomes too tailored to the training data, leading to poor 
performance on new, unseen data. 

Random forests also enhance model stability by reducing variance, as the model benefits from the diversity of the 
different trees. Each tree is trained on a random subset of the data, and by combining these different perspectives, the 
random forest creates a more generalized model that captures a broader range of patterns and reduces the likelihood 
of error caused by noise or outliers in the data. Additionally, random forests naturally handle feature importance, 
providing insights into which features contribute most to the predictions, which is useful for feature selection and model 
interpretation. To assess the model's generalization capability and prevent it from overfitting, cross-validation was 
applied 

The random forest model demonstrated impressive performance, achieving an MSE of 0.13 and an R-squared value of 
0.86. These results indicate that the model not only has high accuracy but also explains a substantial portion of the 
variability in the data. Specifically, the R-squared value suggests that the model accounts for 86% of the variation in PGA 
values, which is a significant improvement compared to simpler models like linear or decision tree regression. This is a 
strong indicator of the model's ability to capture complex patterns in the data, especially in the context of seismic hazard 
analysis where relationships between features can be highly nonlinear and intricate. 

As depicted in Figure 7, the scatter plot for predicted versus actual PGA values further reinforces the model’s 
performance. The points almost closely follow the diagonal line, indicating that the predictions are closely aligned with 
the true values. This visual alignment highlights the model's better accuracy and reinforces its effectiveness in 
forecasting PGA values. 

In comparison to individual decision tree models, random forests offer a clear advantage. A single decision tree tends 
to perform well on training data but can struggle to generalize new data due to overfitting. Random forests, by 
combining multiple trees, overcome this limitation and provide a more powerful and reliable approach, particularly for 
handling complex relationships in different tasks such as seismic hazard analysis. By leveraging the strength of multiple 
decision trees, the random forest model provides improved predictive power, making it an ideal choice for high-
dimensional and noisy datasets typically encountered in earthquake engineering studies. 
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Figure 7 The Random Forest scatter plot of actual ln (PGA) and predicted ln (PGA) 

3. Result and Discussion 

In this study, machine learning techniques were implemented using Python, leveraging libraries such as scikit-learn for 
model creation and evaluation. Before creating the models, data preprocessing was carefully conducted to handle 
missing values, scale the features, and encode categorical variables, ensuring that the data was ready for effective model 
training. 

To conclude, five different models—linear regression, lasso regression, polynomial regression, decision tree, and 
random forest—were assessed for PGA. Linear regression and Lasso regression, while simple and easy to interpret, had 
the lowest accuracy. Lasso regression, by adding regularization, performed slightly better than linear regression but 
still fell short in capturing the complexity of the data. 

Polynomial regression improved the model by handling non-linear relationships, providing a better fit compared to the 
linear models. However, its performance suggests that there’s still room for improvement. Fine-tuning higher-degree 
terms or using more sophisticated methods could help refine this approach. 

The decision tree model, which is more flexible, did well initially but suffered from overfitting, meaning it performed 
excellently on training data but struggled with new, unseen data. This is a common issue where the model essentially 
memorizes the training data, which limits its ability to generalize. To overcome this, the random forest model was used, 
combining multiple decision trees to provide a more stable and accurate prediction. 

Among all the models, random forest delivered the best results with the highest R² and the lowest MSE, making it the 
most reliable for predicting PGA. However, there is still room for improvement in refining the model further. While 
random forest performed the best overall, additional work like fine-tuning the parameters, adding more features, or 
exploring other ensemble methods like boosting could further enhance its accuracy. 

In earthquake engineering, where seismic hazard assessments are crucial for designing safe structures and 
infrastructure, improving model accuracy is key. It is important to mention that the model used in this study was 
simplified by choosing limited parameters. To improve the accuracy of the model in future studies, several strategies 
can be considered. First, adding more relevant features, such as fault mechanism, and geo-graphical data, can enhance 
the model’s predictive power. Feature engineering, such as creating interaction terms or polynomial features, may also 
help capture more complex relationships in the data. Leveraging domain-specific knowledge of earthquake engineering 
will guide the selection of critical features. Increasing the size of the dataset, either by collecting more real-world data 
or generating synthetic data, can improve model generalization. Hyperparameter tuning using techniques like grid 
search or random search will help optimize model performance. Additionally, exploring more complex models, such as 
gradient boosting methods (XGBoost, LightGBM, CatBoost) or neural networks, can capture intricate patterns that 
simpler models might miss. Ensemble methods, such as stacking or boosting, could also combine the strengths of various 
models for more accurate predictions. Implementing k-fold cross-validation ensures robust performance evaluation 
and prevents overfitting. Addressing data issues, such as handling missing values more effectively and detecting 
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outliers, will also contribute to improving model reliability. By applying these strategies, the model’s accuracy and 
robustness in predicting peak ground acceleration can be significantly improved, leading to more reliable seismic 
hazard assessments in earthquake engineering. Better predictions lead to more effective site response analysis, 
ultimately helping to create buildings and infrastructures that can withstand earthquakes. 

4. Conclusion  

This study demonstrated the effectiveness of machine learning regression models in predicting peak ground 
acceleration (PGA) for seismic hazard analysis of earthquake engineering. By comparing both traditional and advanced 
algorithms, it was evident that ensemble methods, particularly the random forest model, significantly outperformed 
linear and polynomial regressions in terms of predictive accuracy and generalization. While simpler models offered 
interpretability, they struggled to capture the complex, nonlinear relationships inherent in seismic data. The random 
forest model, by leveraging the power of multiple decision trees, showed strong potential in improving the reliability of 
ground-motion models, especially for regions characterized by small-to-moderate earthquakes. 

However, this work also highlights that further enhancements are possible. Expanding the feature set, applying more 
advanced ensemble techniques, and integrating domain-specific knowledge could yield even more robust models. As 
seismic hazard assessments form the foundation of earthquake-resistant design, improving model precision is not just 
a technical endeavor but a critical step toward safer infrastructure and resilient communities. 
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