
 Corresponding author: Bhupender Kumar Panwar

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

NoSQL and NewSQL Databases: Scaling beyond relational limits: Aarchitectures,
performance and future directions

Bhupender Kumar Panwar *

Salesforce Inc., USA.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(01), 135-142

Publication history: Received on 25 February 2025; revised on 02 April 2025; accepted on 04 April 2025

Article DOI: https://doi.org/10.30574/wjaets.2025.15.1.0193

Abstract

This article explores the evolution and capabilities of NoSQL and NewSQL databases as solutions that address the
limitations of traditional relational database systems in today's data-intensive landscape. It examines the architectural
foundations of various NoSQL categories—key-value stores, document databases, column-family stores, and graph
databases—highlighting their distinct strengths for different use cases. The emergence of NewSQL databases is
presented as a hybrid approach that maintains SQL's transactional integrity while incorporating distributed
architectures for enhanced scalability. Through detailed analysis of data modeling strategies, performance
considerations, and real-world implementations, the article guides organizations navigating the complex database
ecosystem. This article encompasses migration paths from relational systems, polyglot persistence strategies, and
emerging trends that are shaping the future of data management technologies in cloud-native and edge computing
environments.

Keywords: Distributed Databases; Schema Flexibility; Horizontal Scalability; Polyglot Persistence; Cloud-Native
Architecture

1. Introduction

1.1. Evolution of Database Technologies

The digital transformation era has witnessed an unprecedented explosion in data volumes, with global data creation
projected to grow to 175 zettabytes by 2025, representing a 530% increase from 2018 [1]. Traditional relational
database management systems (RDBMS), which dominated the landscape since the 1970s, were designed for an era
where data was primarily structured and transaction volumes were manageable. These systems face significant
challenges when scaled horizontally across distributed environments, particularly as organizations transition to cloud-
based infrastructure.

1.2. The Rise of Big Data Challenges

The datasphere's exponential growth is primarily driven by the enterprise sector, which is projected to create and
manage 60% of the world's data by 2025 [1]. This massive volume increase has exposed fundamental limitations in
traditional RDBMS architectures. As data moved from being processed primarily on endpoints to being stored and
analyzed in core data center environments, the need for distributed data processing became critical. The transition from
endpoints to core environments represents a fundamental shift in how data must be managed, with the core's share of
data processing expected to increase by 1.5 times between 2018 and 2025 [1].

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2025.15.1.0193
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2025.15.1.0193&domain=pdf

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(01), 135-142

136

1.3. The CAP Theorem and Distributed Systems

The CAP theorem established a fundamental constraint for distributed database systems—they can provide at most two
of three guarantees: Consistency, Availability, and Partition tolerance [2]. This theoretical framework has profoundly
influenced modern database architecture choices. Traditional RDBMS systems prioritized consistency and availability,
making them unsuitable for environments where network partitions are inevitable. The theorem has been expanded
through practical applications to show that during normal operation (without partitions), it's possible to provide both
consistency and availability with reasonable latency, but trade-offs become unavoidable during network failures where
the system must choose between operation in a potentially inconsistent state or refusing service to maintain consistency
[2].

1.4. NewSQL: The Convergence of Paradigms

As organizations grappled with RDBMS limitations and NoSQL trade-offs, NewSQL emerged as an attempt to combine
SQL's transactional guarantees with NoSQL's distributed scalability. These systems emerged from the recognition that
many modern workloads still require strong consistency guarantees. The NewSQL approach maintains that it's possible
to achieve both scalability and ACID properties through innovative architectural approaches such as deterministic
ordering of transactions and sophisticated concurrency control mechanisms [2]. This paradigm shift acknowledges that
while the CAP theorem imposes fundamental limits, careful system design can optimize for both performance and
consistency guarantees for many real-world applications.

2. NoSQL Database Architectures

The NoSQL movement has established several architectural paradigms that address specific data management
challenges. Each architecture offers distinct advantages for particular use cases, with performance characteristics that
significantly differ from traditional relational databases. While specific benchmark data varies by implementation,
NoSQL databases typically excel in distributed environments where horizontal scalability is paramount.

2.1. Key-Value Stores

Key-value stores represent the simplest NoSQL architecture, offering exceptional performance for read and write
operations. These systems leverage highly optimized hash table implementations for data access, with most operations
completed in O (1) time complexity. System properties in key-value stores like Redis are often configured through
dedicated configuration files that control critical parameters, including memory limits, persistence options, and cluster
configuration [3]. This approach allows for fine-tuning performance characteristics based on specific workload
requirements. For instance, adjusting properties like the "max memory" setting in Redis or the
"com.ibm.cics.jvmserver.options" property in enterprise deployments can significantly impact throughput in memory-
constrained environments. Amazon DynamoDB extends the key-value model with additional features like secondary
indexes while maintaining consistently low latency response times at scale through its auto-sharding capabilities.

2.2. Document Databases

Document databases store semi-structured data as self-contained documents, typically in JSON or BSON format. This
architecture excels in scenarios requiring flexible schemas, such as content management systems and e-commerce
platforms. Performance benchmarking of MongoDB against relational alternatives has shown significant advantages in
write-heavy workloads, particularly when dealing with document sizes between 50 KB and 75 KB [4]. The document
model eliminates the object-relational impedance mismatch that plagues traditional databases, reducing development
complexity for applications with evolving data models. MongoDB's performance can be further optimized through
careful configuration of system properties such as the WiredTiger cache size and the journaling interval, which directly
affect both throughput and durability guarantees. Couchbase further extends this approach by combining document
storage with integrated caching capabilities, achieving impressive read latencies while maintaining consistency
guarantees at the document level.

2.3. Column-Family Stores

Column-family stores organize data by column rather than a row, optimizing for analytical workloads and time-series
data. Apache Cassandra demonstrates exceptional write performance characteristics in benchmarks, particularly when
configured with appropriate consistency levels that balance between strong and eventual consistency models [4].
Comparative studies have shown that Cassandra significantly outperforms MongoDB in write-intensive scenarios,
though this advantage diminishes or reverses for read-heavy workloads depending on the specific query patterns. This
architecture particularly excels when system properties are configured to optimize for the hardware environment, with

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(01), 135-142

137

parameters like executor thread pools and memtable sizing having dramatic impacts on overall system throughput.
HBase, another column-family implementation, positions itself for workloads requiring strong consistency within a
column family while maintaining the ability to scale horizontally through careful region server configuration and
appropriate jvmserver options settings [3].

Table 1 NoSQL Database Types Comparison [3, 4]

Feature Key-Value Stores Document Stores Column-Family
Stores

Graph Databases

Data Model Simple key-value pairs JSON/BSON
documents

Column families Nodes, edges, properties

Query
Capabilities

Key lookup, limited
range queries

Rich queries, indexing Partition key
queries, limited
secondary indexes

Relationship traversal,
pattern matching

Use Cases Caching, session
management, real-
time analytics

Content management,
e-commerce, mobile
apps

Time-series data,
large-scale logging

Social networks,
recommendation engines,
fraud detection

Examples Redis, DynamoDB MongoDB, Couchbase Cassandra, HBase Neo4j, Neptune

3. NewSQL: Bridging Relational and Distributed Paradigms

NewSQL databases represent a technological evolution that aims to preserve the familiar SQL interface and ACID
guarantees while incorporating architectural innovations that enable horizontal scalability. These systems emerged in
response to the growing recognition that many enterprise workloads still require strong consistency guarantees but
need to operate at scales beyond what traditional RDBMS can provide. According to industry analysis, the NewSQL
database market is expected to experience substantial growth with a projected compound annual growth rate (CAGR)
of 30.81% from 2023 to 2030 [5]. This rapid expansion reflects the increasing adoption of NewSQL solutions across
finance, e-commerce, telecommunications, and healthcare sectors, where both transactional integrity and scalability
are mission-critical requirements.

3.1. Distributed SQL Architectures

The architectural foundation of NewSQL systems involves sophisticated approaches to distributed consensus and
transaction coordination. These architectures reimagine traditional database internals to accommodate distribution
while preserving ACID guarantees. Google Spanner pioneered this space with its externally consistent distributed
transactions, enabling applications to maintain consistency across globally distributed data centers. CockroachDB
implements a similar approach using consensus algorithms, achieving linearizable consistency while maintaining
impressive scalability. NewSQL databases employ innovative locking mechanisms that minimize contention while
ensuring transaction isolation, with implementations varying based on specific consistency requirements [6]. These
distributed architectures frequently employ sophisticated partitioning schemes that allow for localized transaction
processing when possible, reducing coordination overhead while maintaining global consistency guarantees for cross-
partition transactions.

3.2. Memory-Optimized Transaction Processing

Several NewSQL systems leverage in-memory processing combined with innovative concurrency control mechanisms
to achieve exceptional performance. Memory-optimized NewSQL databases maintain primary working copies of data
in RAM rather than on disk, dramatically reducing I/O latency for both reads and writes. This approach enables systems
like VoltDB and MemSQL (now SingleStore) to process transactions at unprecedented speeds. These architectures often
implement specialized security mechanisms, including role-based access control (RBAC) systems, data encryption both
at rest and in transit, and comprehensive audit logging capabilities [6]. The optimization of memory usage becomes a
critical concern in these systems, with sophisticated techniques for compressing in-memory representations and
selectively moving cold data to persistent storage without compromising transaction guarantees.

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(01), 135-142

138

3.3. Cloud-Native NewSQL Implementations

The latest generation of NewSQL databases incorporates cloud-native design principles, enabling seamless integration
with containerized environments and orchestration platforms. These implementations frequently adopt microservices
architectures internally, with dedicated components for query processing, transaction coordination, and storage
management. Cloud-native NewSQL databases like Amazon Aurora and Google Cloud Spanner deliver elastic scalability
by separating storage and compute resources, allowing independent scaling of each component based on workload
demands. Security in these distributed environments becomes particularly challenging, with modern NewSQL systems
implementing comprehensive measures, including authentication protocols, authorization frameworks, and advanced
encryption schemes to protect data in multi-tenant cloud environments [6]. The adoption of NewSQL technologies is
especially pronounced in sectors handling sensitive data, with the healthcare vertical alone expected to contribute
significantly to the projected market growth reaching $6.1 billion by 2030 [5].

Table 2 NewSQL Database Comparison [5, 6]

Feature Google Spanner CockroachDB VoltDB SingleStore (MemSQL)

Consistency
Model

External
consistency via
TrueTime

Serializable isolation
with Raft consensus

Serializable isolation
with deterministic
execution

ACID with serializable or
snapshot isolation

Architecture Globally
distributed with
atomic clocks

Distributed SQL with
Raft consensus

Shared-nothing, in-
memory

Distributed, memory-
optimized rowstore with
column store

Query
Language

SQL (GoogleSQL
dialect)

PostgreSQL-
compatible SQL

SQL with stored
procedures

MySQL-compatible SQL

Scaling
Approach

Horizontal with
automatic
sharding

Automatic sharding
and replication

Horizontal partitioning Disaggregated computing
and storage

4. Data Modeling and Migration Strategies

Effective data modeling in NoSQL and NewSQL environments requires a fundamental shift in thinking from the
normalized approach common in relational databases to patterns that leverage the unique strengths of distributed
architectures. This transition introduces new challenges in ensuring data consistency, managing schema evolution, and
optimizing access patterns for specific query workloads, particularly as organizations adopt increasingly complex data
ecosystems.

4.1. Schema Design for Distributed Databases

Schema design in NoSQL environments follows a query-first approach, where data models are optimized for specific
access patterns rather than normalized to minimize redundancy. Unlike relational databases where normalization is
paramount, NoSQL modeling embraces denormalization to optimize performance for specific query patterns.
MongoDB's document model allows for embedding related data within a single document, eliminating the need for joins
when retrieving interconnected information [7]. This approach fundamentally differs from the traditional entity-
relationship modeling used in relational systems, as it requires developers to deeply understand application access
patterns before designing the schema. When modeling data for NoSQL databases, developers must consider six key
factors: the nature of the data being stored, the relationships between entities, query patterns, atomic update
requirements, consistency needs, and growth projections. The effectiveness of NoSQL schema design is particularly
evident in applications with complex hierarchical structures, where document databases can represent parent-child
relationships naturally without the performance penalties associated with multiple joins in relational systems.

4.2. Migration Methodologies and Tools

Migration from relational to NoSQL or NewSQL systems involves both technical and organizational challenges that
require careful planning and execution. According to Gartner's analysis, through 2025, more than 75% of all databases
will be deployed or migrated to a cloud platform, with only 5% ever considered for repatriation to on-premises
infrastructure [8]. This massive shift toward cloud-based database deployments is driving organizations to reassess
their data architectures and migration strategies. The transition process typically involves mapping existing relational

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(01), 135-142

139

schemas to appropriate NoSQL structures, which requires a deep understanding of both the source and target data
models. Successful migrations often implement change data capture (CDC) mechanisms to maintain synchronization
between legacy and new systems during transition periods. Organizations undertaking such migrations must develop
new expertise in distributed database administration, as traditional DBA skills focused on query optimization and index
management must be augmented with knowledge of partition management, replication strategies, and consistency
models specific to distributed systems.

4.3. Polyglot Persistence Architectures

Rather than migrating entirely to a single database technology, many organizations implement polyglot persistence
architectures that leverage different database types for specific workloads. The polyglot persistence approach
recognizes that different parts of an application have different data storage requirements in terms of data structure,
query patterns, consistency, and scaling needs [7]. In this model, an e-commerce application might use a document
database for product catalogs, a graph database for recommendations, a key-value store for shopping carts, and a
relational or NewSQL database for order processing and financial transactions. Gartner predicts that by 2024, 75% of
all database deployments will be on a cloud platform, reflecting the increasing adoption of specialized database services
offered by cloud providers [8]. Successfully implementing polyglot persistence requires a sophisticated data
architecture that manages consistency across heterogeneous systems, typically through event-driven architectures,
careful service boundaries, and domain-driven design principles that encapsulate specific database technologies within
well-defined microservices.

Figure 1 Data Modeling and Migration Strategies [7, 8]

5. Performance and Scalability Analysis

Understanding the performance characteristics of NoSQL and NewSQL databases requires rigorous benchmarking
methodologies that accurately reflect real-world workloads. Performance evaluation frameworks must consider
multiple dimensions, including throughput, latency, scalability, and consistency guarantees across various workload
patterns. The complexity of modern distributed database systems necessitates sophisticated analysis approaches that
go beyond simple metrics to understand behavioral patterns under stress conditions and varying configurations.

5.1. Throughput and Latency Trade-offs

The relationship between throughput and latency in distributed databases reveals important insights about scalability
characteristics. Runtime performance benchmarking of NoSQL databases has demonstrated significant variations in

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(01), 135-142

140

behavior under different workload conditions. Experimental results comparing MongoDB, Cassandra, and Redis show
distinct performance profiles, with Redis achieving the highest throughput for simple operations while MongoDB offers
better balance for complex query patterns [9]. When examining update-intensive workloads, Cassandra demonstrates
superior scalability characteristics compared to MongoDB, particularly as the dataset size increases beyond the memory
capacity of individual nodes. Performance benchmarking must account for both the size of the dataset relative to
available memory and the complexity of queries being executed. The database size has been shown to significantly
impact query execution time, with MongoDB experiencing a 43% increase in average query time when the database size
increases from 50,000 to 100,000 documents [9]. These findings underscore the importance of tailoring database
selection to specific application workload characteristics rather than relying on generalized performance claims.

5.2. Consistency-Availability Spectrum

The CAP theorem establishes theoretical limits on consistency and availability in distributed systems, but practical
implementations reveal a more nuanced spectrum of trade-offs rather than binary choices. Empirical studies examining
consistency models across NoSQL databases have found that stronger consistency guarantees typically come with
performance penalties that vary by database architecture and workload characteristics. Performance analysis must
consider not just raw throughput numbers but also consistency guarantees and their implications for application
correctness. Comparative performance studies of NoSQL databases for big data analytics workloads show that
MongoDB's default read consistency level offers a better balance of performance and correctness for analytical queries
compared to eventually consistent alternatives [10]. The performance impact of consistency settings becomes
particularly pronounced in geographically distributed deployments, where network latency amplifies the cost of
coordination required for stronger consistency guarantees. Analytics workloads involving complex aggregations show
distinct performance patterns across different NoSQL systems, with column-oriented stores like Cassandra
demonstrating superior performance for certain types of analytical queries despite potentially higher write latencies.

5.3. Scalability Patterns and Anti-patterns

The scalability of distributed databases is often characterized by their behavior under increasing load conditions and
growing dataset sizes. Benchmark results demonstrate that MongoDB's performance decreases significantly as the
number of concurrent connections increases from 10 to 50, with average response time increasing by approximately
35% [9]. This behavior reflects the challenges of maintaining performance under concurrent workloads in document-
oriented databases. Different NoSQL systems exhibit varying degrees of performance degradation as workload
complexity increases. Comprehensive benchmarking of NoSQL databases for big data analytics reveals that data model
selection and query patterns significantly impact scalability characteristics, with each database type showing distinct
advantages for particular analytical workloads [10]. For instance, query performance on graph databases scales
differently for relationship-centered queries versus property-centered queries, with relationship traversal operations
demonstrating superior scaling characteristics. Careful attention to data modeling and workload characteristics is
essential for successful scaling, with the appropriate selection of partition keys and thoughtful query design being
particularly critical for maintaining performance as systems grow in size and complexity.

Table 3 Consistency-Performance Trade-offs in Distributed Databases [9, 10]

Consistency Level Performance Impact Data Integrity Use Case Example

Strong Consistency Higher latency, lower
throughput

Maximum integrity Financial transactions

Causal Consistency Moderate performance impact Preserves causal relationships Social media activity
feeds

Session Consistency Minor performance impact Consistency within a user
session

E-commerce shopping
carts

Eventual
Consistency

Best performance Some risk of stale reads Content delivery, catalogs

6. Future Trends and Best Practices

The database landscape continues to evolve rapidly, with emerging technologies and paradigms reshaping how
organizations approach data management. The increasing complexity of modern data environments demands

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(01), 135-142

141

sophisticated strategies that balance performance, scalability, and manageability while addressing the unique
requirements of diverse application workloads.

6.1. Cloud-Native Database Deployments

Cloud-native database deployments represent one of the most significant shifts in modern data architecture. According
to industry analysis, the future of database management systems is undeniably cloud-based, with organizations
increasingly migrating their database workloads to capitalize on the scalability, flexibility, and cost-effectiveness of
cloud infrastructure [11]. This transition is fundamentally changing how databases are deployed, managed, and utilized
across industries. Cloud-native databases offer compelling advantages, including automatic scaling, simplified
management, and reduced operational overhead compared to traditional on-premises deployments. The evolution
toward serverless database offerings further accelerates this trend, with pay-per-use models eliminating the need for
capacity planning and resource provisioning. These cloud-native architectures enable organizations to implement
sophisticated multi-region deployments that were previously impractical with traditional infrastructure, supporting
global application footprints with local performance characteristics. As cloud adoption continues to accelerate, we're
witnessing the emergence of specialized database services optimized for specific workloads, from time-series data to
graph processing and full-text search, all available as managed services with integrated monitoring, backup, and
security capabilities.

6.2. AI/ML Integration in Database Systems

The integration of artificial intelligence and machine learning with database systems represents a transformative trend
that is reshaping data management practices. According to AI-Enabled Database Management Systems Forecast, the
market for database platforms with embedded AI capabilities is expected to grow at a compound annual growth rate
(CAGR) of 28.3% from 2023 to 2028 [12]. This convergence manifests in multiple dimensions, from AI-powered query
optimization that automatically adapts to changing workload patterns to intelligent indexing that anticipates access
patterns based on historical usage. Modern database systems are increasingly incorporating capabilities for in-database
machine learning, enabling analytics directly against operational data without expensive extract-transform-load
processes. These integrated systems leverage database statistics and query patterns to optimize data organization, with
adaptive systems demonstrating significant performance improvements for complex analytical workloads without
manual tuning. The evolution extends to autonomous database operations, where AI systems continuously monitor
performance, suggest optimizations, and even automatically implement changes to maintain service level objectives
across fluctuating workloads.

6.3. Specialized and Purpose-Built Database Architectures

The proliferation of specialized database architectures designed for specific workload characteristics continues to
accelerate, moving beyond the traditional NoSQL categories to address increasingly nuanced requirements. The trend
toward purpose-built database engines optimized for particular data models or access patterns reflects the recognition
that no single database architecture can efficiently address all workload types. Time-series databases optimized for
high-velocity sensor data, graph databases designed for complex relationship analysis, and vector databases built
specifically for similarity search and AI workloads represent just a few examples of this specialization trend [11].
Organizations are increasingly adopting multi-model databases that support different data representations within a
single system, reducing operational complexity while maintaining workload-specific optimizations. This evolution is
particularly evident in emerging use cases like Internet of Things (IoT) applications, which may combine time-series,
document, and spatial data within a single application context. As application architectures continue to evolve toward
microservices and event-driven patterns, we're witnessing greater alignment between database selection and specific
service boundaries, with each microservice potentially employing the database technology best suited to its particular
data access requirements.

7. Conclusion

The database landscape continues to evolve beyond the traditional relational paradigm, with NoSQL and NewSQL
technologies offering specialized solutions for today's diverse data challenges. While NoSQL databases prioritize
flexibility, availability, and horizontal scalability for unstructured and semi-structured data, NewSQL systems bridge
the gap by preserving SQL's consistency guarantees within distributed architectures. Organizations are increasingly
adopting polyglot persistence strategies, selecting specific database technologies based on workload characteristics
rather than committing to a single solution. As cloud-native deployments become standard practice and edge computing
gains prominence, database systems are adapting to provide seamless data management across distributed
environments. The future points toward greater integration of machine learning capabilities, enhanced multi-region

World Journal of Advanced Engineering Technology and Sciences, 2025, 15(01), 135-142

142

replication, and more intuitive management interfaces that abstract the underlying complexity while maximizing
performance and reliability for modern applications.

References

[1] David Reinsel et al., "The Digitization of the World: From Edge to Core," IDC, Nov. 2018. [Online]. Available:
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

[2] Sebastiao Amaro, "Towards Robust Distributed Systems," 2023. [Online]. Available:
https://miguelmatos.me/files/papers/2023/eurosyswk_towards.pdf

[3] IBM, "System Properties," IBM Documentation, 11 April 2023. [Online]. Available:
https://www.ibm.com/docs/en/i/7.4?topic=java-system-properties

[4] Camelia-Florina Andor and Bazil Pârv, "NoSQL Database Performance Benchmarking - A Case Study," Studia
Universitatis Babeș-Bolyai Informatica, Vol. 63, no. 1, June 2018. [Online]. Available:
https://www.researchgate.net/publication/325899895_NoSQL_Database_Performance_Benchmarking_-
_A_Case_Study

[5] TrendMatrix Analytics, "NewSQL Database Market Scope & Forecast: Analyzing Size for Future Growth,"
LinkedIn, 22 Nov. 2024. [Online]. Available: https://www.linkedin.com/pulse/newsql-database-market-scope-
forecast-analyzing-1o20c/

[6] Mohamed Firdhous, "Implementation of Security in Distributed Systems - A Comparative Study," Nov. 2012.
[Online]. Available:
https://www.researchgate.net/publication/233387715_Implementation_of_Security_in_Distributed_Systems_-
_A_Comparative_Study

[7] Sagar Arora, "NoSQL Data Modelling," Medium, 27 Feb. 2023. [Online]. Available:
https://medium.com/@arorasagar1811/nosql-data-modelling-244ea86f6270

[8] Alessandro Galimberti et al., "Market Guide for Mainframe and Legacy Systems Migration and Modernization
Tools," Gartner Research, 17 Sep. 2024. [Online]. Available: https://www.gartner.com/en/documents/5769515

[9] Camelia-Florina Andor and Bazil Pârv, "Runtime Performance Benchmarking for NoSQL Databases," Studia
Universitatis Babeș-Bolyai Informatica, Vol. 64, no. 1, June 2019. [Online]. Available:
https://www.researchgate.net/publication/334039155_Runtime_Performance_Benchmarking_for_NoSQL_Dat
abases

[10] Jatin Vaghela, "A Comparative Study of NoSQL Database Performance in Big Data Analytics," ResearchGate, Sep.
2024. [Online]. Available:
https://www.researchgate.net/publication/383979533_A_Comparative_Study_of_NoSQL_Database_Performan
ce_in_Big_Data_Analytics

[11] Platform 3 Solutions, "The Future of Database Management System is Cloud," 30 Aug. 2024. [Online]. Available:
https://platform3solutions.com/the-future-of-database-management-system-is-
cloud/#:~:text=The%20future%20of%20database%20management%20systems%20is%20undeniably%20clo
ud%2Dbased,for%20businesses%20in%20different%20sectors

[12] Carl W. Olofson, "Worldwide Database Management Systems Software Forecast, 2024-2028," IDC Research, July
2024. [Online]. Available: https://www.idc.com/getdoc.jsp?containerId=US52383224

https://platform3solutions.com/the-future-of-database-management-system-is-cloud/#:~:text=The%20future%20of%20database%20management%20systems%20is%20undeniably%20cloud%2Dbased,for%20businesses%20in%20different%20sectors
https://platform3solutions.com/the-future-of-database-management-system-is-cloud/#:~:text=The%20future%20of%20database%20management%20systems%20is%20undeniably%20cloud%2Dbased,for%20businesses%20in%20different%20sectors
https://platform3solutions.com/the-future-of-database-management-system-is-cloud/#:~:text=The%20future%20of%20database%20management%20systems%20is%20undeniably%20cloud%2Dbased,for%20businesses%20in%20different%20sectors

